summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--core/java/android/util/Half.java2
-rw-r--r--graphics/java/android/graphics/Matrix44.java2
-rw-r--r--graphics/java/android/graphics/Outline.java2
-rw-r--r--graphics/java/android/graphics/ParcelableColorSpace.java2
-rw-r--r--graphics/java/android/graphics/PixelFormat.java2
-rw-r--r--ravenwood/runtime-helper-src/libcore-fake/libcore/util/FP16.java814
-rw-r--r--ravenwood/texts/ravenwood-annotation-allowed-classes.txt5
7 files changed, 829 insertions, 0 deletions
diff --git a/core/java/android/util/Half.java b/core/java/android/util/Half.java
index fe536a6e4e68..22583acb75ce 100644
--- a/core/java/android/util/Half.java
+++ b/core/java/android/util/Half.java
@@ -19,6 +19,7 @@ package android.util;
import android.annotation.HalfFloat;
import android.annotation.NonNull;
import android.annotation.Nullable;
+import android.ravenwood.annotation.RavenwoodKeepWholeClass;
import libcore.util.FP16;
@@ -92,6 +93,7 @@ import libcore.util.FP16;
* <p>This table shows that numbers higher than 1024 lose all fractional precision.</p>
*/
@SuppressWarnings("SimplifiableIfStatement")
+@RavenwoodKeepWholeClass
public final class Half extends Number implements Comparable<Half> {
/**
* The number of bits used to represent a half-precision float value.
diff --git a/graphics/java/android/graphics/Matrix44.java b/graphics/java/android/graphics/Matrix44.java
index a99e20101c3b..683f6149a203 100644
--- a/graphics/java/android/graphics/Matrix44.java
+++ b/graphics/java/android/graphics/Matrix44.java
@@ -19,6 +19,7 @@ package android.graphics;
import android.annotation.FlaggedApi;
import android.annotation.IntRange;
import android.annotation.NonNull;
+import android.ravenwood.annotation.RavenwoodKeepWholeClass;
import com.android.graphics.hwui.flags.Flags;
@@ -30,6 +31,7 @@ import java.util.Arrays;
* in row-major order. The values and operations are treated as column vectors.
*/
@FlaggedApi(Flags.FLAG_MATRIX_44)
+@RavenwoodKeepWholeClass
public class Matrix44 {
final float[] mBackingArray;
/**
diff --git a/graphics/java/android/graphics/Outline.java b/graphics/java/android/graphics/Outline.java
index 618e6dcc4433..c7b89412cc47 100644
--- a/graphics/java/android/graphics/Outline.java
+++ b/graphics/java/android/graphics/Outline.java
@@ -21,6 +21,7 @@ import android.annotation.IntDef;
import android.annotation.NonNull;
import android.compat.annotation.UnsupportedAppUsage;
import android.graphics.drawable.Drawable;
+import android.ravenwood.annotation.RavenwoodKeepWholeClass;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
@@ -35,6 +36,7 @@ import java.lang.annotation.RetentionPolicy;
* @see android.view.View#setOutlineProvider(android.view.ViewOutlineProvider)
* @see Drawable#getOutline(Outline)
*/
+@RavenwoodKeepWholeClass
public final class Outline {
private static final float RADIUS_UNDEFINED = Float.NEGATIVE_INFINITY;
diff --git a/graphics/java/android/graphics/ParcelableColorSpace.java b/graphics/java/android/graphics/ParcelableColorSpace.java
index 748d66cb5f6c..76c1715475ae 100644
--- a/graphics/java/android/graphics/ParcelableColorSpace.java
+++ b/graphics/java/android/graphics/ParcelableColorSpace.java
@@ -20,6 +20,7 @@ import android.annotation.NonNull;
import android.annotation.Nullable;
import android.os.Parcel;
import android.os.Parcelable;
+import android.ravenwood.annotation.RavenwoodKeepWholeClass;
/**
* A {@link Parcelable} wrapper for a {@link ColorSpace}. In order to enable parceling, the
@@ -27,6 +28,7 @@ import android.os.Parcelable;
* {@link ColorSpace.Rgb} instance that has an ICC parametric transfer function as returned by
* {@link ColorSpace.Rgb#getTransferParameters()}.
