summaryrefslogtreecommitdiff
path: root/libs/input/VelocityTracker.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'libs/input/VelocityTracker.cpp')
-rw-r--r--libs/input/VelocityTracker.cpp574
1 files changed, 187 insertions, 387 deletions
diff --git a/libs/input/VelocityTracker.cpp b/libs/input/VelocityTracker.cpp
index 078109a5b6..613a0df040 100644
--- a/libs/input/VelocityTracker.cpp
+++ b/libs/input/VelocityTracker.cpp
@@ -17,14 +17,13 @@
#define LOG_TAG "VelocityTracker"
#include <android-base/logging.h>
-#include <array>
#include <ftl/enum.h>
#include <inttypes.h>
#include <limits.h>
#include <math.h>
+#include <array>
#include <optional>
-#include <android-base/stringprintf.h>
#include <input/PrintTools.h>
#include <input/VelocityTracker.h>
#include <utils/BitSet.h>
@@ -58,6 +57,9 @@ const bool DEBUG_IMPULSE =
// Nanoseconds per milliseconds.
static const nsecs_t NANOS_PER_MS = 1000000;
+// Seconds per nanosecond.
+static const float SECONDS_PER_NANO = 1E-9;
+
// All axes supported for velocity tracking, mapped to their default strategies.
// Although other strategies are available for testing and comparison purposes,
// the default strategy is the one that applications will actually use. Be very careful
@@ -238,6 +240,11 @@ void VelocityTracker::clearPointer(int32_t pointerId) {
void VelocityTracker::addMovement(nsecs_t eventTime, int32_t pointerId, int32_t axis,
float position) {
+ if (pointerId < 0 || pointerId > MAX_POINTER_ID) {
+ LOG(FATAL) << "Invalid pointer ID " << pointerId << " for axis "
+ << MotionEvent::getLabel(axis);
+ }
+
if (mCurrentPointerIdBits.hasBit(pointerId) &&
std::chrono::nanoseconds(eventTime - mLastEventTime) > ASSUME_POINTER_STOPPED_TIME) {
ALOGD_IF(DEBUG_VELOCITY, "VelocityTracker: stopped for %s, clearing state.",
@@ -261,23 +268,17 @@ void VelocityTracker::addMovement(nsecs_t eventTime, int32_t pointerId, int32_t
mConfiguredStrategies[axis]->addMovement(eventTime, pointerId, position);
if (DEBUG_VELOCITY) {
- ALOGD("VelocityTracker: addMovement eventTime=%" PRId64 ", pointerId=%" PRId32
- ", activePointerId=%s",
- eventTime, pointerId, toString(mActivePointerId).c_str());
-
- std::optional<Estimator> estimator = getEstimator(axis, pointerId);
- ALOGD(" %d: axis=%d, position=%0.3f, "
- "estimator (degree=%d, coeff=%s, confidence=%f)",
- pointerId, axis, position, int((*estimator).degree),
- vectorToString((*estimator).coeff.data(), (*estimator).degree + 1).c_str(),
- (*estimator).confidence);
+ LOG(INFO) << "VelocityTracker: addMovement axis=" << MotionEvent::getLabel(axis)
+ << ", eventTime=" << eventTime << ", pointerId=" << pointerId
+ << ", activePointerId=" << toString(mActivePointerId) << ", position=" << position
+ << ", velocity=" << toString(getVelocity(axis, pointerId));
}
}
-void VelocityTracker::addMovement(const MotionEvent* event) {
+void VelocityTracker::addMovement(const MotionEvent& event) {
// Stores data about which axes to process based on the incoming motion event.
std::set<int32_t> axesToProcess;
- int32_t actionMasked = event->getActionMasked();
+ int32_t actionMasked = event.getActionMasked();
switch (actionMasked) {
case AMOTION_EVENT_ACTION_DOWN:
@@ -290,7 +291,7 @@ void VelocityTracker::addMovement(const MotionEvent* event) {
// Start a new movement trace for a pointer that just went down.
// We do this on down instead of on up because the client may want to query the
// final velocity for a pointer that just went up.
- clearPointer(event->getPointerId(event->getActionIndex()));
+ clearPointer(event.getPointerId(event.getActionIndex()));
axesToProcess.insert(PLANAR_AXES.begin(), PLANAR_AXES.end());
break;
}
@@ -299,8 +300,14 @@ void VelocityTracker::addMovement(const MotionEvent* event) {
axesToProcess.insert(PLANAR_AXES.begin(), PLANAR_AXES.end());
break;
case AMOTION_EVENT_ACTION_POINTER_UP:
+ if (event.getFlags() & AMOTION_EVENT_FLAG_CANCELED) {
+ clearPointer(event.getPointerId(event.getActionIndex()));
+ return;
+ }
+ // Continue to ACTION_UP to ensure that the POINTER_STOPPED logic is triggered.
