summaryrefslogtreecommitdiff
path: root/libs/ultrahdr/gainmapmath.cpp
diff options
context:
space:
mode:
author Nick Deakin <deakin@google.com> 2023-05-19 17:14:45 -0400
committer Nick Deakin <deakin@google.com> 2023-06-08 10:14:12 -0400
commit0db53ee3c9ae908d14c09290a4fb51036df25620 (patch)
tree99fa81400c2b05f540b48c9280fe5117edd871c9 /libs/ultrahdr/gainmapmath.cpp
parentfcb80a221e7ac3548ff5d751eea14c708a6f43fd (diff)
libultrahdr: correct srgb, p3 calculations and jpeg yuv handling
* Correct luminance calculation for sRGB to utilize actual luminance coefficients for the gamut, rather than 601 luma coefficients. * Correct YUV<->RGB conversion for sRGB to utilize Rec.709 coefficients rather than Rec.601 coefficients as it was previously. * New P3 YUV<->RGB conversion, which uses Rec.601 coefficients. * Also ICC Profile fixes to make things work; more below. * Update things to correctly convert to and from Rec.601 YUV for jpeg encoding; more below. This setup for YUV<->RGB coefficients is chosen to match the expectations of DataSpace when it comes to interpretting YUV encoding of data. Generally, the interpretation is cued off of the color primaries, since the specifications around color primaries generally also specify a YUV interpretation. Display-P3 is a bit of an outlier; the best specification of Display-P3 is in SMPTE EG 432-1, but EG 432-1 doesn't cover YUV interpretation. So, since DataSpace interprets Display-P3 YUV data via the Rec.601 coefficients, we should do the same here. ICC Profile fixes; ICC profiles we wrote were broken before this for a variety of reasons: * The endianness macro wasn't actually swapping endiannesas to provide the correct encoding in our output. * We weren't writing out the identifier for the app segment, including the chunk count and ID. * We were assuming input JPEGs have ICC data, which may not be the case. * We also need to read in the ICC profile during decode to apply the map properly, and we didn't have any mechanism previously to read the ICC profile and determine the gamut of the encoded JPEGR file. * Upon adding ICC reading code to our JPEG decoding, also remove some dead code from previous EXIF reading. * Add a number of tests to verify all of this stuff stays fixed. YUV interpretation and Rec.601: * Previously, we were feeding YUV right into the JPEG encoder; this is problematic because JPEG encoders usually (and definitely in our specific case) expect Rec.601 YUV encoded input data, since this is by definition the format of JPEG YUV data according to ECMA TR/98. * Now properly convert from Rec.709 or Rec.2100 YUV encoding to Rec.601 (when necessary) prior to passing YUV data to the jpeg encoder. * Also make sure we properly interpret decoded YUV output as Rec.601 after decode. * This involved added some new methods to facilitate these conversions. * Added some new tests to verify these conversions. * Note that to do these YUV conversions for subsampled 420 data, we take each set of 4 Y and 1 UV, and calculate the result against each combination. The new Y values each get the corresponding result, and the new UV value is equal to the average of the set. * Note that none of this is a concern for gain map encoding/decoding via JPEG because gain maps are single channel. Bug: 283143961 Test: added new tests, all tests pass Change-Id: Ibc7b1779fc3a8244f85abb581c554963f57dc5a4
Diffstat (limited to 'libs/ultrahdr/gainmapmath.cpp')
-rw-r--r--libs/ultrahdr/gainmapmath.cpp149
1 files changed, 132 insertions, 17 deletions
diff --git a/libs/ultrahdr/gainmapmath.cpp b/libs/ultrahdr/gainmapmath.cpp
index 37c3cf3d3b..ee15363b69 100644
--- a/libs/ultrahdr/gainmapmath.cpp
+++ b/libs/ultrahdr/gainmapmath.cpp
@@ -119,34 +119,39 @@ static float clampPixelFloat(float value) {
return (value < 0.0f) ? 0.0f : (value > kMaxPixelFloat) ? kMaxPixelFloat : value;
}
-// See IEC 61966-2-1, Equation F.7.
