diff options
-rw-r--r-- | libs/cputimeinstate/cputimeinstate.cpp | 165 | ||||
-rw-r--r-- | libs/cputimeinstate/cputimeinstate.h | 12 | ||||
-rw-r--r-- | libs/cputimeinstate/testtimeinstate.cpp | 218 | ||||
-rw-r--r-- | libs/cputimeinstate/timeinstate.h | 8 |
4 files changed, 375 insertions, 28 deletions
diff --git a/libs/cputimeinstate/cputimeinstate.cpp b/libs/cputimeinstate/cputimeinstate.cpp index 4c8d52efd9..f255512704 100644 --- a/libs/cputimeinstate/cputimeinstate.cpp +++ b/libs/cputimeinstate/cputimeinstate.cpp @@ -25,6 +25,7 @@ #include <sys/sysinfo.h> #include <mutex> +#include <numeric> #include <optional> #include <set> #include <string> @@ -53,7 +54,8 @@ static uint32_t gNCpus = 0; static std::vector<std::vector<uint32_t>> gPolicyFreqs; static std::vector<std::vector<uint32_t>> gPolicyCpus; static std::set<uint32_t> gAllFreqs; -static unique_fd gMapFd; +static unique_fd gTisMapFd; +static unique_fd gConcurrentMapFd; static std::optional<std::vector<uint32_t>> readNumbersFromFile(const std::string &path) { std::string data; @@ -122,8 +124,12 @@ static bool initGlobals() { gPolicyCpus.emplace_back(*cpus); } - gMapFd = unique_fd{bpf_obj_get(BPF_FS_PATH "map_time_in_state_uid_times_map")}; - if (gMapFd < 0) return false; + gTisMapFd = unique_fd{bpf_obj_get(BPF_FS_PATH "map_time_in_state_uid_time_in_state_map")}; + if (gTisMapFd < 0) return false; + + gConcurrentMapFd = + unique_fd{bpf_obj_get(BPF_FS_PATH "map_time_in_state_uid_concurrent_times_map")}; + if (gConcurrentMapFd < 0) return false; gInitialized = true; return true; @@ -143,7 +149,7 @@ static bool attachTracepointProgram(const std::string &eventType, const std::str // process dies then it must be called again to resume tracking. // This function should *not* be called while tracking is already active; doing so is unnecessary // and can lead to accounting errors. -bool startTrackingUidCpuFreqTimes() { +bool startTrackingUidTimes() { if (!initGlobals()) return false; unique_fd fd(bpf_obj_get(BPF_FS_PATH "map_time_in_state_cpu_policy_map")); @@ -174,7 +180,7 @@ bool startTrackingUidCpuFreqTimes() { attachTracepointProgram("power", "cpu_frequency"); } -// Retrieve the times in ns that uid spent running at each CPU frequency and store in freqTimes. +// Retrieve the times in ns that uid spent running at each CPU frequency. // Return contains no value on error, otherwise it contains a vector of vectors using the format: // [[t0_0, t0_1, ...], // [t1_0, t1_1, ...], ...] @@ -189,11 +195,11 @@ std::optional<std::vector<std::vector<uint64_t>>> getUidCpuFreqTimes(uint32_t ui out.emplace_back(freqList.size(), 0); } - std::vector<val_t> vals(gNCpus); + std::vector<tis_val_t> vals(gNCpus); time_key_t key = {.uid = uid}; for (uint32_t i = 0; i <= (maxFreqCount - 1) / FREQS_PER_ENTRY; ++i) { key.bucket = i; - if (findMapEntry(gMapFd, &key, vals.data())) { + if (findMapEntry(gTisMapFd, &key, vals.data())) { if (errno != ENOENT) return {}; continue; } @@ -214,7 +220,7 @@ std::optional<std::vector<std::vector<uint64_t>>> getUidCpuFreqTimes(uint32_t ui return out; } -// Retrieve the times in ns that each uid spent running at each CPU freq and store in freqTimeMap. +// Retrieve the times in ns that each uid spent running at each CPU freq. // Return