+ [[fallthrough]];
case AMOTION_EVENT_ACTION_UP: {
- std::chrono::nanoseconds delaySinceLastEvent(event->getEventTime() - mLastEventTime);
+ std::chrono::nanoseconds delaySinceLastEvent(event.getEventTime() - mLastEventTime);
if (delaySinceLastEvent > ASSUME_POINTER_STOPPED_TIME) {
ALOGD_IF(DEBUG_VELOCITY,
"VelocityTracker: stopped for %s, clearing state upon pointer liftoff.",
@@ -324,21 +331,26 @@ void VelocityTracker::addMovement(const MotionEvent* event) {
case AMOTION_EVENT_ACTION_SCROLL:
axesToProcess.insert(AMOTION_EVENT_AXIS_SCROLL);
break;
+ case AMOTION_EVENT_ACTION_CANCEL: {
+ clear();
+ return;
+ }
+
default:
// Ignore all other actions.
return;
}
- const size_t historySize = event->getHistorySize();
+ const size_t historySize = event.getHistorySize();
for (size_t h = 0; h <= historySize; h++) {
- const nsecs_t eventTime = event->getHistoricalEventTime(h);
- for (size_t i = 0; i < event->getPointerCount(); i++) {
- if (event->isResampled(i, h)) {
+ const nsecs_t eventTime = event.getHistoricalEventTime(h);
+ for (size_t i = 0; i < event.getPointerCount(); i++) {
+ if (event.isResampled(i, h)) {
continue; // skip resampled samples
}
- const int32_t pointerId = event->getPointerId(i);
+ const int32_t pointerId = event.getPointerId(i);
for (int32_t axis : axesToProcess) {
- const float position = event->getHistoricalAxisValue(axis, i, h);
+ const float position = event.getHistoricalAxisValue(axis, i, h);
addMovement(eventTime, pointerId, axis, position);
}
}
@@ -346,9 +358,9 @@ void VelocityTracker::addMovement(const MotionEvent* event) {
}
std::optional<float> VelocityTracker::getVelocity(int32_t axis, int32_t pointerId) const {
- std::optional<Estimator> estimator = getEstimator(axis, pointerId);
- if (estimator && (*estimator).degree >= 1) {
- return (*estimator).coeff[1];
+ const auto& it = mConfiguredStrategies.find(axis);
+ if (it != mConfiguredStrategies.end()) {
+ return it->second->getVelocity(pointerId);
}
return {};
}
@@ -371,57 +383,53 @@ VelocityTracker::ComputedVelocity VelocityTracker::getComputedVelocity(int32_t u
return computedVelocity;
}
-std::optional<VelocityTracker::Estimator> VelocityTracker::getEstimator(int32_t axis,
- int32_t pointerId) const {
- const auto& it = mConfiguredStrategies.find(axis);
- if (it == mConfiguredStrategies.end()) {
- return std::nullopt;
- }
- return it->second->getEstimator(pointerId);
-}
-
-// --- LeastSquaresVelocityTrackerStrategy ---
+AccumulatingVelocityTrackerStrategy::AccumulatingVelocityTrackerStrategy(
+ nsecs_t horizonNanos, bool maintainHorizonDuringAdd)
+ : mHorizonNanos(horizonNanos), mMaintainHorizonDuringAdd(maintainHorizonDuringAdd) {}
-LeastSquaresVelocityTrackerStrategy::LeastSquaresVelocityTrackerStrategy(uint32_t degree,
- Weighting weighting)
- : mDegree(degree), mWeighting(weighting) {}
-
-LeastSquaresVelocityTrackerStrategy::~LeastSquaresVelocityTrackerStrategy() {
-}
-
-void LeastSquaresVelocityTrackerStrategy::clearPointer(int32_t pointerId) {
- mIndex.erase(pointerId);
+void AccumulatingVelocityTrackerStrategy::clearPointer(int32_t pointerId) {
mMovements.erase(pointerId);
}
-void LeastSquaresVelocityTrackerStrategy::addMovement(nsecs_t eventTime, int32_t pointerId,
+void AccumulatingVelocityTrackerStrategy::addMovement(nsecs_t eventTime, int32_t pointerId,
float position) {
- // If data for this pointer already exists, we have a valid entry at the position of
- // mIndex[pointerId] and mMovements[pointerId]. In that case, we need to advance the index
- // to the next position in the circular buffer and write the new Movement there. Otherwise,
- // if this is a first movement for this pointer, we initialize the maps mIndex and mMovements
- // for this pointer and write to the first position.
- auto [movementIt, inserted] = mMovements.insert({pointerId, {}});
- auto [indexIt, _] = mIndex.insert({pointerId, 0});
- size_t& index = indexIt->second;
- if (!inserted && movementIt->second[index].eventTime != eventTime) {
+ auto [ringBufferIt, _] = mMovements.try_emplace(pointerId, HISTORY_SIZE);
+ RingBuffer<Movement>& movements = ringBufferIt->second;
+ const size_t size = movements.size();
+
+ if (size != 0 && movements[size - 1].eventTime == eventTime) {
// When ACTION_POINTER_DOWN happens, we will first receive ACTION_MOVE with the coordinates
// of the existing pointers, and then ACTION_POINTER_DOWN with the coordinates that include
// the new pointer. If the eventtimes for both events are identical, just update the data
- // for this time.
