summaryrefslogtreecommitdiff
path: root/services/surfaceflinger/BufferLayer.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'services/surfaceflinger/BufferLayer.cpp')
-rw-r--r--services/surfaceflinger/BufferLayer.cpp1006
1 files changed, 1006 insertions, 0 deletions
diff --git a/services/surfaceflinger/BufferLayer.cpp b/services/surfaceflinger/BufferLayer.cpp
new file mode 100644
index 0000000000..fda7906744
--- /dev/null
+++ b/services/surfaceflinger/BufferLayer.cpp
@@ -0,0 +1,1006 @@
+/*
+ * Copyright (C) 2017 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+//#define LOG_NDEBUG 0
+#undef LOG_TAG
+#define LOG_TAG "BufferLayer"
+#define ATRACE_TAG ATRACE_TAG_GRAPHICS
+
+#include "BufferLayer.h"
+#include "Colorizer.h"
+#include "DisplayDevice.h"
+#include "LayerRejecter.h"
+#include "clz.h"
+
+#include "RenderEngine/RenderEngine.h"
+
+#include <gui/BufferItem.h>
+#include <gui/BufferQueue.h>
+#include <gui/LayerDebugInfo.h>
+#include <gui/Surface.h>
+
+#include <ui/DebugUtils.h>
+
+#include <utils/Errors.h>
+#include <utils/Log.h>
+#include <utils/NativeHandle.h>
+#include <utils/StopWatch.h>
+#include <utils/Trace.h>
+
+#include <cutils/compiler.h>
+#include <cutils/native_handle.h>
+#include <cutils/properties.h>
+
+#include <math.h>
+#include <stdlib.h>
+#include <mutex>
+
+namespace android {
+
+BufferLayer::BufferLayer(SurfaceFlinger* flinger, const sp<Client>& client, const String8& name,
+ uint32_t w, uint32_t h, uint32_t flags)
+ : Layer(flinger, client, name, w, h, flags),
+ mConsumer(nullptr),
+ mTextureName(UINT32_MAX),
+ mFormat(PIXEL_FORMAT_NONE),
+ mCurrentScalingMode(NATIVE_WINDOW_SCALING_MODE_FREEZE),
+ mBufferLatched(false),
+ mPreviousFrameNumber(0),
+ mUpdateTexImageFailed(false),
+ mRefreshPending(false) {
+ ALOGV("Creating Layer %s", name.string());
+
+ mFlinger->getRenderEngine().genTextures(1, &mTextureName);
+ mTexture.init(Texture::TEXTURE_EXTERNAL, mTextureName);
+
+ if (flags & ISurfaceComposerClient::eNonPremultiplied) mPremultipliedAlpha = false;
+
+ mCurrentState.requested = mCurrentState.active;
+
+ // drawing state & current state are identical
+ mDrawingState = mCurrentState;
+}
+
+BufferLayer::~BufferLayer() {
+ mFlinger->deleteTextureAsync(mTextureName);
+
+ if (!getBE().mHwcLayers.empty()) {
+ ALOGE("Found stale hardware composer layers when destroying "
+ "surface flinger layer %s",
+ mName.string());
+ destroyAllHwcLayers();
+ }
+}
+
+void BufferLayer::useSurfaceDamage() {
+ if (mFlinger->mForceFullDamage) {
+ surfaceDamageRegion = Region::INVALID_REGION;
+ } else {
+ surfaceDamageRegion = mConsumer->getSurfaceDamage();
+ }
+}
+
+void BufferLayer::useEmptyDamage() {
+ surfaceDamageRegion.clear();
+}
+
+bool BufferLayer::isProtected() const {
+ const sp<GraphicBuffer>& buffer(getBE().compositionInfo.mBuffer);
+ return (buffer != 0) &&
+ (buffer->getUsage() & GRALLOC_USAGE_PROTECTED);
+}
+
+bool BufferLayer::isVisible() const {
+ return !(isHiddenByPolicy()) && getAlpha() > 0.0f &&
+ (getBE().compositionInfo.mBuffer != nullptr ||
+ getBE().compositionInfo.hwc.sidebandStream != nullptr);
+}
+
+bool BufferLayer::isFixedSize() const {
+ return getEffectiveScalingMode() != NATIVE_WINDOW_SCALING_MODE_FREEZE;
+}
+
+status_t BufferLayer::setBuffers(uint32_t w, uint32_t h, PixelFormat format, uint32_t flags) {
+ uint32_t const maxSurfaceDims =
+ min(mFlinger->getMaxTextureSize(), mFlinger->getMaxViewportDims());
+
+ // never allow a surface larger than what our underlying GL implementation
+ // can handle.