+// See IEC 61966-2-1/Amd 1:2003, Equation F.7.
static const float kSrgbR = 0.2126f, kSrgbG = 0.7152f, kSrgbB = 0.0722f;
float srgbLuminance(Color e) {
return kSrgbR * e.r + kSrgbG * e.g + kSrgbB * e.b;
}
-// See ECMA TR/98, Section 7.
-static const float kSrgbRCr = 1.402f, kSrgbGCb = 0.34414f, kSrgbGCr = 0.71414f, kSrgbBCb = 1.772f;
+// See ITU-R BT.709-6, Section 3.
+// Uses the same coefficients for deriving luma signal as
+// IEC 61966-2-1/Amd 1:2003 states for luminance, so we reuse the luminance
+// function above.
+static const float kSrgbCb = 1.8556f, kSrgbCr = 1.5748f;
-Color srgbYuvToRgb(Color e_gamma) {
- return {{{ clampPixelFloat(e_gamma.y + kSrgbRCr * e_gamma.v),
- clampPixelFloat(e_gamma.y - kSrgbGCb * e_gamma.u - kSrgbGCr * e_gamma.v),
- clampPixelFloat(e_gamma.y + kSrgbBCb * e_gamma.u) }}};
+Color srgbRgbToYuv(Color e_gamma) {
+ float y_gamma = srgbLuminance(e_gamma);
+ return {{{ y_gamma,
+ (e_gamma.b - y_gamma) / kSrgbCb,
+ (e_gamma.r - y_gamma) / kSrgbCr }}};
}
-// See ECMA TR/98, Section 7.
-static const float kSrgbYR = 0.299f, kSrgbYG = 0.587f, kSrgbYB = 0.114f;
-static const float kSrgbUR = -0.1687f, kSrgbUG = -0.3313f, kSrgbUB = 0.5f;
-static const float kSrgbVR = 0.5f, kSrgbVG = -0.4187f, kSrgbVB = -0.0813f;
+// See ITU-R BT.709-6, Section 3.
+// Same derivation to BT.2100's YUV->RGB, below. Similar to srgbRgbToYuv, we
+// can reuse the luminance coefficients since they are the same.
+static const float kSrgbGCb = kSrgbB * kSrgbCb / kSrgbG;
+static const float kSrgbGCr = kSrgbR * kSrgbCr / kSrgbG;
-Color srgbRgbToYuv(Color e_gamma) {
- return {{{ kSrgbYR * e_gamma.r + kSrgbYG * e_gamma.g + kSrgbYB * e_gamma.b,
- kSrgbUR * e_gamma.r + kSrgbUG * e_gamma.g + kSrgbUB * e_gamma.b,
- kSrgbVR * e_gamma.r + kSrgbVG * e_gamma.g + kSrgbVB * e_gamma.b }}};
+Color srgbYuvToRgb(Color e_gamma) {
+ return {{{ clampPixelFloat(e_gamma.y + kSrgbCr * e_gamma.v),
+ clampPixelFloat(e_gamma.y - kSrgbGCb * e_gamma.u - kSrgbGCr * e_gamma.v),
+ clampPixelFloat(e_gamma.y + kSrgbCb * e_gamma.u) }}};
}
-// See IEC 61966-2-1, Equations F.5 and F.6.
+// See IEC 61966-2-1/Amd 1:2003, Equations F.5 and F.6.
float srgbInvOetf(float e_gamma) {
if (e_gamma <= 0.04045f) {
return e_gamma / 12.92f;
@@ -178,13 +183,38 @@ Color srgbInvOetfLUT(Color e_gamma) {
////////////////////////////////////////////////////////////////////////////////
// Display-P3 transformations
-// See SMPTE EG 432-1, Table 7-2.
+// See SMPTE EG 432-1, Equation 7-8.
static const float kP3R = 0.20949f, kP3G = 0.72160f, kP3B = 0.06891f;
float p3Luminance(Color e) {
return kP3R * e.r + kP3G * e.g + kP3B * e.b;
}
+// See ITU-R BT.601-7, Sections 2.5.1 and 2.5.2.
+// Unfortunately, calculation of luma signal differs from calculation of
+// luminance for Display-P3, so we can't reuse p3Luminance here.