+ // for this time (i.e. pop out the last element, and insert the updated movement).
// We only compare against the last value, as it is likely that addMovement is called
// in chronological order as events occur.
- index++;
- }
- if (index == HISTORY_SIZE) {
- index = 0;
+ movements.popBack();
}
- Movement& movement = movementIt->second[index];
- movement.eventTime = eventTime;
- movement.position = position;
+ movements.pushBack({eventTime, position});
+
+ // Clear movements that do not fall within `mHorizonNanos` of the latest movement.
+ // Note that, if in the future we decide to use more movements (i.e. increase HISTORY_SIZE),
+ // we can consider making this step binary-search based, which will give us some improvement.
+ if (mMaintainHorizonDuringAdd) {
+ while (eventTime - movements[0].eventTime > mHorizonNanos) {
+ movements.popFront();
+ }
+ }
}
+// --- LeastSquaresVelocityTrackerStrategy ---
+
+LeastSquaresVelocityTrackerStrategy::LeastSquaresVelocityTrackerStrategy(uint32_t degree,
+ Weighting weighting)
+ : AccumulatingVelocityTrackerStrategy(HORIZON /*horizonNanos*/,
+ true /*maintainHorizonDuringAdd*/),
+ mDegree(degree),
+ mWeighting(weighting) {}
+
+LeastSquaresVelocityTrackerStrategy::~LeastSquaresVelocityTrackerStrategy() {}
+
/**
* Solves a linear least squares problem to obtain a N degree polynomial that fits
* the specified input data as nearly as possible.
@@ -471,10 +479,9 @@ void LeastSquaresVelocityTrackerStrategy::addMovement(nsecs_t eventTime, int32_t
* http://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares
* http://en.wikipedia.org/wiki/Gram-Schmidt
*/
-static bool solveLeastSquares(const std::vector<float>& x, const std::vector<float>& y,
- const std::vector<float>& w, uint32_t n,
- std::array<float, VelocityTracker::Estimator::MAX_DEGREE + 1>& outB,
- float* outDet) {
+static std::optional<float> solveLeastSquares(const std::vector<float>& x,
+ const std::vector<float>& y,
+ const std::vector<float>& w, uint32_t n) {
const size_t m = x.size();
ALOGD_IF(DEBUG_STRATEGY, "solveLeastSquares: m=%d, n=%d, x=%s, y=%s, w=%s", int(m), int(n),
@@ -512,7 +519,7 @@ static bool solveLeastSquares(const std::vector<float>& x, const std::vector<flo
if (norm < 0.000001f) {
// vectors are linearly dependent or zero so no solution
ALOGD_IF(DEBUG_STRATEGY, " - no solution, norm=%f", norm);
- return false;
+ return {};
}
float invNorm = 1.0f / norm;
@@ -546,6 +553,7 @@ static bool solveLeastSquares(const std::vector<float>& x, const std::vector<flo
for (uint32_t h = 0; h < m; h++) {
wy[h] = y[h] * w[h];
}
+ std::array<float, VelocityTracker::MAX_DEGREE + 1> outB;
for (uint32_t i = n; i != 0; ) {
i--;
outB[i] = vectorDot(&q[i][0], wy, m);
@@ -567,42 +575,46 @@ static bool solveLeastSquares(const std::vector<float>& x, const std::vector<flo
}
ymean /= m;
- float sserr = 0;
- float sstot = 0;
- for (uint32_t h = 0; h < m; h++) {
- float err = y[h] - outB[0];
- float term = 1;
- for (uint32_t i = 1; i < n; i++) {
- term *= x[h];
- err -= term * outB[i];
+ if (DEBUG_STRATEGY) {
+ float sserr = 0;
+ float sstot = 0;
+ for (uint32_t h = 0; h < m; h++) {
+ float err = y[h] - outB[0];
+ float term = 1;
+ for (uint32_t i = 1; i < n; i++) {
+ term *= x[h];
+ err -= term * outB[i];
+ }
+ sserr += w[h] * w[h] * err * err;
+ float var = y[h] - ymean;
+ sstot += w[h] * w[h] * var * var;
}
- sserr += w[h] * w[h] * err * err;
- float var = y[h] - ymean;
- sstot += w[h] * w[h] * var * var;
+ ALOGD(" - sserr=%f", sserr);
+ ALOGD(" - sstot=%f", sstot);
}
- *outDet = sstot > 0.000001f ? 1.0f - (sserr / sstot) : 1;
- ALOGD_IF(DEBUG_STRATEGY, " - sserr=%f", sserr);
- ALOGD_IF(DEBUG_STRATEGY, " - sstot=%f", sstot);
- ALOGD_IF(DEBUG_STRATEGY, " - det=%f", *outDet);
-
- return true;
+ return outB[1];
}
/*
* Optimized unweighted second-order least squares fit. About 2x speed improvement compared to
* the default implementation
*/
-static std::optional<std::array<float, 3>> solveUnweightedLeastSquaresDeg2(
- const std::vector<float>& x, const std::vector<float>& y) {
- const size_t count = x.size();
- LOG_ALWAYS_FATAL_IF(count != y.size(), "Mismatching array sizes");
- // Solving y = a*x^2 + b*x + c
+std::optional<float> LeastSquaresVelocityTrackerStrategy::solveUnweightedLeastSquaresDeg2(
+ const RingBuffer<Movement>& movements) const {
+ // Solving y = a*x^2 + b*x + c, where
+ // - "x" is age (i.e. duration since latest movement) of the movemnets
+ // - "y" is positions of the movements.