+ if ((uint32_t(w) > maxSurfaceDims) || (uint32_t(h) > maxSurfaceDims)) {
+ ALOGE("dimensions too large %u x %u", uint32_t(w), uint32_t(h));
+ return BAD_VALUE;
+ }
+
+ mFormat = format;
+
+ mPotentialCursor = (flags & ISurfaceComposerClient::eCursorWindow) ? true : false;
+ mProtectedByApp = (flags & ISurfaceComposerClient::eProtectedByApp) ? true : false;
+ mCurrentOpacity = getOpacityForFormat(format);
+
+ mConsumer->setDefaultBufferSize(w, h);
+ mConsumer->setDefaultBufferFormat(format);
+ mConsumer->setConsumerUsageBits(getEffectiveUsage(0));
+
+ return NO_ERROR;
+}
+
+static constexpr mat4 inverseOrientation(uint32_t transform) {
+ const mat4 flipH(-1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1);
+ const mat4 flipV(1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1);
+ const mat4 rot90(0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1);
+ mat4 tr;
+
+ if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
+ tr = tr * rot90;
+ }
+ if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H) {
+ tr = tr * flipH;
+ }
+ if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V) {
+ tr = tr * flipV;
+ }
+ return inverse(tr);
+}
+
+/*
+ * onDraw will draw the current layer onto the presentable buffer
+ */
+void BufferLayer::onDraw(const RenderArea& renderArea, const Region& clip,
+ bool useIdentityTransform) const {
+ ATRACE_CALL();
+
+ if (CC_UNLIKELY(getBE().compositionInfo.mBuffer == 0)) {
+ // the texture has not been created yet, this Layer has
+ // in fact never been drawn into. This happens frequently with
+ // SurfaceView because the WindowManager can't know when the client
+ // has drawn the first time.
+
+ // If there is nothing under us, we paint the screen in black, otherwise
+ // we just skip this update.
+
+ // figure out if there is something below us
+ Region under;
+ bool finished = false;
+ mFlinger->mDrawingState.traverseInZOrder([&](Layer* layer) {
+ if (finished || layer == static_cast<BufferLayer const*>(this)) {
+ finished = true;
+ return;
+ }
+ under.orSelf(renderArea.getTransform().transform(layer->visibleRegion));
+ });
+ // if not everything below us is covered, we plug the holes!
+ Region holes(clip.subtract(under));
+ if (!holes.isEmpty()) {
+ clearWithOpenGL(renderArea, 0, 0, 0, 1);
+ }
+ return;
+ }
+
+ // Bind the current buffer to the GL texture, and wait for it to be
+ // ready for us to draw into.
+ status_t err = mConsumer->bindTextureImage();
+ if (err != NO_ERROR) {
+ ALOGW("onDraw: bindTextureImage failed (err=%d)", err);
+ // Go ahead and draw the buffer anyway; no matter what we do the screen
+ // is probably going to have something visibly wrong.
+ }
+
+ bool blackOutLayer = isProtected() || (isSecure() && !renderArea.isSecure());
+
+ auto& engine(mFlinger->getRenderEngine());
+
+ if (!blackOutLayer) {
+ // TODO: we could be more subtle with isFixedSize()
+ const bool useFiltering = getFiltering() || needsFiltering(renderArea) || isFixedSize();
+
+ // Query the texture matrix given our current filtering mode.
+ float textureMatrix[16];
+ mConsumer->setFilteringEnabled(useFiltering);
+ mConsumer->getTransformMatrix(textureMatrix);
+
+ if (getTransformToDisplayInverse()) {
+ /*
+ * the code below applies the primary display's inverse transform to
+ * the texture transform
+ */
+ uint32_t transform = DisplayDevice::getPrimaryDisplayOrientationTransform();
+ mat4 tr = inverseOrientation(transform);
+
+ /**
+ * TODO(b/36727915): This is basically a hack.
+ *
+ * Ensure that regardless of the parent transformation,
+ * this buffer is always transformed from native display
+ * orientation to display orientation. For example, in the case
+ * of a camera where the buffer remains in native orientation,
+ * we want the pixels to always be upright.
+ */
+ sp<Layer> p = mDrawingParent.promote();
+ if (p != nullptr) {
+ const auto parentTransform = p->getTransform();
+ tr = tr * inverseOrientation(parentTransform.getOrientation());
+ }
+
+ // and finally apply it to the original texture matrix
+ const mat4 texTransform(mat4(static_cast<const float*>(textureMatrix)) * tr);
+ memcpy(textureMatrix, texTransform.asArray(), sizeof(textureMatrix));
+ }
+
+ // Set things up for texturing.
