summaryrefslogtreecommitdiff
path: root/src/heap.cc
blob: 658755e2937b151808d8c46a7709932fdda7c83c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "heap.h"

#include <sys/types.h>
#include <sys/wait.h>

#include <limits>
#include <vector>

#include "card_table.h"
#include "debugger.h"
#include "heap_bitmap.h"
#include "image.h"
#include "mark_sweep.h"
#include "mod_union_table.h"
#include "object.h"
#include "object_utils.h"
#include "os.h"
#include "ScopedLocalRef.h"
#include "scoped_thread_state_change.h"
#include "space.h"
#include "stl_util.h"
#include "thread_list.h"
#include "timing_logger.h"
#include "UniquePtr.h"
#include "well_known_classes.h"

namespace art {

static void UpdateFirstAndLastSpace(Space** first_space, Space** last_space, Space* space) {
  if (*first_space == NULL) {
    *first_space = space;
    *last_space = space;
  } else {
    if ((*first_space)->Begin() > space->Begin()) {
      *first_space = space;
    } else if (space->Begin() > (*last_space)->Begin()) {
      *last_space = space;
    }
  }
}

static bool GenerateImage(const std::string& image_file_name) {
  const std::string boot_class_path_string(Runtime::Current()->GetBootClassPathString());
  std::vector<std::string> boot_class_path;
  Split(boot_class_path_string, ':', boot_class_path);
  if (boot_class_path.empty()) {
    LOG(FATAL) << "Failed to generate image because no boot class path specified";
  }

  std::vector<char*> arg_vector;

  std::string dex2oat_string(GetAndroidRoot());
  dex2oat_string += (kIsDebugBuild ? "/bin/dex2oatd" : "/bin/dex2oat");
  const char* dex2oat = dex2oat_string.c_str();
  arg_vector.push_back(strdup(dex2oat));

  std::string image_option_string("--image=");
  image_option_string += image_file_name;
  const char* image_option = image_option_string.c_str();
  arg_vector.push_back(strdup(image_option));

  arg_vector.push_back(strdup("--runtime-arg"));
  arg_vector.push_back(strdup("-Xms64m"));

  arg_vector.push_back(strdup("--runtime-arg"));
  arg_vector.push_back(strdup("-Xmx64m"));

  for (size_t i = 0; i < boot_class_path.size(); i++) {
    std::string dex_file_option_string("--dex-file=");
    dex_file_option_string += boot_class_path[i];
    const char* dex_file_option = dex_file_option_string.c_str();
    arg_vector.push_back(strdup(dex_file_option));
  }

  std::string oat_file_option_string("--oat-file=");
  oat_file_option_string += image_file_name;
  oat_file_option_string.erase(oat_file_option_string.size() - 3);
  oat_file_option_string += "oat";
  const char* oat_file_option = oat_file_option_string.c_str();
  arg_vector.push_back(strdup(oat_file_option));

  arg_vector.push_back(strdup("--base=0x60000000"));

  std::string command_line(Join(arg_vector, ' '));
  LOG(INFO) << command_line;

  arg_vector.push_back(NULL);
  char** argv = &arg_vector[0];

  // fork and exec dex2oat
  pid_t pid = fork();
  if (pid == 0) {
    // no allocation allowed between fork and exec

    // change process groups, so we don't get reaped by ProcessManager
    setpgid(0, 0);

    execv(dex2oat, argv);

    PLOG(FATAL) << "execv(" << dex2oat << ") failed";
    return false;
  } else {
    STLDeleteElements(&arg_vector);

    // wait for dex2oat to finish
    int status;
    pid_t got_pid = TEMP_FAILURE_RETRY(waitpid(pid, &status, 0));
    if (got_pid != pid) {
      PLOG(ERROR) << "waitpid failed: wanted " << pid << ", got " << got_pid;
      return false;
    }
    if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) {
      LOG(ERROR) << dex2oat << " failed: " << command_line;
      return false;
    }
  }
  return true;
}

Heap::Heap(size_t initial_size, size_t growth_limit, size_t capacity,
           const std::string& original_image_file_name, bool concurrent_gc)
    : alloc_space_(NULL),
      card_table_(NULL),
      concurrent_gc_(concurrent_gc),
      have_zygote_space_(false),
      card_marking_disabled_(false),
      is_gc_running_(false),
      concurrent_start_bytes_(std::numeric_limits<size_t>::max()),
      concurrent_start_size_(128 * KB),
      concurrent_min_free_(256 * KB),
      num_bytes_allocated_(0),
      num_objects_allocated_(0),
      last_trim_time_(0),
      try_running_gc_(false),
      requesting_gc_(false),
      reference_referent_offset_(0),
      reference_queue_offset_(0),
      reference_queueNext_offset_(0),
      reference_pendingNext_offset_(0),
      finalizer_reference_zombie_offset_(0),
      target_utilization_(0.5),
      verify_objects_(false) {
  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
    LOG(INFO) << "Heap() entering";
  }