*/
+@RavenwoodKeepWholeClass
public final class ParcelableColorSpace implements Parcelable {
private final ColorSpace mColorSpace;
diff --git a/graphics/java/android/graphics/PixelFormat.java b/graphics/java/android/graphics/PixelFormat.java
index 3ec5b9cc7dae..a872e03db3b5 100644
--- a/graphics/java/android/graphics/PixelFormat.java
+++ b/graphics/java/android/graphics/PixelFormat.java
@@ -17,10 +17,12 @@
package android.graphics;
import android.annotation.IntDef;
+import android.ravenwood.annotation.RavenwoodKeepWholeClass;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
+@RavenwoodKeepWholeClass
public class PixelFormat {
/** @hide */
@IntDef({UNKNOWN, TRANSLUCENT, TRANSPARENT, OPAQUE})
diff --git a/ravenwood/runtime-helper-src/libcore-fake/libcore/util/FP16.java b/ravenwood/runtime-helper-src/libcore-fake/libcore/util/FP16.java
new file mode 100644
index 000000000000..478503b699a0
--- /dev/null
+++ b/ravenwood/runtime-helper-src/libcore-fake/libcore/util/FP16.java
@@ -0,0 +1,814 @@
+/*
+ * Copyright (C) 2019 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+package libcore.util;
+
+/**
+ * <p>The {@code FP16} class is a wrapper and a utility class to manipulate half-precision 16-bit
+ * <a href="https://en.wikipedia.org/wiki/Half-precision_floating-point_format">IEEE 754</a>
+ * floating point data types (also called fp16 or binary16). A half-precision float can be
+ * created from or converted to single-precision floats, and is stored in a short data type.
+ *
+ * <p>The IEEE 754 standard specifies an fp16 as having the following format:</p>
+ * <ul>
+ * <li>Sign bit: 1 bit</li>
+ * <li>Exponent width: 5 bits</li>
+ * <li>Significand: 10 bits</li>
+ * </ul>
+ *
+ * <p>The format is laid out as follows:</p>
+ * <pre>
+ * 1 11111 1111111111
+ * ^ --^-- -----^----
+ * sign | |_______ significand
+ * |
+ * -- exponent
+ * </pre>
+ *
+ * <p>Half-precision floating points can be useful to save memory and/or
+ * bandwidth at the expense of range and precision when compared to single-precision
+ * floating points (fp32).</p>
+ * <p>To help you decide whether fp16 is the right storage type for you need, please
+ * refer to the table below that shows the available precision throughout the range of
+ * possible values. The <em>precision</em> column indicates the step size between two
+ * consecutive numbers in a specific part of the range.</p>
+ *
+ * <table summary="Precision of fp16 across the range">
+ * <tr><th>Range start</th><th>Precision</th></tr>
+ * <tr><td>0</td><td>1 &frasl; 16,777,216</td></tr>
+ * <tr><td>1 &frasl; 16,384</td><td>1 &frasl; 16,777,216</td></tr>
+ * <tr><td>1 &frasl; 8,192</td><td>1 &frasl; 8,388,608</td></tr>
+ * <tr><td>1 &frasl; 4,096</td><td>1 &frasl; 4,194,304</td></tr>
+ * <tr><td>1 &frasl; 2,048</td><td>1 &frasl; 2,097,152</td></tr>
+ * <tr><td>1 &frasl; 1,024</td><td>1 &frasl; 1,048,576</td></tr>
+ * <tr><td>1 &frasl; 512</td><td>1 &frasl; 524,288</td></tr>
+ * <tr><td>1 &frasl; 256</td><td>1 &frasl; 262,144</td></tr>
+ * <tr><td>1 &frasl; 128</td><td>1 &frasl; 131,072</td></tr>
+ * <tr><td>1 &frasl; 64</td><td>1 &frasl; 65,536</td></tr>
+ * <tr><td>1 &frasl; 32</td><td>1 &frasl; 32,768</td></tr>
+ * <tr><td>1 &frasl; 16</td><td>1 &frasl; 16,384</td></tr>
+ * <tr><td>1 &frasl; 8</td><td>1 &frasl; 8,192</td></tr>
+ * <tr><td>1 &frasl; 4</td><td>1 &frasl; 4,096</td></tr>
+ * <tr><td>1 &frasl; 2</td><td>1 &frasl; 2,048</td></tr>
+ * <tr><td>1</td><td>1 &frasl; 1,024</td></tr>
+ * <tr><td>2</td><td>1 &frasl; 512</td></tr>
+ * <tr><td>4</td><td>1 &frasl; 256</td></tr>
+ * <tr><td>8</td><td>1 &frasl; 128</td></tr>
+ * <tr><td>16</td><td>1 &frasl; 64</td></tr>
+ * <tr><td>32</td><td>1 &frasl; 32</td></tr>
+ * <tr><td>64</td><td>1 &frasl; 16</td></tr>
+ * <tr><td>128</td><td>1 &frasl; 8</td></tr>
+ * <tr><td>256</td><td>1 &frasl; 4</td></tr>
+ * <tr><td>512</td><td>1 &frasl; 2</td></tr>
+ * <tr><td>1,024</td><td>1</td></tr>
+ * <tr><td>2,048</td><td>2</td></tr>
+ * <tr><td>4,096</td><td>4</td></tr>
+ * <tr><td>8,192</td><td>8</td></tr>
+ * <tr><td>16,384</td><td>16</td></tr>
+ * <tr><td>32,768</td><td>32</td></tr>
+ * </table>
+ *
+ * <p>This table shows that numbers higher than 1024 lose all fractional precision.</p>
+ *
+ * @hide
+ */
+
+public final class FP16 {
+ /**
+ * The number of bits used to represent a half-precision float value.
