1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
|
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_SRC_STACK_H_
#define ART_SRC_STACK_H_
#include "dex_file.h"
#include "heap.h"
#include "jni.h"
#include "macros.h"
#include "oat/runtime/context.h"
#include "trace.h"
#include <stdint.h>
namespace art {
class AbstractMethod;
class Object;
class ShadowFrame;
class StackIndirectReferenceTable;
class ScopedObjectAccess;
class Thread;
class ShadowFrame {
public:
static ShadowFrame* Create(uint16_t num_refs, uint16_t num_vregs, ShadowFrame* link,
AbstractMethod* method, uint32_t dex_pc) {
size_t sz = sizeof(ShadowFrame) + (sizeof(Object*) * num_refs) + (sizeof(uint32_t) * num_vregs);
uint8_t* memory = new uint8_t[sz];
return new (memory) ShadowFrame(num_refs, num_vregs, link, method, dex_pc);
}
~ShadowFrame() {}
uint32_t NumberOfReferences() const {
return number_of_references_;
}
void SetNumberOfReferences(uint16_t number_of_references) {
number_of_references_ = number_of_references;
}
void SetNumberOfVRegs(uint16_t number_of_vregs) {
number_of_vregs_ = number_of_vregs;
}
uint32_t GetDexPC() const {
return dex_pc_;
}
void SetDexPC(uint32_t dex_pc) {
dex_pc_ = dex_pc;
}
ShadowFrame* GetLink() const {
return link_;
}
void SetLink(ShadowFrame* frame) {
DCHECK_NE(this, frame);
link_ = frame;
}
Object* GetReference(size_t i) const {
DCHECK_LT(i, number_of_references_);
return references_[i];
}
void SetReference(size_t i, Object* object) {
DCHECK_LT(i, number_of_references_);
references_[i] = object;
}
int32_t GetVReg(size_t i) const {
DCHECK_LT(i, number_of_vregs_);
const int8_t* vregs = reinterpret_cast<const int8_t*>(this) + VRegsOffset();
return reinterpret_cast<const int32_t*>(vregs)[i];
}
float GetVRegFloat(size_t i) const {
DCHECK_LT(i, number_of_vregs_);
const int8_t* vregs = reinterpret_cast<const int8_t*>(this) + VRegsOffset();
return reinterpret_cast<const float*>(vregs)[i];
}
int64_t GetVRegLong(size_t i) const {
const int8_t* vregs = reinterpret_cast<const int8_t*>(this) + VRegsOffset();
const int32_t* low_half = &reinterpret_cast<const int32_t*>(vregs)[i];
return *reinterpret_cast<const int64_t*>(low_half);
}
double GetVRegDouble(size_t i) const {
const int8_t* vregs = reinterpret_cast<const int8_t*>(this) + VRegsOffset();
const int32_t* low_half = &reinterpret_cast<const int32_t*>(vregs)[i];
return *reinterpret_cast<const double*>(low_half);
}
void SetVReg(size_t i, int32_t val) {
DCHECK_LT(i, number_of_vregs_);
int8_t* vregs = reinterpret_cast<int8_t*>(this) + VRegsOffset();
reinterpret_cast<int32_t*>(vregs)[i] = val;
}
void SetVRegFloat(size_t i, float val) {
DCHECK_LT(i, number_of_vregs_);
int8_t* vregs = reinterpret_cast<int8_t*>(this) + VRegsOffset();
reinterpret_cast<float*>(vregs)[i] = val;
}
void SetVRegLong(size_t i, int64_t val) {
int8_t* vregs = reinterpret_cast<int8_t*>(this) + VRegsOffset();
int32_t* low_half = &reinterpret_cast<int32_t*>(vregs)[i];
*reinterpret_cast<int64_t*>(low_half) = val;
}
void SetVRegDouble(size_t i, double val) {