contains no value on error, otherwise it contains a map from uids to vectors of vectors // using the format: // { uid0 -> [[t0_0_0, t0_0_1, ...], [t0_1_0, t0_1_1, ...], ...], @@ -225,7 +231,7 @@ getUidsCpuFreqTimes() { if (!gInitialized && !initGlobals()) return {}; time_key_t key, prevKey; std::unordered_map<uint32_t, std::vector<std::vector<uint64_t>>> map; - if (getFirstMapKey(gMapFd, &key)) { + if (getFirstMapKey(gTisMapFd, &key)) { if (errno == ENOENT) return map; return std::nullopt; } @@ -233,9 +239,9 @@ getUidsCpuFreqTimes() { std::vector<std::vector<uint64_t>> mapFormat; for (const auto &freqList : gPolicyFreqs) mapFormat.emplace_back(freqList.size(), 0); - std::vector<val_t> vals(gNCpus); + std::vector<tis_val_t> vals(gNCpus); do { - if (findMapEntry(gMapFd, &key, vals.data())) return {}; + if (findMapEntry(gTisMapFd, &key, vals.data())) return {}; if (map.find(key.uid) == map.end()) map.emplace(key.uid, mapFormat); auto offset = key.bucket * FREQS_PER_ENTRY; @@ -250,13 +256,129 @@ getUidsCpuFreqTimes() { } } prevKey = key; - } while (!getNextMapKey(gMapFd, &prevKey, &key)); + } while (!getNextMapKey(gTisMapFd, &prevKey, &key)); if (errno != ENOENT) return {}; return map; } +static bool verifyConcurrentTimes(const concurrent_time_t &ct) { + uint64_t activeSum = std::accumulate(ct.active.begin(), ct.active.end(), (uint64_t)0); + uint64_t policySum = 0; + for (const auto &vec : ct.policy) { + policySum += std::accumulate(vec.begin(), vec.end(), (uint64_t)0); + } + return activeSum == policySum; +} + +// Retrieve the times in ns that uid spent running concurrently with each possible number of other +// tasks on each cluster (policy times) and overall (active times). +// Return contains no value on error, otherwise it contains a concurrent_time_t with the format: +// {.active = [a0, a1, ...], .policy = [[p0_0, p0_1, ...], [p1_0, p1_1, ...], ...]} +// where ai is the ns spent running concurrently with tasks on i other cpus and pi_j is the ns spent +// running on the ith cluster, concurrently with tasks on j other cpus in the same cluster +std::optional<concurrent_time_t> getUidConcurrentTimes(uint32_t uid, bool retry) { + if (!gInitialized && !initGlobals()) return {}; + concurrent_time_t ret = {.active = std::vector<uint64_t>(gNCpus, 0)}; + for (const auto &cpuList : gPolicyCpus) ret.policy.emplace_back(cpuList.size(), 0); + std::vector<concurrent_val_t> vals(gNCpus); + time_key_t key = {.uid = uid}; + for (key.bucket = 0; key.bucket <= (gNCpus - 1) / CPUS_PER_ENTRY; ++key.bucket) { + if (findMapEntry(gConcurrentMapFd, &key, vals.data())) { + if (errno != ENOENT) return {}; + continue; + } + auto offset = key.bucket * CPUS_PER_ENTRY; + auto nextOffset = (key.bucket + 1) * CPUS_PER_ENTRY; + + auto activeBegin = ret.active.begin() + offset; + auto activeEnd = nextOffset < gNCpus ? activeBegin + CPUS_PER_ENTRY : ret.active.end(); + + for (uint32_t cpu = 0; cpu < gNCpus; ++cpu) { + std::transform(activeBegin, activeEnd, std::begin(vals[cpu].active), activeBegin, + std::plus<uint64_t>()); + } + + for (uint32_t policy = 0; policy < gNPolicies; ++policy) { + if (offset >= gPolicyCpus[policy].size()) continue; + auto policyBegin = ret.policy[policy].begin() + offset; + auto policyEnd = nextOffset < gPolicyCpus[policy].size() ? policyBegin + CPUS_PER_ENTRY + : ret.policy[policy].end(); + + for (const auto &cpu : gPolicyCpus[policy]) { + std::transform(policyBegin, policyEnd, std::begin(vals[cpu].policy), policyBegin, + std::plus<uint64_t>()); + } + } + } + if (!verifyConcurrentTimes(ret) && retry) return getUidConcurrentTimes(uid, false); + return ret; +} + +// Retrieve the times in ns that each uid spent running concurrently with each possible number of +// other tasks on each cluster (policy times) and overall (active times). +// Return contains no value on error, otherwise it contains a map from uids to concurrent_time_t's +// using the format: +// { uid0 -> {.active = [a0, a1, ...], .policy = [[p0_0, p0_1, ...], [p1_0, p1_1, ...], ...] }, ...} +// where ai is the ns spent running concurrently with tasks on i other cpus and pi_j is the ns spent +// running on the ith cluster, concurrently with tasks on j other cpus in the same cluster. +std::optional<std::unordered_map<uint32_t, concurrent_time_t>> getUidsConcurrentTimes() { + if (!gInitialized && !initGlobals()) return {}; + time_key_t key, prevKey; + std::unordered_map<uint32_t, concurrent_time_t> ret; + if (getFirstMapKey(gConcurrentMapFd, &key)) { + if (errno == ENOENT) return ret; + return {}; + } + + concurrent_time_t retFormat = {.active = std::vector<uint64_t>(gNCpus, 0)}; + for (const auto &cpuList : gPolicyCpus) retFormat.policy.emplace_back(cpuList.size(), 0); + + std::vector<concurrent_val_t> vals(gNCpus); + std::vector<uint64_t>::iterator activeBegin, activeEnd, policyBegin, policyEnd; + + do { + if (findMapEntry(gConcurrentMapFd, &key, vals.data())) return {}; + if (ret.find(key.uid) == ret.end()) ret.emplace(key.uid, retFormat); + + auto offset = key.bucket * CPUS_PER_ENTRY; + auto nextOffset = (key.bucket + 1) * CPUS_PER_ENTRY; + + activeBegin = ret[key.uid].active.begin(); + activeEnd = nextOffset < gNCpus ? activeBegin + CPUS_PER_ENTRY : ret[key.uid].active.end(); + + for (uint32_t cpu = 0; cpu < gNCpus; ++cpu) { + std::transform(activeBegin, activeEnd, std::begin(vals[cpu].active), activeBegin, + std::plus<uint64_t>()); + } + + for (uint32_t policy = 0; policy < gNPolicies; ++policy) { + if (offset >= gPolicyCpus[policy].size()) continue; + policyBegin = ret[key.uid].policy[policy].begin() + offset; + policyEnd = nextOffset < gPolicyCpus[policy].size() ? policyBegin + CPUS_PER_ENTRY + : ret[key.uid].policy[policy].end(); + + for (const auto &cpu : gPolicyCpus[policy]) { + std::transform(policyBegin, policyEnd, std::begin(vals[cpu].policy), policyBegin, + std::plus<uint64_t>()); + } + } + prevKey = key; + } while (!getNextMapKey(gConcurrentMapFd, &prevKey, &key)); + if (errno != ENOENT) return {}; + for (const auto &[key, value] : ret) { + if (!verifyConcurrentTimes(value)) { + auto val = getUidConcurrentTimes(key, false); + if (val.has_value()) ret[key] = val.value(); + } + } + return ret; +} + // Clear all time in state data for a given uid. Returns false on error, true otherwise. -bool clearUidCpuFreqTimes(uint32_t uid) { +// This is only suitable for clearing data when an app is uninstalled; if called on a UID with +// running tasks it will cause time in state vs. concurrent time totals to be inconsistent for