+ *
+ * @hide
+ */
+ public static final int SIZE = 16;
+
+ /**
+ * Epsilon is the difference between 1.0 and the next value representable
+ * by a half-precision floating-point.
+ *
+ * @hide
+ */
+ public static final short EPSILON = (short) 0x1400;
+
+ /**
+ * Maximum exponent a finite half-precision float may have.
+ *
+ * @hide
+ */
+ public static final int MAX_EXPONENT = 15;
+ /**
+ * Minimum exponent a normalized half-precision float may have.
+ *
+ * @hide
+ */
+ public static final int MIN_EXPONENT = -14;
+
+ /**
+ * Smallest negative value a half-precision float may have.
+ *
+ * @hide
+ */
+ public static final short LOWEST_VALUE = (short) 0xfbff;
+ /**
+ * Maximum positive finite value a half-precision float may have.
+ *
+ * @hide
+ */
+ public static final short MAX_VALUE = (short) 0x7bff;
+ /**
+ * Smallest positive normal value a half-precision float may have.
+ *
+ * @hide
+ */
+ public static final short MIN_NORMAL = (short) 0x0400;
+ /**
+ * Smallest positive non-zero value a half-precision float may have.
+ *
+ * @hide
+ */
+ public static final short MIN_VALUE = (short) 0x0001;
+ /**
+ * A Not-a-Number representation of a half-precision float.
+ *
+ * @hide
+ */
+ public static final short NaN = (short) 0x7e00;
+ /**
+ * Negative infinity of type half-precision float.
+ *
+ * @hide
+ */
+ public static final short NEGATIVE_INFINITY = (short) 0xfc00;
+ /**
+ * Negative 0 of type half-precision float.
+ *
+ * @hide
+ */
+ public static final short NEGATIVE_ZERO = (short) 0x8000;
+ /**
+ * Positive infinity of type half-precision float.
+ *
+ * @hide
+ */
+ public static final short POSITIVE_INFINITY = (short) 0x7c00;
+ /**
+ * Positive 0 of type half-precision float.
+ *
+ * @hide
+ */
+ public static final short POSITIVE_ZERO = (short) 0x0000;
+
+ /**
+ * The offset to shift by to obtain the sign bit.
+ *
+ * @hide
+ */
+ public static final int SIGN_SHIFT = 15;
+
+ /**
+ * The offset to shift by to obtain the exponent bits.
+ *
+ * @hide
+ */
+ public static final int EXPONENT_SHIFT = 10;
+
+ /**
+ * The bitmask to AND a number with to obtain the sign bit.
+ *
+ * @hide
+ */
+ public static final int SIGN_MASK = 0x8000;
+
+ /**
+ * The bitmask to AND a number shifted by {@link #EXPONENT_SHIFT} right, to obtain exponent bits.
+ *
+ * @hide
+ */
+ public static final int SHIFTED_EXPONENT_MASK = 0x1f;
+
+ /**
+ * The bitmask to AND a number with to obtain significand bits.
+ *
+ * @hide
+ */
+ public static final int SIGNIFICAND_MASK = 0x3ff;
+
+ /**
+ * The bitmask to AND with to obtain exponent and significand bits.
+ *
+ * @hide
+ */
+ public static final int EXPONENT_SIGNIFICAND_MASK = 0x7fff;
+
+ /**
+ * The offset of the exponent from the actual value.
+ *
+ * @hide
+ */
+ public static final int EXPONENT_BIAS = 15;
+
+ private static final int FP32_SIGN_SHIFT = 31;
+ private static final int FP32_EXPONENT_SHIFT = 23;
+ private static final int FP32_SHIFTED_EXPONENT_MASK = 0xff;
+ private static final int FP32_SIGNIFICAND_MASK = 0x7fffff;
+ private static final int FP32_EXPONENT_BIAS = 127;
+ private static final int FP32_QNAN_MASK = 0x400000;
+ private static final int FP32_DENORMAL_MAGIC = 126 << 23;
+ private static final float FP32_DENORMAL_FLOAT = Float.intBitsToFloat(FP32_DENORMAL_MAGIC);
+
+ /** Hidden constructor to prevent instantiation. */
+ private FP16() {}
+
+ /**
+ * <p>Compares the two specified half-precision float values. The following
+ * conditions apply during the comparison:</p>
+ *
+ * <ul>
+ * <li>{@link #NaN} is considered by this method to be equal to itself and greater
+ * than all other half-precision float values (including {@code #POSITIVE_INFINITY})</li>
+ * <li>{@link #POSITIVE_ZERO} is considered by this method to be greater than
+ * {@link #NEGATIVE_ZERO}.</li>
+ * </ul>
+ *
+ * @param x The first half-precision float value to compare.