float sxi = 0, sxiyi = 0, syi = 0, sxi2 = 0, sxi3 = 0, sxi2yi = 0, sxi4 = 0;
+ const size_t count = movements.size();
+ const Movement& newestMovement = movements[count - 1];
for (size_t i = 0; i < count; i++) {
- float xi = x[i];
- float yi = y[i];
+ const Movement& movement = movements[i];
+ nsecs_t age = newestMovement.eventTime - movement.eventTime;
+ float xi = -age * SECONDS_PER_NANO;
+ float yi = movement.position;
+
float xi2 = xi*xi;
float xi3 = xi2*xi;
float xi4 = xi3*xi;
@@ -629,124 +641,68 @@ static std::optional<std::array<float, 3>> solveUnweightedLeastSquaresDeg2(
ALOGW("division by 0 when computing velocity, Sxx=%f, Sx2x2=%f, Sxx2=%f", Sxx, Sx2x2, Sxx2);
return std::nullopt;
}
- // Compute a
- float numerator = Sx2y*Sxx - Sxy*Sxx2;
- float a = numerator / denominator;
-
- // Compute b
- numerator = Sxy*Sx2x2 - Sx2y*Sxx2;
- float b = numerator / denominator;
- // Compute c
- float c = syi/count - b * sxi/count - a * sxi2/count;
-
- return std::make_optional(std::array<float, 3>({c, b, a}));
+ return (Sxy * Sx2x2 - Sx2y * Sxx2) / denominator;
}
-std::optional<VelocityTracker::Estimator> LeastSquaresVelocityTrackerStrategy::getEstimator(
- int32_t pointerId) const {
+std::optional<float> LeastSquaresVelocityTrackerStrategy::getVelocity(int32_t pointerId) const {
const auto movementIt = mMovements.find(pointerId);
if (movementIt == mMovements.end()) {
return std::nullopt; // no data
}
- // Iterate over movement samples in reverse time order and collect samples.
- std::vector<float> positions;
- std::vector<float> w;
- std::vector<float> time;
- uint32_t index = mIndex.at(pointerId);
- const Movement& newestMovement = movementIt->second[index];
- do {
- const Movement& movement = movementIt->second[index];
-
- nsecs_t age = newestMovement.eventTime - movement.eventTime;
- if (age > HORIZON) {
- break;
- }
- if (movement.eventTime == 0 && index != 0) {
- // All eventTime's are initialized to 0. In this fixed-width circular buffer, it's
- // possible that not all entries are valid. We use a time=0 as a signal for those
- // uninitialized values. If we encounter a time of 0 in a position
- // that's > 0, it means that we hit the block where the data wasn't initialized.
- // We still don't know whether the value at index=0, with eventTime=0 is valid.
- // However, that's only possible when the value is by itself. So there's no hard in
- // processing it anyways, since the velocity for a single point is zero, and this
- // situation will only be encountered in artificial circumstances (in tests).
- // In practice, time will never be 0.
- break;
- }
- positions.push_back(movement.position);
- w.push_back(chooseWeight(pointerId, index));
- time.push_back(-age * 0.000000001f);
- index = (index == 0 ? HISTORY_SIZE : index) - 1;
- } while (positions.size() < HISTORY_SIZE);
-
- const size_t m = positions.size();
- if (m == 0) {
+ const RingBuffer<Movement>& movements = movementIt->second;
+ const size_t size = movements.size();
+ if (size == 0) {
return std::nullopt; // no data
}
- // Calculate a least squares polynomial fit.