+ mTexture.setDimensions(getBE().compositionInfo.mBuffer->getWidth(),
+ getBE().compositionInfo.mBuffer->getHeight());
+ mTexture.setFiltering(useFiltering);
+ mTexture.setMatrix(textureMatrix);
+
+ engine.setupLayerTexturing(mTexture);
+ } else {
+ engine.setupLayerBlackedOut();
+ }
+ drawWithOpenGL(renderArea, useIdentityTransform);
+ engine.disableTexturing();
+}
+
+void BufferLayer::onLayerDisplayed(const sp<Fence>& releaseFence) {
+ mConsumer->setReleaseFence(releaseFence);
+}
+
+void BufferLayer::abandon() {
+ mConsumer->abandon();
+}
+
+bool BufferLayer::shouldPresentNow(const DispSync& dispSync) const {
+ if (mSidebandStreamChanged || mAutoRefresh) {
+ return true;
+ }
+
+ Mutex::Autolock lock(mQueueItemLock);
+ if (mQueueItems.empty()) {
+ return false;
+ }
+ auto timestamp = mQueueItems[0].mTimestamp;
+ nsecs_t expectedPresent = mConsumer->computeExpectedPresent(dispSync);
+
+ // Ignore timestamps more than a second in the future
+ bool isPlausible = timestamp < (expectedPresent + s2ns(1));
+ ALOGW_IF(!isPlausible,
+ "[%s] Timestamp %" PRId64 " seems implausible "
+ "relative to expectedPresent %" PRId64,
+ mName.string(), timestamp, expectedPresent);
+
+ bool isDue = timestamp < expectedPresent;
+ return isDue || !isPlausible;
+}
+
+void BufferLayer::setTransformHint(uint32_t orientation) const {
+ mConsumer->setTransformHint(orientation);
+}
+
+bool BufferLayer::onPreComposition(nsecs_t refreshStartTime) {
+ if (mBufferLatched) {
+ Mutex::Autolock lock(mFrameEventHistoryMutex);
+ mFrameEventHistory.addPreComposition(mCurrentFrameNumber,
+ refreshStartTime);
+ }
+ mRefreshPending = false;
+ return mQueuedFrames > 0 || mSidebandStreamChanged ||
+ mAutoRefresh;
+}
+bool BufferLayer::onPostComposition(const std::shared_ptr<FenceTime>& glDoneFence,
+ const std::shared_ptr<FenceTime>& presentFence,
+ const CompositorTiming& compositorTiming) {
+ // mFrameLatencyNeeded is true when a new frame was latched for the
+ // composition.
+ if (!mFrameLatencyNeeded) return false;
+
+ // Update mFrameEventHistory.
+ {
+ Mutex::Autolock lock(mFrameEventHistoryMutex);
+ mFrameEventHistory.addPostComposition(mCurrentFrameNumber, glDoneFence,
+ presentFence, compositorTiming);
+ }
+
+ // Update mFrameTracker.
+ nsecs_t desiredPresentTime = mConsumer->getTimestamp();
+ mFrameTracker.setDesiredPresentTime(desiredPresentTime);
+
+ const std::string layerName(getName().c_str());
+ mTimeStats.setDesiredTime(layerName, mCurrentFrameNumber, desiredPresentTime);
+
+ std::shared_ptr<FenceTime> frameReadyFence = mConsumer->getCurrentFenceTime();
+ if (frameReadyFence->isValid()) {
+ mFrameTracker.setFrameReadyFence(std::move(frameReadyFence));
+ } else {
+ // There was no fence for this frame, so assume that it was ready
+ // to be presented at the desired present time.
+ mFrameTracker.setFrameReadyTime(desiredPresentTime);
+ }
+
+ if (presentFence->isValid()) {
+ mTimeStats.setPresentFence(layerName, mCurrentFrameNumber, presentFence);
+ mFrameTracker.setActualPresentFence(std::shared_ptr<FenceTime>(presentFence));
+ } else {
+ // The HWC doesn't support present fences, so use the refresh
+ // timestamp instead.
+ const nsecs_t actualPresentTime =
+ mFlinger->getHwComposer().getRefreshTimestamp(HWC_DISPLAY_PRIMARY);
+ mTimeStats.setPresentTime(layerName, mCurrentFrameNumber, actualPresentTime);
+ mFrameTracker.setActualPresentTime(actualPresentTime);
+ }
+
+ mFrameTracker.advanceFrame();
+ mFrameLatencyNeeded = false;
+ return true;
+}
+
+std::vector<OccupancyTracker::Segment> BufferLayer::getOccupancyHistory(bool forceFlush) {
+ std::vector<OccupancyTracker::Segment> history;
+ status_t result = mConsumer->getOccupancyHistory(forceFlush, &history);
+ if (result != NO_ERROR) {
+ ALOGW("[%s] Failed to obtain occupancy history (%d)", mName.string(), result);
+ return {};
+ }
+ return history;
+}
+
+bool BufferLayer::getTransformToDisplayInverse() const {
+ return mConsumer->getTransformToDisplayInverse();
+}
+
+void BufferLayer::releasePendingBuffer(nsecs_t dequeueReadyTime) {
+ if (!mConsumer->releasePendingBuffer()) {
+ return;
+ }
+
+ auto releaseFenceTime =
+ std::make_shared<FenceTime>(mConsumer->getPrevFinalReleaseFence());
+ mReleaseTimeline.updateSignalTimes();
+ mReleaseTimeline.push(releaseFenceTime);
+
+ Mutex::Autolock lock(mFrameEventHistoryMutex);
+ if (mPreviousFrameNumber != 0) {
+ mFrameEventHistory.addRelease(mPreviousFrameNumber, dequeueReadyTime,
+ std::move(releaseFenceTime));
+ }
+}
+
+Region BufferLayer::latchBuffer(bool& recomputeVisibleRegions, nsecs_t latchTime) {
+ ATRACE_CALL();
+
+ if (android_atomic_acquire_cas(true, false, &mSidebandStreamChanged) == 0) {
+ // mSidebandStreamChanged was true
+ mSidebandStream = mConsumer->getSidebandStream();
+ // replicated in LayerBE until FE/BE is ready to be synchronized
+ getBE().compositionInfo.hwc.sidebandStream = mSidebandStream;
+ if (getBE().compositionInfo.hwc.sidebandStream != nullptr) {
+ setTransactionFlags(eTransactionNeeded);
+ mFlinger->setTransactionFlags(eTraversalNeeded);
+ }
+ recomputeVisibleRegions = true;
+
+ const State& s(getDrawingState());
+ return getTransform().transform(Region(Rect(s.active.w, s.active.h)));
+ }
+
+ Region outDirtyRegion;
+ if (mQueuedFrames <= 0 && !mAutoRefresh) {
+ return outDirtyRegion;
+ }
+
+ // if we've already called updateTexImage() without going through
+ // a composition step, we have to skip this layer at this point
+ // because we cannot call updateTeximage() without a corresponding
+ // compositionComplete() call.