+ * @param y The second half-precision float value to compare
+ *
+ * @return The value {@code 0} if {@code x} is numerically equal to {@code y}, a
+ * value less than {@code 0} if {@code x} is numerically less than {@code y},
+ * and a value greater than {@code 0} if {@code x} is numerically greater
+ * than {@code y}
+ *
+ * @hide
+ */
+ public static int compare(short x, short y) {
+ if (less(x, y)) return -1;
+ if (greater(x, y)) return 1;
+
+ // Collapse NaNs, akin to halfToIntBits(), but we want to keep
+ // (signed) short value types to preserve the ordering of -0.0
+ // and +0.0
+ short xBits = isNaN(x) ? NaN : x;
+ short yBits = isNaN(y) ? NaN : y;
+
+ return (xBits == yBits ? 0 : (xBits < yBits ? -1 : 1));
+ }
+
+ /**
+ * Returns the closest integral half-precision float value to the specified
+ * half-precision float value. Special values are handled in the
+ * following ways:
+ * <ul>
+ * <li>If the specified half-precision float is NaN, the result is NaN</li>
+ * <li>If the specified half-precision float is infinity (negative or positive),
+ * the result is infinity (with the same sign)</li>
+ * <li>If the specified half-precision float is zero (negative or positive),
+ * the result is zero (with the same sign)</li>
+ * </ul>
+ *
+ * @param h A half-precision float value
+ * @return The value of the specified half-precision float rounded to the nearest
+ * half-precision float value
+ *
+ * @hide
+ */
+ public static short rint(short h) {
+ int bits = h & 0xffff;
+ int abs = bits & EXPONENT_SIGNIFICAND_MASK;
+ int result = bits;
+
+ if (abs < 0x3c00) {
+ result &= SIGN_MASK;
+ if (abs > 0x3800){
+ result |= 0x3c00;
+ }
+ } else if (abs < 0x6400) {
+ int exp = 25 - (abs >> 10);
+ int mask = (1 << exp) - 1;
+ result += ((1 << (exp - 1)) - (~(abs >> exp) & 1));
+ result &= ~mask;
+ }
+ if (isNaN((short) result)) {
+ // if result is NaN mask with qNaN
+ // (i.e. mask the most significant mantissa bit with 1)
+ // to comply with hardware implementations (ARM64, Intel, etc).
+ result |= NaN;
+ }
+
+ return (short) result;
+ }
+
+ /**
+ * Returns the smallest half-precision float value toward negative infinity
+ * greater than or equal to the specified half-precision float value.
+ * Special values are handled in the following ways:
+ * <ul>
+ * <li>If the specified half-precision float is NaN, the result is NaN</li>
+ * <li>If the specified half-precision float is infinity (negative or positive),
+ * the result is infinity (with the same sign)</li>
+ * <li>If the specified half-precision float is zero (negative or positive),
+ * the result is zero (with the same sign)</li>
+ * </ul>
+ *
+ * @param h A half-precision float value
+ * @return The smallest half-precision float value toward negative infinity
+ * greater than or equal to the specified half-precision float value
+ *
+ * @hide
+ */
+ public static short ceil(short h) {
+ int bits = h & 0xffff;
+ int abs = bits & EXPONENT_SIGNIFICAND_MASK;
+ int result = bits;
+
+ if (abs < 0x3c00) {
+ result &= SIGN_MASK;
+ result |= 0x3c00 & -(~(bits >> 15) & (abs != 0 ? 1 : 0));
+ } else if (abs < 0x6400) {
+ abs = 25 - (abs >> 10);
+ int mask = (1 << abs) - 1;
+ result += mask & ((bits >> 15) - 1);
+ result &= ~mask;
+ }
+ if (isNaN((short) result)) {
+ // if result is NaN mask with qNaN
+ // (i.e. mask the most significant mantissa bit with 1)
+ // to comply with hardware implementations (ARM64, Intel, etc).
+ result |= NaN;
+ }
+
+ return (short) result;
+ }
+
+ /**
+ * Returns the largest half-precision float value toward positive infinity
+ * less than or equal to the specified half-precision float value.