  // Compute the bounds of all spaces for allocating live and mark bitmaps
  // there will be at least one space (the alloc space)
  Space* first_space = NULL;
  Space* last_space = NULL;

  live_bitmap_.reset(new HeapBitmap(this));
  mark_bitmap_.reset(new HeapBitmap(this));

  // Requested begin for the alloc space, to follow the mapped image and oat files
  byte* requested_begin = NULL;
  std::string image_file_name(original_image_file_name);
  if (!image_file_name.empty()) {
    Space* image_space = NULL;

    if (OS::FileExists(image_file_name.c_str())) {
      // If the /system file exists, it should be up-to-date, don't try to generate
      image_space = Space::CreateImageSpace(image_file_name);
    } else {
      // If the /system file didn't exist, we need to use one from the art-cache.
      // If the cache file exists, try to open, but if it fails, regenerate.
      // If it does not exist, generate.
      image_file_name = GetArtCacheFilenameOrDie(image_file_name);
      if (OS::FileExists(image_file_name.c_str())) {
        image_space = Space::CreateImageSpace(image_file_name);
      }
      if (image_space == NULL) {
        if (!GenerateImage(image_file_name)) {
          LOG(FATAL) << "Failed to generate image: " << image_file_name;
        }
        image_space = Space::CreateImageSpace(image_file_name);
      }
    }
    if (image_space == NULL) {
      LOG(FATAL) << "Failed to create space from " << image_file_name;
    }

    AddSpace(image_space);
    UpdateFirstAndLastSpace(&first_space, &last_space, image_space);
    // Oat files referenced by image files immediately follow them in memory, ensure alloc space
    // isn't going to get in the middle
    byte* oat_end_addr = GetImageSpace()->GetImageHeader().GetOatEnd();
    CHECK(oat_end_addr > GetImageSpace()->End());
    if (oat_end_addr > requested_begin) {
      requested_begin = reinterpret_cast<byte*>(RoundUp(reinterpret_cast<uintptr_t>(oat_end_addr),
                                                        kPageSize));
    }
  }

  UniquePtr<AllocSpace> alloc_space(Space::CreateAllocSpace(
      "alloc space", initial_size, growth_limit, capacity, requested_begin));
  alloc_space_ = alloc_space.release();
  CHECK(alloc_space_ != NULL) << "Failed to create alloc space";
  AddSpace(alloc_space_);

  UpdateFirstAndLastSpace(&first_space, &last_space, alloc_space_);
  byte* heap_begin = first_space->Begin();
  size_t heap_capacity = (last_space->Begin() - first_space->Begin()) + last_space->NonGrowthLimitCapacity();

  // Mark image objects in the live bitmap
  for (size_t i = 0; i < spaces_.size(); ++i) {
    Space* space = spaces_[i];
    if (space->IsImageSpace()) {
      space->AsImageSpace()->RecordImageAllocations(space->GetLiveBitmap());
    }
  }

  // Allocate the card table.
  card_table_.reset(CardTable::Create(heap_begin, heap_capacity));
  CHECK(card_table_.get() != NULL) << "Failed to create card table";

  mod_union_table_.reset(new ModUnionTableToZygoteAllocspace<ModUnionTableReferenceCache>(this));
  CHECK(mod_union_table_.get() != NULL) << "Failed to create mod-union table";

  zygote_mod_union_table_.reset(new ModUnionTableCardCache(this));
  CHECK(zygote_mod_union_table_.get() != NULL) << "Failed to create Zygote mod-union table";

  num_bytes_allocated_ = 0;
  num_objects_allocated_ = 0;

  mark_stack_.reset(MarkStack::Create());

  // It's still too early to take a lock because there are no threads yet,
  // but we can create the heap lock now. We don't create it earlier to
  // make it clear that you can't use locks during heap initialization.
  statistics_lock_ = new Mutex("statistics lock");
  gc_complete_lock_ =  new Mutex("GC complete lock");
  gc_complete_cond_.reset(new ConditionVariable("GC complete condition variable"));

  if (VLOG_IS_ON(heap) || VLOG_IS_ON(startup)) {
    LOG(INFO) << "Heap() exiting";
  }
}