+ // we'll trigger an update in onPreComposition().
+ if (mRefreshPending) {
+ return outDirtyRegion;
+ }
+
+ // If the head buffer's acquire fence hasn't signaled yet, return and
+ // try again later
+ if (!headFenceHasSignaled()) {
+ mFlinger->signalLayerUpdate();
+ return outDirtyRegion;
+ }
+
+ // Capture the old state of the layer for comparisons later
+ const State& s(getDrawingState());
+ const bool oldOpacity = isOpaque(s);
+ sp<GraphicBuffer> oldBuffer = getBE().compositionInfo.mBuffer;
+
+ if (!allTransactionsSignaled()) {
+ mFlinger->signalLayerUpdate();
+ return outDirtyRegion;
+ }
+
+ // This boolean is used to make sure that SurfaceFlinger's shadow copy
+ // of the buffer queue isn't modified when the buffer queue is returning
+ // BufferItem's that weren't actually queued. This can happen in shared
+ // buffer mode.
+ bool queuedBuffer = false;
+ LayerRejecter r(mDrawingState, getCurrentState(), recomputeVisibleRegions,
+ getProducerStickyTransform() != 0, mName.string(),
+ mOverrideScalingMode, mFreezeGeometryUpdates);
+ status_t updateResult =
+ mConsumer->updateTexImage(&r, mFlinger->mPrimaryDispSync,
+ &mAutoRefresh, &queuedBuffer,
+ mLastFrameNumberReceived);
+ if (updateResult == BufferQueue::PRESENT_LATER) {
+ // Producer doesn't want buffer to be displayed yet. Signal a
+ // layer update so we check again at the next opportunity.
+ mFlinger->signalLayerUpdate();
+ return outDirtyRegion;
+ } else if (updateResult == BufferLayerConsumer::BUFFER_REJECTED) {
+ // If the buffer has been rejected, remove it from the shadow queue
+ // and return early
+ if (queuedBuffer) {
+ Mutex::Autolock lock(mQueueItemLock);
+ mTimeStats.removeTimeRecord(getName().c_str(), mQueueItems[0].mFrameNumber);
+ mQueueItems.removeAt(0);
+ android_atomic_dec(&mQueuedFrames);
+ }
+ return outDirtyRegion;
+ } else if (updateResult != NO_ERROR || mUpdateTexImageFailed) {
+ // This can occur if something goes wrong when trying to create the
+ // EGLImage for this buffer. If this happens, the buffer has already
+ // been released, so we need to clean up the queue and bug out
+ // early.
+ if (queuedBuffer) {
+ Mutex::Autolock lock(mQueueItemLock);
+ mQueueItems.clear();
+ android_atomic_and(0, &mQueuedFrames);
+ mTimeStats.clearLayerRecord(getName().c_str());
+ }
+
+ // Once we have hit this state, the shadow queue may no longer
+ // correctly reflect the incoming BufferQueue's contents, so even if
+ // updateTexImage starts working, the only safe course of action is
+ // to continue to ignore updates.
+ mUpdateTexImageFailed = true;
+
+ return outDirtyRegion;
+ }
+
+ if (queuedBuffer) {
+ // Autolock scope
+ auto currentFrameNumber = mConsumer->getFrameNumber();
+
+ Mutex::Autolock lock(mQueueItemLock);
+
+ // Remove any stale buffers that have been dropped during
+ // updateTexImage
+ while (mQueueItems[0].mFrameNumber != currentFrameNumber) {
+ mTimeStats.removeTimeRecord(getName().c_str(), mQueueItems[0].mFrameNumber);
+ mQueueItems.removeAt(0);
+ android_atomic_dec(&mQueuedFrames);
+ }
+
+ const std::string layerName(getName().c_str());
+ mTimeStats.setAcquireFence(layerName, currentFrameNumber, mQueueItems[0].mFenceTime);
+ mTimeStats.setLatchTime(layerName, currentFrameNumber, latchTime);
+
+ mQueueItems.removeAt(0);
+ }
+
+ // Decrement the queued-frames count. Signal another event if we
+ // have more frames pending.
+ if ((queuedBuffer && android_atomic_dec(&mQueuedFrames) > 1) ||
+ mAutoRefresh) {
+ mFlinger->signalLayerUpdate();
+ }
+
+ // update the active buffer
+ getBE().compositionInfo.mBuffer =
+ mConsumer->getCurrentBuffer(&getBE().compositionInfo.mBufferSlot);
+ // replicated in LayerBE until FE/BE is ready to be synchronized
+ mActiveBuffer = getBE().compositionInfo.mBuffer;
+ if (getBE().compositionInfo.mBuffer == nullptr) {
+ // this can only happen if the very first buffer was rejected.