int8_t* vregs = reinterpret_cast<int8_t*>(this) + VRegsOffset();
int32_t* low_half = &reinterpret_cast<int32_t*>(vregs)[i];
*reinterpret_cast<double*>(low_half) = val;
}
void SetReferenceAndVReg(size_t i, Object* val) {
SetReference(i, val);
SetVReg(i, reinterpret_cast<int32_t>(val));
}
AbstractMethod* GetMethod() const {
DCHECK_NE(method_, static_cast<void*>(NULL));
return method_;
}
void SetMethod(AbstractMethod* method) {
DCHECK_NE(method, static_cast<void*>(NULL));
method_ = method;
}
bool Contains(Object** shadow_frame_entry) const {
return ((&references_[0] <= shadow_frame_entry) &&
(shadow_frame_entry <= (&references_[number_of_references_ - 1])));
}
template <typename Visitor>
void VisitRoots(const Visitor& visitor) {
size_t num_refs = NumberOfReferences();
for (size_t j = 0; j < num_refs; j++) {
Object* object = GetReference(j);
if (object != NULL) {
visitor(object, j);
}
}
}
static size_t LinkOffset() {
return OFFSETOF_MEMBER(ShadowFrame, link_);
}
static size_t MethodOffset() {
return OFFSETOF_MEMBER(ShadowFrame, method_);
}
static size_t DexPCOffset() {
return OFFSETOF_MEMBER(ShadowFrame, dex_pc_);
}
static size_t NumberOfReferencesOffset() {
return OFFSETOF_MEMBER(ShadowFrame, number_of_references_);
}
static size_t NumberOfVRegsOffset() {
return OFFSETOF_MEMBER(ShadowFrame, number_of_vregs_);
}
static size_t ReferencesOffset() {
return OFFSETOF_MEMBER(ShadowFrame, references_);
}
size_t VRegsOffset() const {
return ReferencesOffset() + (sizeof(Object*) * NumberOfReferences());
}
private:
ShadowFrame(uint16_t num_refs, uint16_t num_vregs, ShadowFrame* link, AbstractMethod* method,
uint32_t dex_pc)
: number_of_references_ (num_refs), number_of_vregs_(num_vregs), link_(link),
method_(method), dex_pc_(dex_pc) {
for (size_t i = 0; i < num_refs; ++i) {
SetReference(i, NULL);
}
for (size_t i = 0; i < num_vregs; ++i) {
SetVReg(i, 0);
}
}
// TODO: make the majority of these fields const.
uint16_t number_of_references_;
uint16_t number_of_vregs_;
// Link to previous shadow frame or NULL.
ShadowFrame* link_;
AbstractMethod* method_;
uint32_t dex_pc_;
Object* references_[0];
DISALLOW_IMPLICIT_CONSTRUCTORS(ShadowFrame);
};
// The managed stack is used to record fragments of managed code stacks. Managed code stacks
// may either be shadow frames or lists of frames using fixed frame sizes. Transition records are
// necessary for transitions between code using different frame layouts and transitions into native
// code.
class PACKED ManagedStack {
public:
ManagedStack()
: link_(NULL), top_shadow_frame_(NULL), top_quick_frame_(NULL), top_quick_frame_pc_(0) {}
void PushManagedStackFragment(ManagedStack* fragment) {
// Copy this top fragment into given fragment.
memcpy(fragment, this, sizeof(ManagedStack));
// Clear this fragment, which has become the top.
memset(this, 0, sizeof(ManagedStack));
// Link our top fragment onto the given fragment.
link_ = fragment;
}
void PopManagedStackFragment(const ManagedStack& fragment) {
DCHECK(&fragment == link_);
// Copy this given fragment back to the top.