that +// UID. +bool clearUidTimes(uint32_t uid) { if (!gInitialized && !initGlobals()) return false; time_key_t key = {.uid = uid}; @@ -266,11 +388,20 @@ bool clearUidCpuFreqTimes(uint32_t uid) { if (freqList.size() > maxFreqCount) maxFreqCount = freqList.size(); } - val_t zeros = {0}; - std::vector<val_t> vals(gNCpus, zeros); + tis_val_t zeros = {0}; + std::vector<tis_val_t> vals(gNCpus, zeros); for (key.bucket = 0; key.bucket <= (maxFreqCount - 1) / FREQS_PER_ENTRY; ++key.bucket) { - if (writeToMapEntry(gMapFd, &key, vals.data(), BPF_EXIST) && errno != ENOENT) return false; - if (deleteMapEntry(gMapFd, &key) && errno != ENOENT) return false; + if (writeToMapEntry(gTisMapFd, &key, vals.data(), BPF_EXIST) && errno != ENOENT) + return false; + if (deleteMapEntry(gTisMapFd, &key) && errno != ENOENT) return false; + } + + concurrent_val_t czeros = {.policy = {0}, .active = {0}}; + std::vector<concurrent_val_t> cvals(gNCpus, czeros); + for (key.bucket = 0; key.bucket <= (gNCpus - 1) / CPUS_PER_ENTRY; ++key.bucket) { + if (writeToMapEntry(gConcurrentMapFd, &key, cvals.data(), BPF_EXIST) && errno != ENOENT) + return false; + if (deleteMapEntry(gConcurrentMapFd, &key) && errno != ENOENT) return false; } return true; } diff --git a/libs/cputimeinstate/cputimeinstate.h b/libs/cputimeinstate/cputimeinstate.h index d7b45870ac..f620715dab 100644 --- a/libs/cputimeinstate/cputimeinstate.h +++ b/libs/cputimeinstate/cputimeinstate.h @@ -22,11 +22,19 @@ namespace android { namespace bpf { -bool startTrackingUidCpuFreqTimes(); +bool startTrackingUidTimes(); std::optional<std::vector<std::vector<uint64_t>>> getUidCpuFreqTimes(uint32_t uid); std::optional<std::unordered_map<uint32_t, std::vector<std::vector<uint64_t>>>> getUidsCpuFreqTimes(); -bool clearUidCpuFreqTimes(unsigned int uid); + +struct concurrent_time_t { + std::vector<uint64_t> active; + std::vector<std::vector<uint64_t>> policy; +}; + +std::optional<concurrent_time_t> getUidConcurrentTimes(uint32_t uid, bool retry = true); +std::optional<std::unordered_map<uint32_t, concurrent_time_t>> getUidsConcurrentTimes(); +bool clearUidTimes(unsigned int uid); } // namespace bpf } // namespace android diff --git a/libs/cputimeinstate/testtimeinstate.cpp b/libs/cputimeinstate/testtimeinstate.cpp index 39007e4603..15f6214bff 100644 --- a/libs/cputimeinstate/testtimeinstate.cpp +++ b/libs/cputimeinstate/testtimeinstate.cpp @@ -3,6 +3,7 @@ #include <sys/sysinfo.h> +#include <numeric> #include <unordered_map> #include <vector> @@ -21,13 +22,83 @@ static constexpr uint64_t NSEC_PER_YEAR = NSEC_PER_SEC * 60 * 60 * 24 * 365; using std::vector; -TEST(TimeInStateTest, SingleUid) { +TEST(TimeInStateTest, SingleUidTimeInState) { auto times = getUidCpuFreqTimes(0); ASSERT_TRUE(times.has_value()); EXPECT_FALSE(times->empty()); } -TEST(TimeInStateTest, AllUid) { +TEST(TimeInStateTest, SingleUidConcurrentTimes) { + auto concurrentTimes = getUidConcurrentTimes(0); + ASSERT_TRUE(concurrentTimes.has_value()); + ASSERT_FALSE(concurrentTimes->active.empty()); + ASSERT_FALSE(concurrentTimes->policy.empty()); + + uint64_t policyEntries = 0; + for (const auto &policyTimeVec : concurrentTimes->policy) policyEntries += policyTimeVec.size(); + ASSERT_EQ(concurrentTimes->active.size(), policyEntries); +} + +static