+ return outDirtyRegion;
+ }
+
+ mBufferLatched = true;
+ mPreviousFrameNumber = mCurrentFrameNumber;
+ mCurrentFrameNumber = mConsumer->getFrameNumber();
+
+ {
+ Mutex::Autolock lock(mFrameEventHistoryMutex);
+ mFrameEventHistory.addLatch(mCurrentFrameNumber, latchTime);
+ }
+
+ mRefreshPending = true;
+ mFrameLatencyNeeded = true;
+ if (oldBuffer == nullptr) {
+ // the first time we receive a buffer, we need to trigger a
+ // geometry invalidation.
+ recomputeVisibleRegions = true;
+ }
+
+ ui::Dataspace dataSpace = mConsumer->getCurrentDataSpace();
+ // treat modern dataspaces as legacy dataspaces whenever possible, until
+ // we can trust the buffer producers
+ switch (dataSpace) {
+ case ui::Dataspace::V0_SRGB:
+ dataSpace = ui::Dataspace::SRGB;
+ break;
+ case ui::Dataspace::V0_SRGB_LINEAR:
+ dataSpace = ui::Dataspace::SRGB_LINEAR;
+ break;
+ case ui::Dataspace::V0_JFIF:
+ dataSpace = ui::Dataspace::JFIF;
+ break;
+ case ui::Dataspace::V0_BT601_625:
+ dataSpace = ui::Dataspace::BT601_625;
+ break;
+ case ui::Dataspace::V0_BT601_525:
+ dataSpace = ui::Dataspace::BT601_525;
+ break;
+ case ui::Dataspace::V0_BT709:
+ dataSpace = ui::Dataspace::BT709;
+ break;
+ default:
+ break;
+ }
+ mCurrentDataSpace = dataSpace;
+
+ Rect crop(mConsumer->getCurrentCrop());
+ const uint32_t transform(mConsumer->getCurrentTransform());
+ const uint32_t scalingMode(mConsumer->getCurrentScalingMode());
+ if ((crop != mCurrentCrop) ||
+ (transform != mCurrentTransform) ||
+ (scalingMode != mCurrentScalingMode)) {
+ mCurrentCrop = crop;
+ mCurrentTransform = transform;
+ mCurrentScalingMode = scalingMode;
+ recomputeVisibleRegions = true;
+ }
+
+ if (oldBuffer != nullptr) {
+ uint32_t bufWidth = getBE().compositionInfo.mBuffer->getWidth();
+ uint32_t bufHeight = getBE().compositionInfo.mBuffer->getHeight();
+ if (bufWidth != uint32_t(oldBuffer->width) ||
+ bufHeight != uint32_t(oldBuffer->height)) {
+ recomputeVisibleRegions = true;
+ }
+ }
+
+ mCurrentOpacity = getOpacityForFormat(getBE().compositionInfo.mBuffer->format);
+ if (oldOpacity != isOpaque(s)) {
+ recomputeVisibleRegions = true;
+ }
+
+ // Remove any sync points corresponding to the buffer which was just
+ // latched
+ {
+ Mutex::Autolock lock(mLocalSyncPointMutex);
+ auto point = mLocalSyncPoints.begin();
+ while (point != mLocalSyncPoints.end()) {
+ if (!(*point)->frameIsAvailable() || !(*point)->transactionIsApplied()) {
+ // This sync point must have been added since we started
+ // latching. Don't drop it yet.
+ ++point;
+ continue;
+ }
+
+ if ((*point)->getFrameNumber() <= mCurrentFrameNumber) {
+ point = mLocalSyncPoints.erase(point);
+ } else {
+ ++point;
+ }
+ }
+ }
+
+ // FIXME: postedRegion should be dirty & bounds
+ Region dirtyRegion(Rect(s.active.w, s.active.h));
+
+ // transform the dirty region to window-manager space
+ outDirtyRegion = (getTransform().transform(dirtyRegion));
+
+ return outDirtyRegion;
+}
+
+void BufferLayer::setDefaultBufferSize(uint32_t w, uint32_t h) {
+ mConsumer->setDefaultBufferSize(w, h);
+}
+
+void BufferLayer::setPerFrameData(const sp<const DisplayDevice>& displayDevice) {
+ // Apply this display's projection's viewport to the visible region
+ // before giving it to the HWC HAL.