memcpy(this, &fragment, sizeof(ManagedStack));
}
ManagedStack* GetLink() const {
return link_;
}
AbstractMethod** GetTopQuickFrame() const {
return top_quick_frame_;
}
void SetTopQuickFrame(AbstractMethod** top) {
top_quick_frame_ = top;
}
uintptr_t GetTopQuickFramePc() const {
return top_quick_frame_pc_;
}
void SetTopQuickFramePc(uintptr_t pc) {
top_quick_frame_pc_ = pc;
}
static size_t TopQuickFrameOffset() {
return OFFSETOF_MEMBER(ManagedStack, top_quick_frame_);
}
static size_t TopQuickFramePcOffset() {
return OFFSETOF_MEMBER(ManagedStack, top_quick_frame_pc_);
}
ShadowFrame* PushShadowFrame(ShadowFrame* new_top_frame) {
ShadowFrame* old_frame = top_shadow_frame_;
top_shadow_frame_ = new_top_frame;
new_top_frame->SetLink(old_frame);
return old_frame;
}
ShadowFrame* PopShadowFrame() {
CHECK(top_shadow_frame_ != NULL);
ShadowFrame* frame = top_shadow_frame_;
top_shadow_frame_ = frame->GetLink();
return frame;
}
ShadowFrame* GetTopShadowFrame() const {
return top_shadow_frame_;
}
static size_t TopShadowFrameOffset() {
return OFFSETOF_MEMBER(ManagedStack, top_shadow_frame_);
}
size_t NumShadowFrameReferences() const;
bool ShadowFramesContain(Object** shadow_frame_entry) const;
private:
ManagedStack* link_;
ShadowFrame* top_shadow_frame_;
AbstractMethod** top_quick_frame_;
uintptr_t top_quick_frame_pc_;
};
class StackVisitor {
protected:
StackVisitor(const ManagedStack* stack, const std::vector<TraceStackFrame>* trace_stack,
Context* context)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_)
: stack_start_(stack), trace_stack_(trace_stack), cur_shadow_frame_(NULL),
cur_quick_frame_(NULL), cur_quick_frame_pc_(0), num_frames_(0), cur_depth_(0),
context_(context) {}
public:
virtual ~StackVisitor() {}
// Return 'true' if we should continue to visit more frames, 'false' to stop.
virtual bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) = 0;
void WalkStack(bool include_transitions = false)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
AbstractMethod* GetMethod() const {
if (cur_shadow_frame_ != NULL) {
return cur_shadow_frame_->GetMethod();
} else if (cur_quick_frame_ != NULL) {
return *cur_quick_frame_;
} else {
return NULL;
}
}
bool IsShadowFrame() const {
return cur_shadow_frame_ != NULL;
}
uint32_t GetDexPc() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
size_t GetNativePcOffset() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
uintptr_t LoadCalleeSave(int num, size_t frame_size) const {
// Callee saves are held at the top of the frame
AbstractMethod* method = GetMethod();
DCHECK(method != NULL);
byte* save_addr =
reinterpret_cast<byte*>(cur_quick_frame_) + frame_size - ((num + 1) * kPointerSize);
#if defined(__i386__)
save_addr -= kPointerSize; // account for return address
#endif
return *reinterpret_cast<uintptr_t*>(save_addr);
}
// Returns the height of the stack in the managed stack frames, including transitions.
size_t GetFrameHeight() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetNumFrames() - cur_depth_;
}
// Returns a frame ID for JDWP use, starting from 1.
size_t GetFrameId() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetFrameHeight() + 1;
}
size_t GetNumFrames() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
if (num_frames_ == 0) {
num_frames_ = ComputeNumFrames();
}
return num_frames_;
}
uint32_t GetVReg(AbstractMethod* m, int vreg) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetVReg(AbstractMethod* m, int vreg, uint32_t new_value)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
uintptr_t GetGPR(uint32_t reg) const;
uint32_t GetVReg(AbstractMethod** cur_quick_frame, const DexFile::CodeItem* code_item,
uint32_t core_spills, uint32_t fp_spills, size_t frame_size, int vreg) const {
int offset = GetVRegOffset(code_item, core_spills, fp_spills, frame_size, vreg);
DCHECK_EQ(cur_quick_frame, GetCurrentQuickFrame());
byte* vreg_addr = reinterpret_cast<byte*>(cur_quick_frame) + offset;
return *reinterpret_cast<uint32_t*>(vreg_addr);
}
uintptr_t GetReturnPc() const;
void SetReturnPc(uintptr_t new_ret_pc);
/*
* Return sp-relative offset for a Dalvik virtual register, compiler
* spill or Method* in bytes using Method*.