+ * Special values are handled in the following ways:
+ * <ul>
+ * <li>If the specified half-precision float is NaN, the result is NaN</li>
+ * <li>If the specified half-precision float is infinity (negative or positive),
+ * the result is infinity (with the same sign)</li>
+ * <li>If the specified half-precision float is zero (negative or positive),
+ * the result is zero (with the same sign)</li>
+ * </ul>
+ *
+ * @param h A half-precision float value
+ * @return The largest half-precision float value toward positive infinity
+ * less than or equal to the specified half-precision float value
+ *
+ * @hide
+ */
+ public static short floor(short h) {
+ int bits = h & 0xffff;
+ int abs = bits & EXPONENT_SIGNIFICAND_MASK;
+ int result = bits;
+
+ if (abs < 0x3c00) {
+ result &= SIGN_MASK;
+ result |= 0x3c00 & (bits > 0x8000 ? 0xffff : 0x0);
+ } else if (abs < 0x6400) {
+ abs = 25 - (abs >> 10);
+ int mask = (1 << abs) - 1;
+ result += mask & -(bits >> 15);
+ result &= ~mask;
+ }
+ if (isNaN((short) result)) {
+ // if result is NaN mask with qNaN
+ // i.e. (Mask the most significant mantissa bit with 1)
+ result |= NaN;
+ }
+
+ return (short) result;
+ }
+
+ /**
+ * Returns the truncated half-precision float value of the specified
+ * half-precision float value. Special values are handled in the following ways:
+ * <ul>
+ * <li>If the specified half-precision float is NaN, the result is NaN</li>
+ * <li>If the specified half-precision float is infinity (negative or positive),
+ * the result is infinity (with the same sign)</li>
+ * <li>If the specified half-precision float is zero (negative or positive),
+ * the result is zero (with the same sign)</li>
+ * </ul>
+ *
+ * @param h A half-precision float value
+ * @return The truncated half-precision float value of the specified
+ * half-precision float value
+ *
+ * @hide
+ */
+ public static short trunc(short h) {
+ int bits = h & 0xffff;
+ int abs = bits & EXPONENT_SIGNIFICAND_MASK;
+ int result = bits;
+
+ if (abs < 0x3c00) {
+ result &= SIGN_MASK;
+ } else if (abs < 0x6400) {
+ abs = 25 - (abs >> 10);
+ int mask = (1 << abs) - 1;
+ result &= ~mask;
+ }
+
+ return (short) result;
+ }
+
+ /**
+ * Returns the smaller of two half-precision float values (the value closest
+ * to negative infinity). Special values are handled in the following ways:
+ * <ul>
+ * <li>If either value is NaN, the result is NaN</li>
+ * <li>{@link #NEGATIVE_ZERO} is smaller than {@link #POSITIVE_ZERO}</li>
+ * </ul>
+ *
+ * @param x The first half-precision value
+ * @param y The second half-precision value
+ * @return The smaller of the two specified half-precision values
+ *
+ * @hide
+ */
+ public static short min(short x, short y) {
+ if (isNaN(x)) return NaN;
+ if (isNaN(y)) return NaN;
+
+ if ((x & EXPONENT_SIGNIFICAND_MASK) == 0 && (y & EXPONENT_SIGNIFICAND_MASK) == 0) {
+ return (x & SIGN_MASK) != 0 ? x : y;
+ }
+
+ return ((x & SIGN_MASK) != 0 ? 0x8000 - (x & 0xffff) : x & 0xffff) <
+ ((y & SIGN_MASK) != 0 ? 0x8000 - (y & 0xffff) : y & 0xffff) ? x : y;
+ }
+
+ /**
+ * Returns the larger of two half-precision float values (the value closest
+ * to positive infinity). Special values are handled in the following ways:
+ * <ul>
+ * <li>If either value is NaN, the result is NaN</li>
+ * <li>{@link #POSITIVE_ZERO} is greater than {@link #NEGATIVE_ZERO}</li>
+ * </ul>
+ *
+ * @param x The first half-precision value
+ * @param y The second half-precision value
+ *
+ * @return The larger of the two specified half-precision values
+ *
+ * @hide
+ */
+ public static short max(short x, short y) {
+ if (isNaN(x)) return NaN;
+ if (isNaN(y)) return NaN;
+
+ if ((x & EXPONENT_SIGNIFICAND_MASK) == 0 && (y & EXPONENT_SIGNIFICAND_MASK) == 0) {
+ return (x & SIGN_MASK) != 0 ? y : x;
+ }
+
+ return ((x & SIGN_MASK) != 0 ? 0x8000 - (x & 0xffff) : x & 0xffff) >
+ ((y & SIGN_MASK) != 0 ? 0x8000 - (y & 0xffff) : y & 0xffff) ? x : y;
+ }
+
+ /**
+ * Returns true if the first half-precision float value is less (smaller
+ * toward negative infinity) than the second half-precision float value.
+ * If either of the values is NaN, the result is false.