+ const Transform& tr = displayDevice->getTransform();
+ const auto& viewport = displayDevice->getViewport();
+ Region visible = tr.transform(visibleRegion.intersect(viewport));
+ auto hwcId = displayDevice->getHwcDisplayId();
+ auto& hwcInfo = getBE().mHwcLayers[hwcId];
+ auto& hwcLayer = hwcInfo.layer;
+ auto error = hwcLayer->setVisibleRegion(visible);
+ if (error != HWC2::Error::None) {
+ ALOGE("[%s] Failed to set visible region: %s (%d)", mName.string(),
+ to_string(error).c_str(), static_cast<int32_t>(error));
+ visible.dump(LOG_TAG);
+ }
+
+ error = hwcLayer->setSurfaceDamage(surfaceDamageRegion);
+ if (error != HWC2::Error::None) {
+ ALOGE("[%s] Failed to set surface damage: %s (%d)", mName.string(),
+ to_string(error).c_str(), static_cast<int32_t>(error));
+ surfaceDamageRegion.dump(LOG_TAG);
+ }
+
+ // Sideband layers
+ if (getBE().compositionInfo.hwc.sidebandStream.get()) {
+ setCompositionType(hwcId, HWC2::Composition::Sideband);
+ ALOGV("[%s] Requesting Sideband composition", mName.string());
+ error = hwcLayer->setSidebandStream(getBE().compositionInfo.hwc.sidebandStream->handle());
+ if (error != HWC2::Error::None) {
+ ALOGE("[%s] Failed to set sideband stream %p: %s (%d)", mName.string(),
+ getBE().compositionInfo.hwc.sidebandStream->handle(), to_string(error).c_str(),
+ static_cast<int32_t>(error));
+ }
+ return;
+ }
+
+ // Device or Cursor layers
+ if (mPotentialCursor) {
+ ALOGV("[%s] Requesting Cursor composition", mName.string());
+ setCompositionType(hwcId, HWC2::Composition::Cursor);
+ } else {
+ ALOGV("[%s] Requesting Device composition", mName.string());
+ setCompositionType(hwcId, HWC2::Composition::Device);
+ }
+
+ ALOGV("setPerFrameData: dataspace = %d", mCurrentDataSpace);
+ error = hwcLayer->setDataspace(mCurrentDataSpace);
+ if (error != HWC2::Error::None) {
+ ALOGE("[%s] Failed to set dataspace %d: %s (%d)", mName.string(), mCurrentDataSpace,
+ to_string(error).c_str(), static_cast<int32_t>(error));
+ }
+
+ const HdrMetadata& metadata = mConsumer->getCurrentHdrMetadata();
+ error = hwcLayer->setPerFrameMetadata(displayDevice->getSupportedPerFrameMetadata(), metadata);
+ if (error != HWC2::Error::None && error != HWC2::Error::Unsupported) {
+ ALOGE("[%s] Failed to set hdrMetadata: %s (%d)", mName.string(),
+ to_string(error).c_str(), static_cast<int32_t>(error));
+ }
+
+ uint32_t hwcSlot = 0;
+ sp<GraphicBuffer> hwcBuffer;
+ hwcInfo.bufferCache.getHwcBuffer(getBE().compositionInfo.mBufferSlot,
+ getBE().compositionInfo.mBuffer, &hwcSlot, &hwcBuffer);
+
+ auto acquireFence = mConsumer->getCurrentFence();
+ error = hwcLayer->setBuffer(hwcSlot, hwcBuffer, acquireFence);
+ if (error != HWC2::Error::None) {
+ ALOGE("[%s] Failed to set buffer %p: %s (%d)", mName.string(),
+ getBE().compositionInfo.mBuffer->handle, to_string(error).c_str(),
+ static_cast<int32_t>(error));
+ }
+}
+
+bool BufferLayer::isOpaque(const Layer::State& s) const {
+ // if we don't have a buffer or sidebandStream yet, we're translucent regardless of the
+ // layer's opaque flag.
+ if ((getBE().compositionInfo.hwc.sidebandStream == nullptr) && (getBE().compositionInfo.mBuffer == nullptr)) {
+ return false;
+ }
+
+ // if the layer has the opaque flag, then we're always opaque,
+ // otherwise we use the current buffer's format.
+ return ((s.flags & layer_state_t::eLayerOpaque) != 0) || mCurrentOpacity;
+}
+
+void BufferLayer::onFirstRef() {
+ // Creates a custom BufferQueue for SurfaceFlingerConsumer to use
+ sp<IGraphicBufferProducer> producer;
+ sp<IGraphicBufferConsumer> consumer;
+ BufferQueue::createBufferQueue(&producer, &consumer, true);
+ mProducer = new MonitoredProducer(producer, mFlinger, this);
+ mConsumer = new BufferLayerConsumer(consumer,
+ mFlinger->getRenderEngine(), mTextureName, this);
+ mConsumer->setConsumerUsageBits(getEffectiveUsage(0));
+ mConsumer->setContentsChangedListener(this);
+ mConsumer->setName(mName);
+
+ if (mFlinger->isLayerTripleBufferingDisabled()) {
+ mProducer->setMaxDequeuedBufferCount(2);
+ }
+
+ const sp<const DisplayDevice> hw(mFlinger->getDefaultDisplayDevice());
+ updateTransformHint(hw);
+}
+
+// ---------------------------------------------------------------------------