uint32_t degree = mDegree;
- if (degree > m - 1) {
- degree = m - 1;
+ if (degree > size - 1) {
+ degree = size - 1;
+ }
+
+ if (degree <= 0) {
+ return std::nullopt;
}
if (degree == 2 && mWeighting == Weighting::NONE) {
// Optimize unweighted, quadratic polynomial fit
- std::optional<std::array<float, 3>> coeff =
- solveUnweightedLeastSquaresDeg2(time, positions);
- if (coeff) {
- VelocityTracker::Estimator estimator;
- estimator.time = newestMovement.eventTime;
- estimator.degree = 2;
- estimator.confidence = 1;
- for (size_t i = 0; i <= estimator.degree; i++) {
- estimator.coeff[i] = (*coeff)[i];
- }
- return estimator;
- }
- } else if (degree >= 1) {
- // General case for an Nth degree polynomial fit
- float det;
- uint32_t n = degree + 1;
- VelocityTracker::Estimator estimator;
- if (solveLeastSquares(time, positions, w, n, estimator.coeff, &det)) {
- estimator.time = newestMovement.eventTime;
- estimator.degree = degree;
- estimator.confidence = det;
-
- ALOGD_IF(DEBUG_STRATEGY, "estimate: degree=%d, coeff=%s, confidence=%f",
- int(estimator.degree), vectorToString(estimator.coeff.data(), n).c_str(),
- estimator.confidence);
-
- return estimator;
- }
+ return solveUnweightedLeastSquaresDeg2(movements);
}
- // No velocity data available for this pointer, but we do have its current position.
- VelocityTracker::Estimator estimator;
- estimator.coeff[0] = positions[0];
- estimator.time = newestMovement.eventTime;
- estimator.degree = 0;
- estimator.confidence = 1;
- return estimator;
+ // Iterate over movement samples in reverse time order and collect samples.
+ std::vector<float> positions;
+ std::vector<float> w;
+ std::vector<float> time;
+
+ const Movement& newestMovement = movements[size - 1];
+ for (ssize_t i = size - 1; i >= 0; i--) {
+ const Movement& movement = movements[i];
+ nsecs_t age = newestMovement.eventTime - movement.eventTime;
+ positions.push_back(movement.position);
+ w.push_back(chooseWeight(pointerId, i));
+ time.push_back(-age * 0.000000001f);
+ }
+
+ // General case for an Nth degree polynomial fit
+ return solveLeastSquares(time, positions, w, degree + 1);
}
float LeastSquaresVelocityTrackerStrategy::chooseWeight(int32_t pointerId, uint32_t index) const {
- const std::array<Movement, HISTORY_SIZE>& movements = mMovements.at(pointerId);
+ const RingBuffer<Movement>& movements = mMovements.at(pointerId);
+ const size_t size = movements.size();
switch (mWeighting) {
case Weighting::DELTA: {
// Weight points based on how much time elapsed between them and the next
// point so that points that "cover" a shorter time span are weighed less.
// delta 0ms: 0.5
// delta 10ms: 1.0
- if (index == mIndex.at(pointerId)) {
+ if (index == size - 1) {
return 1.0f;
}
- uint32_t nextIndex = (index + 1) % HISTORY_SIZE;
float deltaMillis =
- (movements[nextIndex].eventTime - movements[index].eventTime) * 0.000001f;
+ (movements[index + 1].eventTime - movements[index].eventTime) * 0.000001f;
if (deltaMillis < 0) {
return 0.5f;
}
@@ -763,8 +719,7 @@ float LeastSquaresVelocityTrackerStrategy::chooseWeight(int32_t pointerId, uint3
// age 50ms: 1.0
// age 60ms: 0.5
float ageMillis =
- (movements[mIndex.at(pointerId)].eventTime - movements[index].eventTime) *
- 0.000001f;
+ (movements[size - 1].eventTime - movements[index].eventTime) * 0.000001f;
if (ageMillis < 0) {
return 0.5f;
}
@@ -786,8 +741,7 @@ float LeastSquaresVelocityTrackerStrategy::chooseWeight(int32_t pointerId, uint3
// age 50ms: 1.0
// age 100ms: 0.5
float ageMillis =
- (movements[mIndex.at(pointerId)].eventTime - movements[index].eventTime) *
- 0.000001f;
+ (movements[size - 1].eventTime - movements[index].eventTime) * 0.000001f;
if (ageMillis < 50) {
return 1.0f;
}
@@ -827,13 +781,9 @@ void IntegratingVelocityTrackerStrategy::addMovement(nsecs_t eventTime, int32_t
mPointerIdBits.markBit(pointerId);
}
-std::optional<VelocityTracker::Estimator> IntegratingVelocityTrackerStrategy::getEstimator(
- int32_t pointerId) const {
+std::optional<float> IntegratingVelocityTrackerStrategy::getVelocity(int32_t pointerId) const {
if (mPointerIdBits.hasBit(pointerId)) {
- const State& state = mPointerState[pointerId];
- VelocityTracker::Estimator estimator;
- populateEstimator(state, &estimator);
- return estimator;
+ return mPointerState[pointerId].vel;
}
return std::nullopt;
@@ -883,77 +833,39 @@ void IntegratingVelocityTrackerStrategy::updateState(State& state, nsecs_t event
state.pos = pos;
}
-void IntegratingVelocityTrackerStrategy::populateEstimator(const State& state,
- VelocityTracker::Estimator* outEstimator) const {