+static const float kP3YR = 0.299f, kP3YG = 0.587f, kP3YB = 0.114f;
+static const float kP3Cb = 1.772f, kP3Cr = 1.402f;
+
+Color p3RgbToYuv(Color e_gamma) {
+ float y_gamma = kP3YR * e_gamma.r + kP3YG * e_gamma.g + kP3YB * e_gamma.b;
+ return {{{ y_gamma,
+ (e_gamma.b - y_gamma) / kP3Cb,
+ (e_gamma.r - y_gamma) / kP3Cr }}};
+}
+
+// See ITU-R BT.601-7, Sections 2.5.1 and 2.5.2.
+// Same derivation to BT.2100's YUV->RGB, below. Similar to p3RgbToYuv, we must
+// use luma signal coefficients rather than the luminance coefficients.
+static const float kP3GCb = kP3YB * kP3Cb / kP3YG;
+static const float kP3GCr = kP3YR * kP3Cr / kP3YG;
+
+Color p3YuvToRgb(Color e_gamma) {
+ return {{{ clampPixelFloat(e_gamma.y + kP3Cr * e_gamma.v),
+ clampPixelFloat(e_gamma.y - kP3GCb * e_gamma.u - kP3GCr * e_gamma.v),
+ clampPixelFloat(e_gamma.y + kP3Cb * e_gamma.u) }}};
+}
+
////////////////////////////////////////////////////////////////////////////////
// BT.2100 transformations - according to ITU-R BT.2100-2
@@ -197,6 +227,8 @@ float bt2100Luminance(Color e) {
}
// See ITU-R BT.2100-2, Table 6, Derivation of colour difference signals.
+// BT.2100 uses the same coefficients for calculating luma signal and luminance,
+// so we reuse the luminance function here.
static const float kBt2100Cb = 1.8814f, kBt2100Cr = 1.4746f;
Color bt2100RgbToYuv(Color e_gamma) {
@@ -206,6 +238,10 @@ Color bt2100RgbToYuv(Color e_gamma) {
(e_gamma.r - y_gamma) / kBt2100Cr }}};
}
+// See ITU-R BT.2100-2, Table 6, Derivation of colour difference signals.
+//
+// Similar to bt2100RgbToYuv above, we can reuse the luminance coefficients.
+//
// Derived by inversing bt2100RgbToYuv. The derivation for R and B are pretty
// straight forward; we just invert the formulas for U and V above. But deriving
// the formula for G is a bit more complicated:
@@ -440,6 +476,85 @@ ColorTransformFn getHdrConversionFn(ultrahdr_color_gamut sdr_gamut,
}
}
+// All of these conversions are derived from the respective input YUV->RGB conversion followed by
+// the RGB->YUV for the receiving encoding. They are consistent with the RGB<->YUV functions in this
+// file, given that we uses BT.709 encoding for sRGB and BT.601 encoding for Display-P3, to match
+// DataSpace.