+ *
+ * @param x The first half-precision value
+ * @param y The second half-precision value
+ *
+ * @return True if x is less than y, false otherwise
+ *
+ * @hide
+ */
+ public static boolean less(short x, short y) {
+ if (isNaN(x)) return false;
+ if (isNaN(y)) return false;
+
+ return ((x & SIGN_MASK) != 0 ? 0x8000 - (x & 0xffff) : x & 0xffff) <
+ ((y & SIGN_MASK) != 0 ? 0x8000 - (y & 0xffff) : y & 0xffff);
+ }
+
+ /**
+ * Returns true if the first half-precision float value is less (smaller
+ * toward negative infinity) than or equal to the second half-precision
+ * float value. If either of the values is NaN, the result is false.
+ *
+ * @param x The first half-precision value
+ * @param y The second half-precision value
+ *
+ * @return True if x is less than or equal to y, false otherwise
+ *
+ * @hide
+ */
+ public static boolean lessEquals(short x, short y) {
+ if (isNaN(x)) return false;
+ if (isNaN(y)) return false;
+
+ return ((x & SIGN_MASK) != 0 ? 0x8000 - (x & 0xffff) : x & 0xffff) <=
+ ((y & SIGN_MASK) != 0 ? 0x8000 - (y & 0xffff) : y & 0xffff);
+ }
+
+ /**
+ * Returns true if the first half-precision float value is greater (larger
+ * toward positive infinity) than the second half-precision float value.
+ * If either of the values is NaN, the result is false.
+ *
+ * @param x The first half-precision value
+ * @param y The second half-precision value
+ *
+ * @return True if x is greater than y, false otherwise
+ *
+ * @hide
+ */
+ public static boolean greater(short x, short y) {
+ if (isNaN(x)) return false;
+ if (isNaN(y)) return false;
+
+ return ((x & SIGN_MASK) != 0 ? 0x8000 - (x & 0xffff) : x & 0xffff) >
+ ((y & SIGN_MASK) != 0 ? 0x8000 - (y & 0xffff) : y & 0xffff);
+ }
+
+ /**
+ * Returns true if the first half-precision float value is greater (larger
+ * toward positive infinity) than or equal to the second half-precision float
+ * value. If either of the values is NaN, the result is false.
+ *
+ * @param x The first half-precision value
+ * @param y The second half-precision value
+ *
+ * @return True if x is greater than y, false otherwise
+ *
+ * @hide
+ */
+ public static boolean greaterEquals(short x, short y) {
+ if (isNaN(x)) return false;
+ if (isNaN(y)) return false;
+
+ return ((x & SIGN_MASK) != 0 ? 0x8000 - (x & 0xffff) : x & 0xffff) >=
+ ((y & SIGN_MASK) != 0 ? 0x8000 - (y & 0xffff) : y & 0xffff);
+ }
+
+ /**
+ * Returns true if the two half-precision float values are equal.
+ * If either of the values is NaN, the result is false. {@link #POSITIVE_ZERO}
+ * and {@link #NEGATIVE_ZERO} are considered equal.
+ *
+ * @param x The first half-precision value
+ * @param y The second half-precision value
+ *
+ * @return True if x is equal to y, false otherwise
+ *
+ * @hide
+ */
+ public static boolean equals(short x, short y) {
+ if (isNaN(x)) return false;
+ if (isNaN(y)) return false;
+
+ return x == y || ((x | y) & EXPONENT_SIGNIFICAND_MASK) == 0;
+ }
+
+ /**
+ * Returns true if the specified half-precision float value represents
+ * infinity, false otherwise.
+ *
+ * @param h A half-precision float value
+ * @return True if the value is positive infinity or negative infinity,
+ * false otherwise
+ *
+ * @hide
+ */
+ public static boolean isInfinite(short h) {
+ return (h & EXPONENT_SIGNIFICAND_MASK) == POSITIVE_INFINITY;
+ }
+
+ /**
+ * Returns true if the specified half-precision float value represents
+ * a Not-a-Number, false otherwise.
+ *
+ * @param h A half-precision float value
+ * @return True if the value is a NaN, false otherwise
+ *
+ * @hide
+ */
+ public static boolean isNaN(short h) {
+ return (h & EXPONENT_SIGNIFICAND_MASK) > POSITIVE_INFINITY;
+ }
+
+ /**
+ * Returns true if the specified half-precision float value is normalized
+ * (does not have a subnormal representation). If the specified value is
+ * {@link #POSITIVE_INFINITY}, {@link #NEGATIVE_INFINITY},
+ * {@link #POSITIVE_ZERO}, {@link #NEGATIVE_ZERO}, NaN or any subnormal
+ * number, this method returns false.