// Sort spaces based on begin address
class SpaceSorter {
 public:
  bool operator () (const Space* a, const Space* b) const {
    return a->Begin() < b->Begin();
  }
};

void Heap::AddSpace(Space* space) {
  WriterMutexLock mu(*GlobalSynchronization::heap_bitmap_lock_);
  DCHECK(space != NULL);
  DCHECK(space->GetLiveBitmap() != NULL);
  live_bitmap_->AddSpaceBitmap(space->GetLiveBitmap());
  DCHECK(space->GetMarkBitmap() != NULL);
  mark_bitmap_->AddSpaceBitmap(space->GetMarkBitmap());
  spaces_.push_back(space);
  // Ensure that spaces remain sorted in increasing order of start address (required for CMS finger)
  std::sort(spaces_.begin(), spaces_.end(), SpaceSorter());
}

Heap::~Heap() {
  VLOG(heap) << "~Heap()";
  // We can't take the heap lock here because there might be a daemon thread suspended with the
  // heap lock held. We know though that no non-daemon threads are executing, and we know that
  // all daemon threads are suspended, and we also know that the threads list have been deleted, so
  // those threads can't resume. We're the only running thread, and we can do whatever we like...
  STLDeleteElements(&spaces_);
  delete statistics_lock_;
  delete gc_complete_lock_;

}

Space* Heap::FindSpaceFromObject(const Object* obj) const {
  // TODO: C++0x auto
  for (Spaces::const_iterator cur = spaces_.begin(); cur != spaces_.end(); ++cur) {
    if ((*cur)->Contains(obj)) {
      return *cur;
    }
  }
  LOG(FATAL) << "object " << reinterpret_cast<const void*>(obj) << " not inside any spaces!";
  return NULL;
}

ImageSpace* Heap::GetImageSpace() {
  // TODO: C++0x auto
  for (Spaces::const_iterator cur = spaces_.begin(); cur != spaces_.end(); ++cur) {
    if ((*cur)->IsImageSpace()) {
      return (*cur)->AsImageSpace();
    }
  }
  return NULL;
}

AllocSpace* Heap::GetAllocSpace() {
  return alloc_space_;
}

static void MSpaceChunkCallback(void* start, void* end, size_t used_bytes, void* arg) {
  size_t& max_contiguous_allocation = *reinterpret_cast<size_t*>(arg);

  size_t chunk_size = static_cast<size_t>(reinterpret_cast<uint8_t*>(end) - reinterpret_cast<uint8_t*>(start));
  size_t chunk_free_bytes = 0;
  if (used_bytes < chunk_size) {
    chunk_free_bytes = chunk_size - used_bytes;
  }

  if (chunk_free_bytes > max_contiguous_allocation) {
    max_contiguous_allocation = chunk_free_bytes;
  }
}

Object* Heap::AllocObject(Class* c, size_t byte_count) {
  // Used in the detail message if we throw an OOME.
  int64_t total_bytes_free;
  size_t max_contiguous_allocation;

  DCHECK(c == NULL || (c->IsClassClass() && byte_count >= sizeof(Class)) ||
         (c->IsVariableSize() || c->GetObjectSize() == byte_count) ||
         strlen(ClassHelper(c).GetDescriptor()) == 0);
  DCHECK_GE(byte_count, sizeof(Object));
  Object* obj = Allocate(byte_count);
  if (obj != NULL) {
    obj->SetClass(c);
    if (Dbg::IsAllocTrackingEnabled()) {
      Dbg::RecordAllocation(c, byte_count);
    }
    bool request_concurrent_gc;
    {
      MutexLock mu(*statistics_lock_);
      request_concurrent_gc = num_bytes_allocated_ >= concurrent_start_bytes_;
    }
    if (request_concurrent_gc) {
      // The SirtRef is necessary since the calls in RequestConcurrentGC are a safepoint.
      SirtRef<Object> ref(obj);
      RequestConcurrentGC();
    }
    VerifyObject(obj);

    // Additional verification to ensure that we did not allocate into a zygote space.
    DCHECK(!have_zygote_space_ || !FindSpaceFromObject(obj)->IsZygoteSpace());

    return obj;
  }
  total_bytes_free = GetFreeMemory();
  max_contiguous_allocation = 0;
  // TODO: C++0x auto
  for (Spaces::const_iterator cur = spaces_.begin(); cur != spaces_.end(); ++cur) {
    if ((*cur)->IsAllocSpace()) {
      (*cur)->AsAllocSpace()->Walk(MSpaceChunkCallback, &max_contiguous_allocation);
    }
  }