void TestConcurrentTimesConsistent(const struct concurrent_time_t &concurrentTime) { + size_t maxPolicyCpus = 0; + for (const auto &vec : concurrentTime.policy) { + maxPolicyCpus = std::max(maxPolicyCpus, vec.size()); + } + uint64_t policySum = 0; + for (size_t i = 0; i < maxPolicyCpus; ++i) { + for (const auto &vec : concurrentTime.policy) { + if (i < vec.size()) policySum += vec[i]; + } + ASSERT_LE(concurrentTime.active[i], policySum); + policySum -= concurrentTime.active[i]; + } + policySum = 0; + for (size_t i = 0; i < concurrentTime.active.size(); ++i) { + for (const auto &vec : concurrentTime.policy) { + if (i < vec.size()) policySum += vec[vec.size() - 1 - i]; + } + auto activeSum = concurrentTime.active[concurrentTime.active.size() - 1 - i]; + // This check is slightly flaky because we may read a map entry in the middle of an update + // when active times have been updated but policy times have not. This happens infrequently + // and can be distinguished from more serious bugs by re-running the test: if the underlying + // data itself is inconsistent, the test will fail every time. + ASSERT_LE(activeSum, policySum); + policySum -= activeSum; + } +} + +static void TestUidTimesConsistent(const std::vector<std::vector<uint64_t>> &timeInState, + const struct concurrent_time_t &concurrentTime) { + ASSERT_NO_FATAL_FAILURE(TestConcurrentTimesConsistent(concurrentTime)); + ASSERT_EQ(timeInState.size(), concurrentTime.policy.size()); + uint64_t policySum = 0; + for (uint32_t i = 0; i < timeInState.size(); ++i) { + uint64_t tisSum = + std::accumulate(timeInState[i].begin(), timeInState[i].end(), (uint64_t)0); + uint64_t concurrentSum = std::accumulate(concurrentTime.policy[i].begin(), + concurrentTime.policy[i].end(), (uint64_t)0); + if (tisSum < concurrentSum) + ASSERT_LE(concurrentSum - tisSum, NSEC_PER_SEC); + else + ASSERT_LE(tisSum - concurrentSum, NSEC_PER_SEC); + policySum += concurrentSum; + } + uint64_t activeSum = std::accumulate(concurrentTime.active.begin(), concurrentTime.active.end(), + (uint64_t)0); + EXPECT_EQ(activeSum, policySum); +} + +TEST(TimeInStateTest, SingleUidTimesConsistent) { + auto times = getUidCpuFreqTimes(0); + ASSERT_TRUE(times.has_value()); + + auto concurrentTimes = getUidConcurrentTimes(0); + ASSERT_TRUE(concurrentTimes.has_value()); + + ASSERT_NO_FATAL_FAILURE(TestUidTimesConsistent(*times, *concurrentTimes)); +} + +TEST(TimeInStateTest, AllUidTimeInState) { vector<size_t> sizes; auto map = getUidsCpuFreqTimes(); ASSERT_TRUE(map.has_value()); @@ -43,7 +114,7 @@ TEST(TimeInStateTest, AllUid) { } } -TEST(TimeInStateTest, SingleAndAllUidConsistent) { +TEST(TimeInStateTest, SingleAndAllUidTimeInStateConsistent) { auto map = getUidsCpuFreqTimes(); ASSERT_TRUE(map.has_value()); ASSERT_FALSE(map->empty()); @@ -64,6 +135,40 @@ TEST(TimeInStateTest, SingleAndAllUidConsistent) { } } +TEST(TimeInStateTest, AllUidConcurrentTimes) { + auto map = getUidsConcurrentTimes(); + ASSERT_TRUE(map.has_value()); + ASSERT_FALSE(map->empty()); + + auto firstEntry = map->begin()->second; + for (const auto &kv : *map) { + ASSERT_EQ(kv.second.active.size(), firstEntry.active.size()); + ASSERT_EQ(kv.second.policy.size(), firstEntry.policy.size()); + for (size_t