+
+Color yuv709To601(Color e_gamma) {
+ return {{{ 1.0f * e_gamma.y + 0.101579f * e_gamma.u + 0.196076f * e_gamma.v,
+ 0.0f * e_gamma.y + 0.989854f * e_gamma.u + -0.110653f * e_gamma.v,
+ 0.0f * e_gamma.y + -0.072453f * e_gamma.u + 0.983398f * e_gamma.v }}};
+}
+
+Color yuv709To2100(Color e_gamma) {
+ return {{{ 1.0f * e_gamma.y + -0.016969f * e_gamma.u + 0.096312f * e_gamma.v,
+ 0.0f * e_gamma.y + 0.995306f * e_gamma.u + -0.051192f * e_gamma.v,
+ 0.0f * e_gamma.y + 0.011507f * e_gamma.u + 1.002637f * e_gamma.v }}};
+}
+
+Color yuv601To709(Color e_gamma) {
+ return {{{ 1.0f * e_gamma.y + -0.118188f * e_gamma.u + -0.212685f * e_gamma.v,
+ 0.0f * e_gamma.y + 1.018640f * e_gamma.u + 0.114618f * e_gamma.v,
+ 0.0f * e_gamma.y + 0.075049f * e_gamma.u + 1.025327f * e_gamma.v }}};
+}
+
+Color yuv601To2100(Color e_gamma) {
+ return {{{ 1.0f * e_gamma.y + -0.128245f * e_gamma.u + -0.115879f * e_gamma.v,
+ 0.0f * e_gamma.y + 1.010016f * e_gamma.u + 0.061592f * e_gamma.v,
+ 0.0f * e_gamma.y + 0.086969f * e_gamma.u + 1.029350f * e_gamma.v }}};
+}
+
+Color yuv2100To709(Color e_gamma) {
+ return {{{ 1.0f * e_gamma.y + 0.018149f * e_gamma.u + -0.095132f * e_gamma.v,
+ 0.0f * e_gamma.y + 1.004123f * e_gamma.u + 0.051267f * e_gamma.v,
+ 0.0f * e_gamma.y + -0.011524f * e_gamma.u + 0.996782f * e_gamma.v }}};
+}
+
+Color yuv2100To601(Color e_gamma) {
+ return {{{ 1.0f * e_gamma.y + 0.117887f * e_gamma.u + 0.105521f * e_gamma.v,
+ 0.0f * e_gamma.y + 0.995211f * e_gamma.u + -0.059549f * e_gamma.v,
+ 0.0f * e_gamma.y + -0.084085f * e_gamma.u + 0.976518f * e_gamma.v }}};
+}
+
+void transformYuv420(jr_uncompressed_ptr image, size_t x_chroma, size_t y_chroma,
+ ColorTransformFn fn) {
+ Color yuv1 = getYuv420Pixel(image, x_chroma * 2, y_chroma * 2 );
+ Color yuv2 = getYuv420Pixel(image, x_chroma * 2 + 1, y_chroma * 2 );
+ Color yuv3 = getYuv420Pixel(image, x_chroma * 2, y_chroma * 2 + 1);
+ Color yuv4 = getYuv420Pixel(image, x_chroma * 2 + 1, y_chroma * 2 + 1);
+
+ yuv1 = fn(yuv1);
+ yuv2 = fn(yuv2);
+ yuv3 = fn(yuv3);
+ yuv4 = fn(yuv4);
+
+ Color new_uv = (yuv1 + yuv2 + yuv3 + yuv4) / 4.0f;
+
+ size_t pixel_y1_idx = x_chroma * 2 + y_chroma * 2 * image->width;
+ size_t pixel_y2_idx = (x_chroma * 2 + 1) + y_chroma * 2 * image->width;
+ size_t pixel_y3_idx = x_chroma * 2 + (y_chroma * 2 + 1) * image->width;
+ size_t pixel_y4_idx = (x_chroma * 2 + 1) + (y_chroma * 2 + 1) * image->width;
+
+ uint8_t& y1_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_y1_idx];
+ uint8_t& y2_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_y2_idx];
+ uint8_t& y3_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_y3_idx];
+ uint8_t& y4_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_y4_idx];
+
+ size_t pixel_count = image->width * image->height;
+ size_t pixel_uv_idx = x_chroma + y_chroma * (image->width / 2);
+
+ uint8_t& u_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_count + pixel_uv_idx];
+ uint8_t& v_uint = reinterpret_cast<uint8_t*>(image->data)[pixel_count * 5 / 4 + pixel_uv_idx];
+
+ y1_uint = static_cast<uint8_t>(floor(yuv1.y * 255.0f + 0.5f));
+ y2_uint = static_cast<uint8_t>(floor(yuv2.y * 255.0f + 0.5f));
+ y3_uint = static_cast<uint8_t>(floor(yuv3.y * 255.0f + 0.5f));
+ y4_uint = static_cast<uint8_t>(floor(yuv4.y * 255.0f + 0.5f));
+
+ u_uint = static_cast<uint8_t>(floor(new_uv.u * 255.0f + 128.0f + 0.5f));
+ v_uint = static_cast<uint8_t>(floor(new_uv.v * 255.0f + 128.0f + 0.5f));
+}
////////////////////////////////////////////////////////////////////////////////
// Gain map calculations