- outEstimator->time = state.updateTime;
- outEstimator->confidence = 1.0f;
- outEstimator->degree = state.degree;
- outEstimator->coeff[0] = state.pos;
- outEstimator->coeff[1] = state.vel;
- outEstimator->coeff[2] = state.accel / 2;
-}
-
-
// --- LegacyVelocityTrackerStrategy ---
-LegacyVelocityTrackerStrategy::LegacyVelocityTrackerStrategy() {}
+LegacyVelocityTrackerStrategy::LegacyVelocityTrackerStrategy()
+ : AccumulatingVelocityTrackerStrategy(HORIZON /*horizonNanos*/,
+ false /*maintainHorizonDuringAdd*/) {}
LegacyVelocityTrackerStrategy::~LegacyVelocityTrackerStrategy() {
}
-void LegacyVelocityTrackerStrategy::clearPointer(int32_t pointerId) {
- mIndex.erase(pointerId);
- mMovements.erase(pointerId);
-}
-
-void LegacyVelocityTrackerStrategy::addMovement(nsecs_t eventTime, int32_t pointerId,
- float position) {
- // If data for this pointer already exists, we have a valid entry at the position of
- // mIndex[pointerId] and mMovements[pointerId]. In that case, we need to advance the index
- // to the next position in the circular buffer and write the new Movement there. Otherwise,
- // if this is a first movement for this pointer, we initialize the maps mIndex and mMovements
- // for this pointer and write to the first position.
- auto [movementIt, inserted] = mMovements.insert({pointerId, {}});
- auto [indexIt, _] = mIndex.insert({pointerId, 0});
- size_t& index = indexIt->second;
- if (!inserted && movementIt->second[index].eventTime != eventTime) {
- // When ACTION_POINTER_DOWN happens, we will first receive ACTION_MOVE with the coordinates
- // of the existing pointers, and then ACTION_POINTER_DOWN with the coordinates that include
- // the new pointer. If the eventtimes for both events are identical, just update the data
- // for this time.
- // We only compare against the last value, as it is likely that addMovement is called
- // in chronological order as events occur.
- index++;
- }
- if (index == HISTORY_SIZE) {
- index = 0;
- }
-
- Movement& movement = movementIt->second[index];
- movement.eventTime = eventTime;
- movement.position = position;
-}
-
-std::optional<VelocityTracker::Estimator> LegacyVelocityTrackerStrategy::getEstimator(
- int32_t pointerId) const {
+std::optional<float> LegacyVelocityTrackerStrategy::getVelocity(int32_t pointerId) const {
const auto movementIt = mMovements.find(pointerId);
if (movementIt == mMovements.end()) {
return std::nullopt; // no data
}
- const Movement& newestMovement = movementIt->second[mIndex.at(pointerId)];
+
+ const RingBuffer<Movement>& movements = movementIt->second;
+ const size_t size = movements.size();
+ if (size == 0) {
+ return std::nullopt; // no data
+ }
+
+ const Movement& newestMovement = movements[size - 1];
// Find the oldest sample that contains the pointer and that is not older than HORIZON.
nsecs_t minTime = newestMovement.eventTime - HORIZON;
- uint32_t oldestIndex = mIndex.at(pointerId);
- uint32_t numTouches = 1;
- do {
- uint32_t nextOldestIndex = (oldestIndex == 0 ? HISTORY_SIZE : oldestIndex) - 1;
- const Movement& nextOldestMovement = mMovements.at(pointerId)[nextOldestIndex];
+ uint32_t oldestIndex = size - 1;
+ for (ssize_t i = size - 1; i >= 0; i--) {
+ const Movement& nextOldestMovement = movements[i];
if (nextOldestMovement.eventTime < minTime) {
break;
}
- oldestIndex = nextOldestIndex;
- } while (++numTouches < HISTORY_SIZE);
+ oldestIndex = i;
+ }
// Calculate an exponentially weighted moving average of the velocity estimate
// at different points in time measured relative to the oldest sample.
@@ -967,17 +879,13 @@ std::optional<VelocityTracker::Estimator> LegacyVelocityTrackerStrategy::getEsti
// 16ms apart but some consecutive samples could be only 0.5sm apart because
// the hardware or driver reports them irregularly or in bursts.
float accumV = 0;
- uint32_t index = oldestIndex;
uint32_t samplesUsed = 0;
- const Movement& oldestMovement = mMovements.at(pointerId)[oldestIndex];
+ const Movement& oldestMovement = movements[oldestIndex];
float oldestPosition = oldestMovement.position;
nsecs_t lastDuration = 0;
- while (numTouches-- > 1) {
- if (++index == HISTORY_SIZE) {
- index = 0;
- }
- const Movement& movement = mMovements.at(pointerId)[index];
+ for (size_t i = oldestIndex; i < size; i++) {
+ const Movement& movement = movements[i];
nsecs_t duration = movement.eventTime - oldestMovement.eventTime;
// If the duration between samples is small, we may significantly overestimate
@@ -993,62 +901,22 @@ std::optional<VelocityTracker::Estimator> LegacyVelocityTrackerStrategy::getEsti
}
}
- // Report velocity.