+// Interface implementation for SurfaceFlingerConsumer::ContentsChangedListener
+// ---------------------------------------------------------------------------
+
+void BufferLayer::onFrameAvailable(const BufferItem& item) {
+ // Add this buffer from our internal queue tracker
+ { // Autolock scope
+ Mutex::Autolock lock(mQueueItemLock);
+ mFlinger->mInterceptor->saveBufferUpdate(this, item.mGraphicBuffer->getWidth(),
+ item.mGraphicBuffer->getHeight(),
+ item.mFrameNumber);
+ // Reset the frame number tracker when we receive the first buffer after
+ // a frame number reset
+ if (item.mFrameNumber == 1) {
+ mLastFrameNumberReceived = 0;
+ }
+
+ // Ensure that callbacks are handled in order
+ while (item.mFrameNumber != mLastFrameNumberReceived + 1) {
+ status_t result = mQueueItemCondition.waitRelative(mQueueItemLock,
+ ms2ns(500));
+ if (result != NO_ERROR) {
+ ALOGE("[%s] Timed out waiting on callback", mName.string());
+ }
+ }
+
+ mQueueItems.push_back(item);
+ android_atomic_inc(&mQueuedFrames);
+
+ // Wake up any pending callbacks
+ mLastFrameNumberReceived = item.mFrameNumber;
+ mQueueItemCondition.broadcast();
+ }
+
+ mFlinger->signalLayerUpdate();
+}
+
+void BufferLayer::onFrameReplaced(const BufferItem& item) {
+ { // Autolock scope
+ Mutex::Autolock lock(mQueueItemLock);
+
+ // Ensure that callbacks are handled in order
+ while (item.mFrameNumber != mLastFrameNumberReceived + 1) {
+ status_t result = mQueueItemCondition.waitRelative(mQueueItemLock,
+ ms2ns(500));
+ if (result != NO_ERROR) {
+ ALOGE("[%s] Timed out waiting on callback", mName.string());
+ }
+ }
+
+ if (mQueueItems.empty()) {
+ ALOGE("Can't replace a frame on an empty queue");
+ return;
+ }
+ mQueueItems.editItemAt(mQueueItems.size() - 1) = item;
+
+ // Wake up any pending callbacks
+ mLastFrameNumberReceived = item.mFrameNumber;
+ mQueueItemCondition.broadcast();
+ }
+}
+
+void BufferLayer::onSidebandStreamChanged() {
+ if (android_atomic_release_cas(false, true, &mSidebandStreamChanged) == 0) {
+ // mSidebandStreamChanged was false
+ mFlinger->signalLayerUpdate();
+ }
+}
+
+bool BufferLayer::needsFiltering(const RenderArea& renderArea) const {
+ return mNeedsFiltering || renderArea.needsFiltering();
+}
+
+// As documented in libhardware header, formats in the range
+// 0x100 - 0x1FF are specific to the HAL implementation, and
+// are known to have no alpha channel
+// TODO: move definition for device-specific range into
+// hardware.h, instead of using hard-coded values here.
+#define HARDWARE_IS_DEVICE_FORMAT(f) ((f) >= 0x100 && (f) <= 0x1FF)
+
+bool BufferLayer::getOpacityForFormat(uint32_t format) {
+ if (HARDWARE_IS_DEVICE_FORMAT(format)) {
+ return true;
+ }
+ switch (format) {
+ case HAL_PIXEL_FORMAT_RGBA_8888:
+ case HAL_PIXEL_FORMAT_BGRA_8888:
+ case HAL_PIXEL_FORMAT_RGBA_FP16:
+ case HAL_PIXEL_FORMAT_RGBA_1010102:
+ return false;
+ }
+ // in all other case, we have no blending (also for unknown formats)
+ return true;
+}
+
+bool BufferLayer::isHdrY410() const {
+ // pixel format is HDR Y410 masquerading as RGBA_1010102
+ return (mCurrentDataSpace == ui::Dataspace::BT2020_ITU_PQ &&
+ mConsumer->getCurrentApi() == NATIVE_WINDOW_API_MEDIA &&
+ getBE().compositionInfo.mBuffer->getPixelFormat() == HAL_PIXEL_FORMAT_RGBA_1010102);
+}
+
+void BufferLayer::drawWithOpenGL(const RenderArea& renderArea, bool useIdentityTransform) const {
+ ATRACE_CALL();
+ const State& s(getDrawingState());
+
+ computeGeometry(renderArea, getBE().mMesh, useIdentityTransform);
+
+ /*
+ * NOTE: the way we compute the texture coordinates here produces
+ * different results than when we take the HWC path -- in the later case
+ * the "source crop" is rounded to texel boundaries.
+ * This can produce significantly different results when the texture
+ * is scaled by a large amount.
+ *
+ * The GL code below is more logical (imho), and the difference with
+ * HWC is due to a limitation of the HWC API to integers -- a question
+ * is suspend is whether we should ignore this problem or revert to
+ * GL composition when a buffer scaling is applied (maybe with some
+ * minimal value)? Or, we could make GL behave like HWC -- but this feel
+ * like more of a hack.