+ *
+ * @param h A half-precision float value
+ * @return True if the value is normalized, false otherwise
+ *
+ * @hide
+ */
+ public static boolean isNormalized(short h) {
+ return (h & POSITIVE_INFINITY) != 0 && (h & POSITIVE_INFINITY) != POSITIVE_INFINITY;
+ }
+
+ /**
+ * <p>Converts the specified half-precision float value into a
+ * single-precision float value. The following special cases are handled:</p>
+ * <ul>
+ * <li>If the input is {@link #NaN}, the returned value is {@link Float#NaN}</li>
+ * <li>If the input is {@link #POSITIVE_INFINITY} or
+ * {@link #NEGATIVE_INFINITY}, the returned value is respectively
+ * {@link Float#POSITIVE_INFINITY} or {@link Float#NEGATIVE_INFINITY}</li>
+ * <li>If the input is 0 (positive or negative), the returned value is +/-0.0f</li>
+ * <li>Otherwise, the returned value is a normalized single-precision float value</li>
+ * </ul>
+ *
+ * @param h The half-precision float value to convert to single-precision
+ * @return A normalized single-precision float value
+ *
+ * @hide
+ */
+ public static float toFloat(short h) {
+ int bits = h & 0xffff;
+ int s = bits & SIGN_MASK;
+ int e = (bits >>> EXPONENT_SHIFT) & SHIFTED_EXPONENT_MASK;
+ int m = (bits ) & SIGNIFICAND_MASK;
+
+ int outE = 0;
+ int outM = 0;
+
+ if (e == 0) { // Denormal or 0
+ if (m != 0) {
+ // Convert denorm fp16 into normalized fp32
+ float o = Float.intBitsToFloat(FP32_DENORMAL_MAGIC + m);
+ o -= FP32_DENORMAL_FLOAT;
+ return s == 0 ? o : -o;
+ }
+ } else {
+ outM = m << 13;
+ if (e == 0x1f) { // Infinite or NaN
+ outE = 0xff;
+ if (outM != 0) { // SNaNs are quieted
+ outM |= FP32_QNAN_MASK;
+ }
+ } else {
+ outE = e - EXPONENT_BIAS + FP32_EXPONENT_BIAS;
+ }
+ }
+
+ int out = (s << 16) | (outE << FP32_EXPONENT_SHIFT) | outM;
+ return Float.intBitsToFloat(out);
+ }
+
+ /**
+ * <p>Converts the specified single-precision float value into a
+ * half-precision float value. The following special cases are handled:</p>
+ * <ul>
+ * <li>If the input is NaN (see {@link Float#isNaN(float)}), the returned
+ * value is {@link #NaN}</li>
+ * <li>If the input is {@link Float#POSITIVE_INFINITY} or
+ * {@link Float#NEGATIVE_INFINITY}, the returned value is respectively
+ * {@link #POSITIVE_INFINITY} or {@link #NEGATIVE_INFINITY}</li>
+ * <li>If the input is 0 (positive or negative), the returned value is
+ * {@link #POSITIVE_ZERO} or {@link #NEGATIVE_ZERO}</li>
+ * <li>If the input is a less than {@link #MIN_VALUE}, the returned value
+ * is flushed to {@link #POSITIVE_ZERO} or {@link #NEGATIVE_ZERO}</li>
+ * <li>If the input is a less than {@link #MIN_NORMAL}, the returned value
+ * is a denorm half-precision float</li>
+ * <li>Otherwise, the returned value is rounded to the nearest
+ * representable half-precision float value</li>
+ * </ul>
+ *
+ * @param f The single-precision float value to convert to half-precision
+ * @return A half-precision float value
+ *
+ * @hide
+ */
+ public static short toHalf(float f) {
+ int bits = Float.floatToRawIntBits(f);
+ int s = (bits >>> FP32_SIGN_SHIFT );
+ int e = (bits >>> FP32_EXPONENT_SHIFT) & FP32_SHIFTED_EXPONENT_MASK;
+ int m = (bits ) & FP32_SIGNIFICAND_MASK;
+
+ int outE = 0;
+ int outM = 0;
+
+ if (e == 0xff) { // Infinite or NaN
+ outE = 0x1f;
+ outM = m != 0 ? 0x200 : 0;
+ } else {
+ e = e - FP32_EXPONENT_BIAS + EXPONENT_BIAS;
+ if (e >= 0x1f) { // Overflow
+ outE = 0x1f;
+ } else if (e <= 0) { // Underflow
+ if (e < -10) {
+ // The absolute fp32 value is less than MIN_VALUE, flush to +/-0
+ } else {
+ // The fp32 value is a normalized float less than MIN_NORMAL,
+ // we convert to a denorm fp16
+ m = m | 0x800000;
+ int shift = 14 - e;
+ outM = m >> shift;
+
+ int lowm = m & ((1 << shift) - 1);
+ int hway = 1 << (shift - 1);
+ // if above halfway or exactly halfway and outM is odd
+ if (lowm + (outM & 1) > hway){
+ // Round to nearest even
+ // Can overflow into exponent bit, which surprisingly is OK.