i = 0; i < kv.second.policy.size(); ++i) { + ASSERT_EQ(kv.second.policy[i].size(), firstEntry.policy[i].size()); + } + } +} + +TEST(TimeInStateTest, SingleAndAllUidConcurrentTimesConsistent) { + auto map = getUidsConcurrentTimes(); + ASSERT_TRUE(map.has_value()); + for (const auto &kv : *map) { + uint32_t uid = kv.first; + auto times1 = kv.second; + auto times2 = getUidConcurrentTimes(uid); + ASSERT_TRUE(times2.has_value()); + for (uint32_t i = 0; i < times1.active.size(); ++i) { + ASSERT_LE(times2->active[i] - times1.active[i], NSEC_PER_SEC); + } + for (uint32_t i = 0; i < times1.policy.size(); ++i) { + for (uint32_t j = 0; j < times1.policy[i].size(); ++j) { + ASSERT_LE(times2->policy[i][j] - times1.policy[i][j], NSEC_PER_SEC); + } + } + } +} + void TestCheckDelta(uint64_t before, uint64_t after) { // Times should never decrease ASSERT_LE(before, after); @@ -71,7 +176,7 @@ void TestCheckDelta(uint64_t before, uint64_t after) { ASSERT_LE(after - before, NSEC_PER_SEC * 2 * get_nprocs_conf()); } -TEST(TimeInStateTest, AllUidMonotonic) { +TEST(TimeInStateTest, AllUidTimeInStateMonotonic) { auto map1 = getUidsCpuFreqTimes(); ASSERT_TRUE(map1.has_value()); sleep(1); @@ -92,7 +197,35 @@ TEST(TimeInStateTest, AllUidMonotonic) { } } -TEST(TimeInStateTest, AllUidSanityCheck) { +TEST(TimeInStateTest, AllUidConcurrentTimesMonotonic) { + auto map1 = getUidsConcurrentTimes(); + ASSERT_TRUE(map1.has_value()); + ASSERT_FALSE(map1->empty()); + sleep(1); + auto map2 = getUidsConcurrentTimes(); + ASSERT_TRUE(map2.has_value()); + ASSERT_FALSE(map2->empty()); + + for (const auto &kv : *map1) { + uint32_t uid = kv.first; + auto times = kv.second; + ASSERT_NE(map2->find(uid), map2->end()); + for (uint32_t i = 0; i < times.active.size(); ++i) { + auto before = times.active[i]; + auto after = (*map2)[uid].active[i]; + ASSERT_NO_FATAL_FAILURE(TestCheckDelta(before, after)); + } + for (uint32_t policy = 0; policy < times.policy.size(); ++policy) { + for (uint32_t idx = 0; idx < times.policy[policy].size(); ++idx) { + auto before = times.policy[policy][idx]; + auto after = (*map2)[uid].policy[policy][idx]; + ASSERT_NO_FATAL_FAILURE(TestCheckDelta(before, after)); + } + } + } +} + +TEST(TimeInStateTest, AllUidTimeInStateSanityCheck) { auto map = getUidsCpuFreqTimes(); ASSERT_TRUE(map.has_value()); @@ -110,6 +243,48 @@ TEST(TimeInStateTest, AllUidSanityCheck) { ASSERT_TRUE(foundLargeValue); } +TEST(TimeInStateTest, AllUidConcurrentTimesSanityCheck) { + auto concurrentMap = getUidsConcurrentTimes(); + ASSERT_TRUE(concurrentMap); + + bool activeFoundLargeValue = false; + bool policyFoundLargeValue = false; + for (const auto &kv : *concurrentMap) { + for (const auto &time : kv.second.active) { + ASSERT_LE(time, NSEC_PER_YEAR); + if (time > UINT32_MAX) activeFoundLargeValue = true; + } + for (const auto &policyTimeVec : kv.second.policy) { + for (const auto &time : policyTimeVec) { + ASSERT_LE(time, NSEC_PER_YEAR); + if (time > UINT32_MAX) policyFoundLargeValue = true; + } + } + } + // UINT32_MAX nanoseconds is less than 5 seconds, so if every part of our pipeline is using + // uint64_t as expected, we should have some times higher than that. + ASSERT_TRUE(activeFoundLargeValue); + ASSERT_TRUE(policyFoundLargeValue); +} + +TEST(TimeInStateTest, AllUidTimesConsistent) { + auto