* Note that (reg >= 0) refers to a Dalvik register, (reg == -2)
* denotes Method* and (reg <= -3) denotes a compiler temp.
*
* +------------------------+
* | IN[ins-1] | {Note: resides in caller's frame}
* | . |
* | IN[0] |
* | caller's Method* |
* +========================+ {Note: start of callee's frame}
* | core callee-save spill | {variable sized}
* +------------------------+
* | fp callee-save spill |
* +------------------------+
* | filler word | {For compatibility, if V[locals-1] used as wide
* +------------------------+
* | V[locals-1] |
* | V[locals-2] |
* | . |
* | . | ... (reg == 2)
* | V[1] | ... (reg == 1)
* | V[0] | ... (reg == 0) <---- "locals_start"
* +------------------------+
* | Compiler temps | ... (reg == -2)
* | | ... (reg == -3)
* | | ... (reg == -4)
* +------------------------+
* | stack alignment padding| {0 to (kStackAlignWords-1) of padding}
* +------------------------+
* | OUT[outs-1] |
* | OUT[outs-2] |
* | . |
* | OUT[0] |
* | curMethod* | ... (reg == -1) <<== sp, 16-byte aligned
* +========================+
*/
static int GetVRegOffset(const DexFile::CodeItem* code_item,
uint32_t core_spills, uint32_t fp_spills,
size_t frame_size, int reg) {
DCHECK_EQ(frame_size & (kStackAlignment - 1), 0U);
int num_spills = __builtin_popcount(core_spills) + __builtin_popcount(fp_spills) + 1; // Filler.
int num_ins = code_item->ins_size_;
int num_regs = code_item->registers_size_ - num_ins;
int locals_start = frame_size - ((num_spills + num_regs) * sizeof(uint32_t));
if (reg == -2) {
return 0; // Method*
} else if (reg <= -3) {
return locals_start - ((reg + 1) * sizeof(uint32_t)); // Compiler temp.
} else if (reg < num_regs) {
return locals_start + (reg * sizeof(uint32_t)); // Dalvik local reg.
} else {
return frame_size + ((reg - num_regs) * sizeof(uint32_t)) + sizeof(uint32_t); // Dalvik in.
}
}
uintptr_t GetCurrentQuickFramePc() const {
return cur_quick_frame_pc_;
}
AbstractMethod** GetCurrentQuickFrame() const {
return cur_quick_frame_;
}
ShadowFrame* GetCurrentShadowFrame() const {
return cur_shadow_frame_;
}
StackIndirectReferenceTable* GetCurrentSirt() const {
AbstractMethod** sp = GetCurrentQuickFrame();
++sp; // Skip Method*; SIRT comes next;
return reinterpret_cast<StackIndirectReferenceTable*>(sp);
}
private:
size_t ComputeNumFrames() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
TraceStackFrame GetTraceStackFrame(uint32_t depth) const {
return trace_stack_->at(trace_stack_->size() - depth - 1);
}
void SanityCheckFrame() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
const ManagedStack* const stack_start_;
const std::vector<TraceStackFrame>* const trace_stack_;
ShadowFrame* cur_shadow_frame_;
AbstractMethod** cur_quick_frame_;
uintptr_t cur_quick_frame_pc_;
// Lazily computed, number of frames in the stack.
size_t num_frames_;
// Depth of the frame we're currently at.
size_t cur_depth_;
protected:
Context* const context_;
};
} // namespace art
#endif // ART_SRC_STACK_H_
|