- float newestPosition = newestMovement.position;
- VelocityTracker::Estimator estimator;
- estimator.time = newestMovement.eventTime;
- estimator.confidence = 1;
- estimator.coeff[0] = newestPosition;
if (samplesUsed) {
- estimator.coeff[1] = accumV;
- estimator.degree = 1;
- } else {
- estimator.degree = 0;
+ return accumV;
}
- return estimator;
+ return std::nullopt;
}
// --- ImpulseVelocityTrackerStrategy ---
ImpulseVelocityTrackerStrategy::ImpulseVelocityTrackerStrategy(bool deltaValues)
- : mDeltaValues(deltaValues) {}
+ : AccumulatingVelocityTrackerStrategy(HORIZON /*horizonNanos*/,
+ true /*maintainHorizonDuringAdd*/),
+ mDeltaValues(deltaValues) {}
ImpulseVelocityTrackerStrategy::~ImpulseVelocityTrackerStrategy() {
}
-void ImpulseVelocityTrackerStrategy::clearPointer(int32_t pointerId) {
- mIndex.erase(pointerId);
- mMovements.erase(pointerId);
-}
-
-void ImpulseVelocityTrackerStrategy::addMovement(nsecs_t eventTime, int32_t pointerId,
- float position) {
- // If data for this pointer already exists, we have a valid entry at the position of
- // mIndex[pointerId] and mMovements[pointerId]. In that case, we need to advance the index
- // to the next position in the circular buffer and write the new Movement there. Otherwise,
- // if this is a first movement for this pointer, we initialize the maps mIndex and mMovements
- // for this pointer and write to the first position.
- auto [movementIt, inserted] = mMovements.insert({pointerId, {}});
- auto [indexIt, _] = mIndex.insert({pointerId, 0});
- size_t& index = indexIt->second;
- if (!inserted && movementIt->second[index].eventTime != eventTime) {
- // When ACTION_POINTER_DOWN happens, we will first receive ACTION_MOVE with the coordinates
- // of the existing pointers, and then ACTION_POINTER_DOWN with the coordinates that include
- // the new pointer. If the eventtimes for both events are identical, just update the data
- // for this time.
- // We only compare against the last value, as it is likely that addMovement is called
- // in chronological order as events occur.
- index++;
- }
- if (index == HISTORY_SIZE) {
- index = 0;
- }
-
- Movement& movement = movementIt->second[index];
- movement.eventTime = eventTime;
- movement.position = position;
-}
-
/**
* Calculate the total impulse provided to the screen and the resulting velocity.
*
@@ -1123,112 +991,44 @@ static float kineticEnergyToVelocity(float work) {
return (work < 0 ? -1.0 : 1.0) * sqrtf(fabsf(work)) * sqrt2;
}
-static float calculateImpulseVelocity(const nsecs_t* t, const float* x, size_t count,
- bool deltaValues) {
- // The input should be in reversed time order (most recent sample at index i=0)
- // t[i] is in nanoseconds, but due to FP arithmetic, convert to seconds inside this function
- static constexpr float SECONDS_PER_NANO = 1E-9;
-
- if (count < 2) {
- return 0; // if 0 or 1 points, velocity is zero
- }
- if (t[1] > t[0]) { // Algorithm will still work, but not perfectly
- ALOGE("Samples provided to calculateImpulseVelocity in the wrong order");
- }
-
- // If the data values are delta values, we do not have to calculate deltas here.
- // We can use the delta values directly, along with the calculated time deltas.
- // Since the data value input is in reversed time order:
- // [a] for non-delta inputs, instantenous velocity = (x[i] - x[i-1])/(t[i] - t[i-1])
- // [b] for delta inputs, instantenous velocity = -x[i-1]/(t[i] - t[i - 1])
- // e.g., let the non-delta values are: V = [2, 3, 7], the equivalent deltas are D = [2, 1, 4].
- // Since the input is in reversed time order, the input values for this function would be
- // V'=[7, 3, 2] and D'=[4, 1, 2] for the non-delta and delta values, respectively.
