1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
|
/*
* Copyright (C) 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "Mesh.h"
#include <GLES/gl.h>
#include <SkMesh.h>
#include "SafeMath.h"
static size_t min_vcount_for_mode(SkMesh::Mode mode) {
switch (mode) {
case SkMesh::Mode::kTriangles:
return 3;
case SkMesh::Mode::kTriangleStrip:
return 3;
}
}
// Re-implementation of SkMesh::validate to validate user side that their mesh is valid.
std::tuple<bool, SkString> Mesh::validate() {
#define FAIL_MESH_VALIDATE(...) return std::make_tuple(false, SkStringPrintf(__VA_ARGS__))
if (!mMeshSpec) {
FAIL_MESH_VALIDATE("MeshSpecification is required.");
}
if (mVertexBufferData.empty()) {
FAIL_MESH_VALIDATE("VertexBuffer is required.");
}
auto meshStride = mMeshSpec->stride();
auto meshMode = SkMesh::Mode(mMode);
SafeMath sm;
size_t vsize = sm.mul(meshStride, mVertexCount);
if (sm.add(vsize, mVertexOffset) > mVertexBufferData.size()) {
FAIL_MESH_VALIDATE(
"The vertex buffer offset and vertex count reads beyond the end of the"
" vertex buffer.");
}
if (mVertexOffset % meshStride != 0) {
FAIL_MESH_VALIDATE("The vertex offset (%zu) must be a multiple of the vertex stride (%zu).",
mVertexOffset, meshStride);
}
if (size_t uniformSize = mMeshSpec->uniformSize()) {
if (!mBuilder->fUniforms || mBuilder->fUniforms->size() < uniformSize) {
FAIL_MESH_VALIDATE("The uniform data is %zu bytes but must be at least %zu.",
mBuilder->fUniforms->size(), uniformSize);
}
}
auto modeToStr = [](SkMesh::Mode m) {
switch (m) {
case SkMesh::Mode::kTriangles:
return "triangles";
case SkMesh::Mode::kTriangleStrip:
return "triangle-strip";
}
};
if (!mIndexBufferData.empty()) {
if (mIndexCount < min_vcount_for_mode(meshMode)) {
FAIL_MESH_VALIDATE("%s mode requires at least %zu indices but index count is %zu.",
modeToStr(meshMode), min_vcount_for_mode(meshMode), mIndexCount);
}
size_t isize = sm.mul(sizeof(uint16_t), mIndexCount);
if (sm.add(isize, mIndexOffset) > mIndexBufferData.size()) {
FAIL_MESH_VALIDATE(
"The index buffer offset and index count reads beyond the end of the"
" index buffer.");
}
// If we allow 32 bit indices then this should enforce 4 byte alignment in that case.
if (!SkIsAlign2(mIndexOffset)) {
FAIL_MESH_VALIDATE("The index offset must be a multiple of 2.");
}
} else {
if (mVertexCount < min_vcount_for_mode(meshMode)) {
FAIL_MESH_VALIDATE("%s mode requires at least %zu vertices but vertex count is %zu.",
modeToStr(meshMode), min_vcount_for_mode(meshMode), mVertexCount);
}
LOG_ALWAYS_FATAL_IF(mIndexCount != 0);
LOG_ALWAYS_FATAL_IF(mIndexOffset != 0);
}
if (!sm.ok()) {
FAIL_MESH_VALIDATE("Overflow");
}
#undef FAIL_MESH_VALIDATE
return {true, {}};
}
|