tisMap = getUidsCpuFreqTimes(); + ASSERT_TRUE(tisMap.has_value()); + + auto concurrentMap = getUidsConcurrentTimes(); + ASSERT_TRUE(concurrentMap.has_value()); + + ASSERT_EQ(tisMap->size(), concurrentMap->size()); + for (const auto &kv : *tisMap) { + uint32_t uid = kv.first; + auto times = kv.second; + ASSERT_NE(concurrentMap->find(uid), concurrentMap->end()); + + auto concurrentTimes = (*concurrentMap)[uid]; + ASSERT_NO_FATAL_FAILURE(TestUidTimesConsistent(times, concurrentTimes)); + } +} + TEST(TimeInStateTest, RemoveUid) { uint32_t uid = 0; { @@ -122,31 +297,58 @@ TEST(TimeInStateTest, RemoveUid) { } { // Add a map entry for our fake UID by copying a real map entry - android::base::unique_fd fd{bpf_obj_get(BPF_FS_PATH "map_time_in_state_uid_times_map")}; + android::base::unique_fd fd{ + bpf_obj_get(BPF_FS_PATH "map_time_in_state_uid_time_in_state_map")}; ASSERT_GE(fd, 0); time_key_t k; ASSERT_FALSE(getFirstMapKey(fd, &k)); - std::vector<val_t> vals(get_nprocs_conf()); + std::vector<tis_val_t> vals(get_nprocs_conf()); ASSERT_FALSE(findMapEntry(fd, &k, vals.data())); + uint32_t copiedUid = k.uid; k.uid = uid; ASSERT_FALSE(writeToMapEntry(fd, &k, vals.data(), BPF_NOEXIST)); + + android::base::unique_fd fd2{ + bpf_obj_get(BPF_FS_PATH "map_time_in_state_uid_concurrent_times_map")}; + k.uid = copiedUid; + k.bucket = 0; + std::vector<concurrent_val_t> cvals(get_nprocs_conf()); + ASSERT_FALSE(findMapEntry(fd2, &k, cvals.data())); + k.uid = uid; + ASSERT_FALSE(writeToMapEntry(fd2, &k, cvals.data(), BPF_NOEXIST)); } auto times = getUidCpuFreqTimes(uid); ASSERT_TRUE(times.has_value()); ASSERT_FALSE(times->empty()); + auto concurrentTimes = getUidConcurrentTimes(0); + ASSERT_TRUE(concurrentTimes.has_value()); + ASSERT_FALSE(concurrentTimes->active.empty()); + ASSERT_FALSE(concurrentTimes->policy.empty()); + uint64_t sum = 0; for (size_t i = 0; i < times->size(); ++i) { for (auto x : (*times)[i]) sum += x; } ASSERT_GT(sum, (uint64_t)0); - ASSERT_TRUE(clearUidCpuFreqTimes(uid)); + uint64_t activeSum = 0; + for (size_t i = 0; i < concurrentTimes->active.size(); ++i) { + activeSum += concurrentTimes->active[i]; + } + ASSERT_GT(activeSum, (uint64_t)0); + + ASSERT_TRUE(clearUidTimes(uid)); auto allTimes = getUidsCpuFreqTimes(); ASSERT_TRUE(allTimes.has_value()); ASSERT_FALSE(allTimes->empty()); ASSERT_EQ(allTimes->find(uid), allTimes->end()); + + auto allConcurrentTimes = getUidsConcurrentTimes(); + ASSERT_TRUE(allConcurrentTimes.has_value()); + ASSERT_FALSE(allConcurrentTimes->empty()); + ASSERT_EQ(allConcurrentTimes->find(uid), allConcurrentTimes->end()); } } // namespace bpf diff --git a/libs/cputimeinstate/timeinstate.h b/libs/cputimeinstate/timeinstate.h index 41d0af07a2..6d4f913f80 100644 --- a/libs/cputimeinstate/timeinstate.h +++ b/libs/cputimeinstate/timeinstate.h @@ -19,16 +19,22 @@ #define BPF_FS_PATH "/sys/fs/bpf/" #define FREQS_PER_ENTRY 32 +#define CPUS_PER_ENTRY 8 struct time_key_t { uint32_t uid; uint32_t bucket; }; -struct val_t { +struct tis_val_t { uint64_t ar[FREQS_PER_ENTRY]; }; +struct concurrent_val_t { + uint64_t active[CPUS_PER_ENTRY]; + uint64_t policy[CPUS_PER_ENTRY]; +}; + struct freq_idx_key_t { uint32_t policy; uint32_t freq; |