1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
|
// Copyright 2011 Google Inc. All Rights Reserved.
#include "runtime.h"
#include <cstdio>
#include <cstdlib>
#include <limits>
#include <vector>
#include "class_linker.h"
#include "heap.h"
#include "scoped_ptr.h"
#include "thread.h"
namespace art {
Runtime* Runtime::instance_ = NULL;
Runtime::~Runtime() {
// TODO: use a smart pointer instead.
delete class_linker_;
Heap::Destroy();
delete thread_list_;
// TODO: acquire a static mutex on Runtime to avoid racing.
CHECK(instance_ == this);
instance_ = NULL;
}
void Runtime::Abort(const char* file, int line) {
// Get any pending output out of the way.
fflush(NULL);
// Many people have difficulty distinguish aborts from crashes,
// so be explicit.
LogMessage(file, line, ERROR, -1).stream() << "Runtime aborting...";
// TODO: if we support an abort hook, call it here.
// Perform any platform-specific pre-abort actions.
PlatformAbort(file, line);
// If we call abort(3) on a device, all threads in the process
// receive SIGABRT. debuggerd dumps the stack trace of the main
// thread, whether or not that was the thread that failed. By
// stuffing a value into a bogus address, we cause a segmentation
// fault in the current thread, and get a useful log from debuggerd.
// We can also trivially tell the difference between a VM crash and
// a deliberate abort by looking at the fault address.
*reinterpret_cast<char*>(0xdeadd00d) = 38;
abort();
// notreached
}
// Splits a colon delimited list of pathname elements into a vector of
// strings. Empty strings will be omitted.
void ParseClassPath(const char* class_path, std::vector<std::string>* vec) {
CHECK(vec != NULL);
scoped_ptr_malloc<char> tmp(strdup(class_path));
char* full = tmp.get();
char* p = full;
while (p != NULL) {
p = strpbrk(full, ":");
if (p != NULL) {
p[0] = '\0';
}
if (full[0] != '\0') {
vec->push_back(std::string(full));
}
if (p != NULL) {
full = p + 1;
}
}
}
// Parse a string of the form /[0-9]+[kKmMgG]?/, which is used to specify
// memory sizes. [kK] indicates kilobytes, [mM] megabytes, and
// [gG] gigabytes.
//
// "s" should point just past the "-Xm?" part of the string.
// "min" specifies the lowest acceptable value described by "s".
// "div" specifies a divisor, e.g. 1024 if the value must be a multiple
// of 1024.
//
// The spec says the -Xmx and -Xms options must be multiples of 1024. It
// doesn't say anything about -Xss.
//
// Returns 0 (a useless size) if "s" is malformed or specifies a low or
// non-evenly-divisible value.
//
size_t ParseMemoryOption(const char *s, size_t div) {
// strtoul accepts a leading [+-], which we don't want,
// so make sure our string starts with a decimal digit.
if (isdigit(*s)) {
const char *s2;
size_t val = strtoul(s, (char **)&s2, 10);
if (s2 != s) {
// s2 should be pointing just after the number.
// If this is the end of the string, the user
// has specified a number of bytes. Otherwise,
// there should be exactly one more character
// that specifies a multiplier.
if (*s2 != '\0') {
// The remainder of the string is either a single multiplier
// character, or nothing to indicate that the value is in
// bytes.
char c = *s2++;
if (*s2 == '\0') {
size_t mul;
if (c == '\0') {
mul = 1;
} else if (c == 'k' || c == 'K') {
mul = 1024;
} else if (c == 'm' || c == 'M') {
mul = 1024 * 1024;
} else if (c == 'g' || c == 'G') {
mul = 1024 * 1024 * 1024;
} else {
// Unknown multiplier character.
return 0;
}
if (val <= std::numeric_limits<size_t>::max() / mul) {
val *= mul;
} else {
// Clamp to a multiple of 1024.
val = std::numeric_limits<size_t>::max() & ~(1024-1);
}
} else {
// There's more than one character after the numeric part.
return 0;
}
}
// The man page says that a -Xm value must be a multiple of 1024.