+ */
+ const Rect bounds{computeBounds()}; // Rounds from FloatRect
+
+ Transform t = getTransform();
+ Rect win = bounds;
+ if (!s.finalCrop.isEmpty()) {
+ win = t.transform(win);
+ if (!win.intersect(s.finalCrop, &win)) {
+ win.clear();
+ }
+ win = t.inverse().transform(win);
+ if (!win.intersect(bounds, &win)) {
+ win.clear();
+ }
+ }
+
+ float left = float(win.left) / float(s.active.w);
+ float top = float(win.top) / float(s.active.h);
+ float right = float(win.right) / float(s.active.w);
+ float bottom = float(win.bottom) / float(s.active.h);
+
+ // TODO: we probably want to generate the texture coords with the mesh
+ // here we assume that we only have 4 vertices
+ Mesh::VertexArray<vec2> texCoords(getBE().mMesh.getTexCoordArray<vec2>());
+ texCoords[0] = vec2(left, 1.0f - top);
+ texCoords[1] = vec2(left, 1.0f - bottom);
+ texCoords[2] = vec2(right, 1.0f - bottom);
+ texCoords[3] = vec2(right, 1.0f - top);
+
+ auto& engine(mFlinger->getRenderEngine());
+ engine.setupLayerBlending(mPremultipliedAlpha, isOpaque(s), false /* disableTexture */,
+ getColor());
+ engine.setSourceDataSpace(mCurrentDataSpace);
+
+ if (isHdrY410()) {
+ engine.setSourceY410BT2020(true);
+ }
+
+ engine.drawMesh(getBE().mMesh);
+ engine.disableBlending();
+
+ engine.setSourceY410BT2020(false);
+}
+
+uint32_t BufferLayer::getProducerStickyTransform() const {
+ int producerStickyTransform = 0;
+ int ret = mProducer->query(NATIVE_WINDOW_STICKY_TRANSFORM, &producerStickyTransform);
+ if (ret != OK) {
+ ALOGW("%s: Error %s (%d) while querying window sticky transform.", __FUNCTION__,
+ strerror(-ret), ret);
+ return 0;
+ }
+ return static_cast<uint32_t>(producerStickyTransform);
+}
+
+bool BufferLayer::latchUnsignaledBuffers() {
+ static bool propertyLoaded = false;
+ static bool latch = false;
+ static std::mutex mutex;
+ std::lock_guard<std::mutex> lock(mutex);
+ if (!propertyLoaded) {
+ char value[PROPERTY_VALUE_MAX] = {};
+ property_get("debug.sf.latch_unsignaled", value, "0");
+ latch = atoi(value);
+ propertyLoaded = true;
+ }
+ return latch;
+}
+
+uint64_t BufferLayer::getHeadFrameNumber() const {
+ Mutex::Autolock lock(mQueueItemLock);
+ if (!mQueueItems.empty()) {
+ return mQueueItems[0].mFrameNumber;
+ } else {
+ return mCurrentFrameNumber;
+ }
+}
+
+bool BufferLayer::headFenceHasSignaled() const {
+ if (latchUnsignaledBuffers()) {
+ return true;
+ }
+
+ Mutex::Autolock lock(mQueueItemLock);
+ if (mQueueItems.empty()) {
+ return true;
+ }
+ if (mQueueItems[0].mIsDroppable) {
+ // Even though this buffer's fence may not have signaled yet, it could
+ // be replaced by another buffer before it has a chance to, which means
+ // that it's possible to get into a situation where a buffer is never
+ // able to be latched. To avoid this, grab this buffer anyway.
+ return true;
+ }
+ return mQueueItems[0].mFenceTime->getSignalTime() !=
+ Fence::SIGNAL_TIME_PENDING;
+}
+
+uint32_t BufferLayer::getEffectiveScalingMode() const {
+ if (mOverrideScalingMode >= 0) {
+ return mOverrideScalingMode;
+ }
+ return mCurrentScalingMode;
+}
+
+// ----------------------------------------------------------------------------
+// transaction
+// ----------------------------------------------------------------------------
+
+void BufferLayer::notifyAvailableFrames() {
+ auto headFrameNumber = getHeadFrameNumber();
+ bool headFenceSignaled = headFenceHasSignaled();
+ Mutex::Autolock lock(mLocalSyncPointMutex);
+ for (auto& point : mLocalSyncPoints) {
+ if (headFrameNumber >= point->getFrameNumber() && headFenceSignaled) {
+ point->setFrameAvailable();
+ }
+ }
+}
+
+sp<IGraphicBufferProducer> BufferLayer::getProducer() const {
+ return mProducer;
+}
+
+// ---------------------------------------------------------------------------
+// h/w composer set-up
+// ---------------------------------------------------------------------------
+
+bool BufferLayer::allTransactionsSignaled() {
+ auto headFrameNumber = getHeadFrameNumber();
+ bool matchingFramesFound = false;
+ bool allTransactionsApplied = true;
+ Mutex::Autolock lock(mLocalSyncPointMutex);
+
+ for (auto& point : mLocalSyncPoints) {
+ if (point->getFrameNumber() > headFrameNumber) {
+ break;
+ }
+ matchingFramesFound = true;
+
+ if (!point->frameIsAvailable()) {
+ // We haven't notified the remote layer that the frame for
+ // this point is available yet. Notify it now, and then
+ // abort this attempt to latch.
+ point->setFrameAvailable();
+ allTransactionsApplied = false;
+ break;
+ }
+
+ allTransactionsApplied = allTransactionsApplied && point->transactionIsApplied();
+ }
+ return !matchingFramesFound || allTransactionsApplied;
+}
+
+} // namespace android
+
+#if defined(__gl_h_)
+#error "don't include gl/gl.h in this file"
+#endif
+
+#if defined(__gl2_h_)
+#error "don't include gl2/gl2.h in this file"
+#endif