- //
- // The equivalent of {(V'[2] - V'[1]) = 2 - 3 = -1} would be {-D'[1] = -1}
- // Similarly, the equivalent of {(V'[1] - V'[0]) = 3 - 7 = -4} would be {-D'[0] = -4}
-
- if (count == 2) { // if 2 points, basic linear calculation
- if (t[1] == t[0]) {
- ALOGE("Events have identical time stamps t=%" PRId64 ", setting velocity = 0", t[0]);
- return 0;
- }
- const float deltaX = deltaValues ? -x[0] : x[1] - x[0];
- return deltaX / (SECONDS_PER_NANO * (t[1] - t[0]));
- }
- // Guaranteed to have at least 3 points here
- float work = 0;
- for (size_t i = count - 1; i > 0 ; i--) { // start with the oldest sample and go forward in time
- if (t[i] == t[i-1]) {
- ALOGE("Events have identical time stamps t=%" PRId64 ", skipping sample", t[i]);
- continue;
- }
- float vprev = kineticEnergyToVelocity(work); // v[i-1]
- const float deltaX = deltaValues ? -x[i-1] : x[i] - x[i-1];
- float vcurr = deltaX / (SECONDS_PER_NANO * (t[i] - t[i-1])); // v[i]
- work += (vcurr - vprev) * fabsf(vcurr);
- if (i == count - 1) {
- work *= 0.5; // initial condition, case 2) above
- }
- }
- return kineticEnergyToVelocity(work);
-}
-
-std::optional<VelocityTracker::Estimator> ImpulseVelocityTrackerStrategy::getEstimator(
- int32_t pointerId) const {
+std::optional<float> ImpulseVelocityTrackerStrategy::getVelocity(int32_t pointerId) const {
const auto movementIt = mMovements.find(pointerId);
if (movementIt == mMovements.end()) {
return std::nullopt; // no data
}
- // Iterate over movement samples in reverse time order and collect samples.
- float positions[HISTORY_SIZE];
- nsecs_t time[HISTORY_SIZE];
- size_t m = 0; // number of points that will be used for fitting
- size_t index = mIndex.at(pointerId);
- const Movement& newestMovement = movementIt->second[index];
- do {
- const Movement& movement = movementIt->second[index];
+ const RingBuffer<Movement>& movements = movementIt->second;
+ const size_t size = movements.size();
+ if (size == 0) {
+ return std::nullopt; // no data
+ }
- nsecs_t age = newestMovement.eventTime - movement.eventTime;
- if (age > HORIZON) {
- break;
- }
- if (movement.eventTime == 0 && index != 0) {
- // All eventTime's are initialized to 0. If we encounter a time of 0 in a position
- // that's >0, it means that we hit the block where the data wasn't initialized.
- // It's also possible that the sample at 0 would be invalid, but there's no harm in
- // processing it, since it would be just a single point, and will only be encountered
- // in artificial circumstances (in tests).
- break;
- }
+ float work = 0;
+ for (size_t i = 0; i < size - 1; i++) {
+ const Movement& mvt = movements[i];
+ const Movement& nextMvt = movements[i + 1];
- positions[m] = movement.position;
- time[m] = movement.eventTime;
- index = (index == 0 ? HISTORY_SIZE : index) - 1;
- } while (++m < HISTORY_SIZE);
+ float vprev = kineticEnergyToVelocity(work);
+ float delta = mDeltaValues ? nextMvt.position : nextMvt.position - mvt.position;
+ float vcurr = delta / (SECONDS_PER_NANO * (nextMvt.eventTime - mvt.eventTime));
+ work += (vcurr - vprev) * fabsf(vcurr);
- if (m == 0) {
- return std::nullopt; // no data
+ if (i == 0) {
+ work *= 0.5; // initial condition, case 2) above
+ }
}
- VelocityTracker::Estimator estimator;
- estimator.coeff[0] = 0;
- estimator.coeff[1] = calculateImpulseVelocity(time, positions, m, mDeltaValues);
- estimator.coeff[2] = 0;
-
- estimator.time = newestMovement.eventTime;
- estimator.degree = 2; // similar results to 2nd degree fit
- estimator.confidence = 1;
- ALOGD_IF(DEBUG_STRATEGY, "velocity: %.1f", estimator.coeff[1]);
+ const float velocity = kineticEnergyToVelocity(work);
+ ALOGD_IF(DEBUG_STRATEGY, "velocity: %.1f", velocity);
if (DEBUG_IMPULSE) {
// TODO(b/134179997): delete this block once the switch to 'impulse' is complete.
// Calculate the lsq2 velocity for the same inputs to allow runtime comparisons.
// X axis chosen arbitrarily for velocity comparisons.
VelocityTracker lsq2(VelocityTracker::Strategy::LSQ2);
- for (ssize_t i = m - 1; i >= 0; i--) {
- lsq2.addMovement(time[i], pointerId, AMOTION_EVENT_AXIS_X, positions[i]);
+ for (size_t i = 0; i < size; i++) {
+ const Movement& mvt = movements[i];
+ lsq2.addMovement(mvt.eventTime, pointerId, AMOTION_EVENT_AXIS_X, mvt.position);
}
std::optional<float> v = lsq2.getVelocity(AMOTION_EVENT_AXIS_X, pointerId);
if (v) {
@@ -1237,7 +1037,7 @@ std::optional<VelocityTracker::Estimator> ImpulseVelocityTrackerStrategy::getEst
ALOGD("lsq2 velocity: could not compute velocity");
}
}
- return estimator;
+ return velocity;
}
} // namespace android