if (val % div == 0) {
return val;
}
}
}
return 0;
}
DexFile* Open(const std::string& filename) {
if (filename.size() < 4) {
LOG(WARNING) << "Ignoring short classpath entry '" << filename << "'";
return NULL;
}
std::string suffix(filename.substr(filename.size() - 4));
if (suffix == ".zip" || suffix == ".jar" || suffix == ".apk") {
return DexFile::OpenZip(filename);
} else {
return DexFile::OpenFile(filename);
}
}
void CreateBootClassPath(const char* boot_class_path_cstr,
std::vector<DexFile*>& boot_class_path_vector) {
CHECK(boot_class_path_cstr != NULL);
std::vector<std::string> parsed;
ParseClassPath(boot_class_path_cstr, &parsed);
for (size_t i = 0; i < parsed.size(); ++i) {
DexFile* dex_file = Open(parsed[i]);
if (dex_file != NULL) {
boot_class_path_vector.push_back(dex_file);
}
}
}
Runtime::ParsedOptions::ParsedOptions(const Options& options, bool ignore_unrecognized) {
const char* boot_class_path = getenv("BOOTCLASSPATH");
boot_image_ = NULL;
heap_initial_size_ = Heap::kInitialSize;
heap_maximum_size_ = Heap::kMaximumSize;
for (size_t i = 0; i < options.size(); ++i) {
const StringPiece& option = options[i].first;
// TODO parse -D, -verbose, vprintf, exit, abort
if (option.starts_with("-Xbootclasspath:")) {
boot_class_path = option.substr(strlen("-Xbootclasspath:")).data();
} else if (option == "bootclasspath") {
boot_class_path_ = *reinterpret_cast<const std::vector<DexFile*>*>(options[i].second);
} else if (option.starts_with("-Xbootimage:")) {
boot_image_ = option.substr(strlen("-Xbootimage:")).data();
} else if (option.starts_with("-Xms")) {
heap_initial_size_ = ParseMemoryOption(option.substr(strlen("-Xms")).data(), 1024);
} else if (option.starts_with("-Xmx")) {
heap_maximum_size_ = ParseMemoryOption(option.substr(strlen("-Xmx")).data(), 1024);
} else {
if (!ignore_unrecognized) {
// TODO: indicate error for JNI_CreateJavaVM and print usage via vfprintf
LOG(FATAL) << "Unrecognized option " << option;
}
}
}
if (boot_class_path == NULL) {
boot_class_path = "";
}
if (boot_class_path_.size() == 0) {
CreateBootClassPath(boot_class_path, boot_class_path_);
}
}
Runtime* Runtime::Create(const std::vector<const DexFile*>& boot_class_path) {
Runtime::Options options;
options.push_back(std::make_pair("bootclasspath", &boot_class_path));
return Runtime::Create(options, false);
}
Runtime* Runtime::Create(const Options& options, bool ignore_unrecognized) {
// TODO: acquire a static mutex on Runtime to avoid racing.
if (Runtime::instance_ != NULL) {
return NULL;
}
scoped_ptr<Runtime> runtime(new Runtime());
bool success = runtime->Init(options, ignore_unrecognized);
if (!success) {
return NULL;
} else {
return Runtime::instance_ = runtime.release();
}
}
bool Runtime::Init(const Options& options, bool ignore_unrecognized) {
ParsedOptions parsed_options(options, ignore_unrecognized);
CHECK_EQ(kPageSize, sysconf(_SC_PAGE_SIZE));
thread_list_ = ThreadList::Create();
Heap::Init(parsed_options.heap_initial_size_,
parsed_options.heap_maximum_size_);
Thread::Init();
Thread* current_thread = Thread::Attach();
thread_list_->Register(current_thread);
class_linker_ = ClassLinker::Create(parsed_options.boot_class_path_);
java_vm_.reset(CreateJavaVM(this));
return true;
}
bool Runtime::AttachCurrentThread(const char* name, JNIEnv** penv) {
return Thread::Attach() != NULL;
}
bool Runtime::AttachCurrentThreadAsDaemon(const char* name, JNIEnv** penv) {
// TODO: do something different for daemon threads.
return Thread::Attach() != NULL;
}
bool Runtime::DetachCurrentThread() {
UNIMPLEMENTED(WARNING);
return true;
}
} // namespace art
|