+ // This increment relies on the +outM in the return statement below
+ outM++;
+ }
+ }
+ } else {
+ outE = e;
+ outM = m >> 13;
+ // if above halfway or exactly halfway and outM is odd
+ if ((m & 0x1fff) + (outM & 0x1) > 0x1000) {
+ // Round to nearest even
+ // Can overflow into exponent bit, which surprisingly is OK.
+ // This increment relies on the +outM in the return statement below
+ outM++;
+ }
+ }
+ }
+ // The outM is added here as the +1 increments for outM above can
+ // cause an overflow in the exponent bit which is OK.
+ return (short) ((s << SIGN_SHIFT) | (outE << EXPONENT_SHIFT) + outM);
+ }
+
+ /**
+ * <p>Returns a hexadecimal string representation of the specified half-precision
+ * float value. If the value is a NaN, the result is <code>"NaN"</code>,
+ * otherwise the result follows this format:</p>
+ * <ul>
+ * <li>If the sign is positive, no sign character appears in the result</li>
+ * <li>If the sign is negative, the first character is <code>'-'</code></li>
+ * <li>If the value is inifinity, the string is <code>"Infinity"</code></li>
+ * <li>If the value is 0, the string is <code>"0x0.0p0"</code></li>
+ * <li>If the value has a normalized representation, the exponent and
+ * significand are represented in the string in two fields. The significand
+ * starts with <code>"0x1."</code> followed by its lowercase hexadecimal
+ * representation. Trailing zeroes are removed unless all digits are 0, then
+ * a single zero is used. The significand representation is followed by the
+ * exponent, represented by <code>"p"</code>, itself followed by a decimal
+ * string of the unbiased exponent</li>
+ * <li>If the value has a subnormal representation, the significand starts
+ * with <code>"0x0."</code> followed by its lowercase hexadecimal
+ * representation. Trailing zeroes are removed unless all digits are 0, then
+ * a single zero is used. The significand representation is followed by the
+ * exponent, represented by <code>"p-14"</code></li>
+ * </ul>
+ *
+ * @param h A half-precision float value
+ * @return A hexadecimal string representation of the specified value
+ *
+ * @hide
+ */
+ public static String toHexString(short h) {
+ StringBuilder o = new StringBuilder();
+
+ int bits = h & 0xffff;
+ int s = (bits >>> SIGN_SHIFT );
+ int e = (bits >>> EXPONENT_SHIFT) & SHIFTED_EXPONENT_MASK;
+ int m = (bits ) & SIGNIFICAND_MASK;
+
+ if (e == 0x1f) { // Infinite or NaN
+ if (m == 0) {
+ if (s != 0) o.append('-');
+ o.append("Infinity");
+ } else {
+ o.append("NaN");
+ }
+ } else {
+ if (s == 1) o.append('-');
+ if (e == 0) {
+ if (m == 0) {
+ o.append("0x0.0p0");
+ } else {
+ o.append("0x0.");
+ String significand = Integer.toHexString(m);
+ o.append(significand.replaceFirst("0{2,}$", ""));
+ o.append("p-14");
+ }
+ } else {
+ o.append("0x1.");
+ String significand = Integer.toHexString(m);
+ o.append(significand.replaceFirst("0{2,}$", ""));
+ o.append('p');
+ o.append(Integer.toString(e - EXPONENT_BIAS));
+ }
+ }
+
+ return o.toString();
+ }
+}
diff --git a/ravenwood/texts/ravenwood-annotation-allowed-classes.txt b/ravenwood/texts/ravenwood-annotation-allowed-classes.txt
index d8366c58c50d..34239b826c67 100644
--- a/ravenwood/texts/ravenwood-annotation-allowed-classes.txt
+++ b/ravenwood/texts/ravenwood-annotation-allowed-classes.txt
@@ -46,6 +46,7 @@ android.util.EmptyArray
android.util.EventLog
android.util.FloatProperty
android.util.FloatMath
+android.util.Half
android.util.IndentingPrintWriter
android.util.IntArray
android.util.IntProperty
@@ -277,7 +278,11 @@ android.graphics.ColorSpace
android.graphics.Insets
android.graphics.Interpolator
android.graphics.Matrix
+android.graphics.Matrix44
+android.graphics.Outline
+android.graphics.ParcelableColorSpace
android.graphics.Path
+android.graphics.PixelFormat
android.graphics.Point
android.graphics.PointF
android.graphics.Rect