  std::string msg(StringPrintf("Failed to allocate a %zd-byte %s (%lld total bytes free; largest possible contiguous allocation %zd bytes)",
                               byte_count,
                               PrettyDescriptor(c).c_str(),
                               total_bytes_free, max_contiguous_allocation));
  Thread::Current()->ThrowOutOfMemoryError(msg.c_str());
  return NULL;
}

bool Heap::IsHeapAddress(const Object* obj) {
  // Note: we deliberately don't take the lock here, and mustn't test anything that would
  // require taking the lock.
  if (obj == NULL) {
    return true;
  }
  if (!IsAligned<kObjectAlignment>(obj)) {
    return false;
  }
  for (size_t i = 0; i < spaces_.size(); ++i) {
    if (spaces_[i]->Contains(obj)) {
      return true;
    }
  }
  return false;
}

bool Heap::IsLiveObjectLocked(const Object* obj) {
  GlobalSynchronization::heap_bitmap_lock_->AssertReaderHeld();
  return IsHeapAddress(obj) && GetLiveBitmap()->Test(obj);
}

#if VERIFY_OBJECT_ENABLED
void Heap::VerifyObject(const Object* obj) {
  if (obj == NULL || this == NULL || !verify_objects_ || Runtime::Current()->IsShuttingDown() ||
      Thread::Current() == NULL ||
      Runtime::Current()->GetThreadList()->GetLockOwner() == Thread::Current()->GetTid()) {
    return;
  }
  {
    ReaderMutexLock mu(GlobalSynchronization::heap_bitmap_lock_);
    Heap::VerifyObjectLocked(obj);
  }
}
#endif

void Heap::DumpSpaces() {
  // TODO: C++0x auto
  for (Spaces::iterator it = spaces_.begin(); it != spaces_.end(); ++it) {
    LOG(INFO) << **it;
  }
}

void Heap::VerifyObjectLocked(const Object* obj) {
  GlobalSynchronization::heap_bitmap_lock_->AssertReaderHeld();
  if (!IsAligned<kObjectAlignment>(obj)) {
    LOG(FATAL) << "Object isn't aligned: " << obj;
  } else if (!GetLiveBitmap()->Test(obj)) {
    Space* space = FindSpaceFromObject(obj);
    if (space == NULL) {
      DumpSpaces();
      LOG(FATAL) << "Object " << obj << " is not contained in any space";
    }
    LOG(FATAL) << "Object is dead: " << obj << " in space " << *space;
  }
#if !VERIFY_OBJECT_FAST
  // Ignore early dawn of the universe verifications
  if (num_objects_allocated_ > 10) {
    const byte* raw_addr = reinterpret_cast<const byte*>(obj) +
        Object::ClassOffset().Int32Value();
    const Class* c = *reinterpret_cast<Class* const *>(raw_addr);
    if (c == NULL) {
      LOG(FATAL) << "Null class in object: " << obj;
    } else if (!IsAligned<kObjectAlignment>(c)) {
      LOG(FATAL) << "Class isn't aligned: " << c << " in object: " << obj;
    } else if (!GetLiveBitmap()->Test(c)) {
      LOG(FATAL) << "Class of object is dead: " << c << " in object: " << obj;
    }
    // Check obj.getClass().getClass() == obj.getClass().getClass().getClass()
    // Note: we don't use the accessors here as they have internal sanity checks
    // that we don't want to run
    raw_addr = reinterpret_cast<const byte*>(c) + Object::ClassOffset().Int32Value();
    const Class* c_c = *reinterpret_cast<Class* const *>(raw_addr);
    raw_addr = reinterpret_cast<const byte*>(c_c) + Object::ClassOffset().Int32Value();
    const Class* c_c_c = *reinterpret_cast<Class* const *>(raw_addr);
    CHECK_EQ(c_c, c_c_c);
  }
#endif
}

void Heap::VerificationCallback(Object* obj, void* arg) {
  DCHECK(obj != NULL);
  reinterpret_cast<Heap*>(arg)->VerifyObjectLocked(obj);
}

void Heap::VerifyHeap() {
  ReaderMutexLock mu(*GlobalSynchronization::heap_bitmap_lock_);
  GetLiveBitmap()->Walk(Heap::VerificationCallback, this);
}

void Heap::RecordAllocation(AllocSpace* space, const Object* obj) {
  {
    MutexLock mu(*statistics_lock_);
    size_t size = space->AllocationSize(obj);
    DCHECK_GT(size, 0u);
    num_bytes_allocated_ += size;
    num_objects_allocated_ += 1;

    if (Runtime::Current()->HasStatsEnabled()) {
      RuntimeStats* global_stats = Runtime::Current()->GetStats();
      RuntimeStats* thread_stats = Thread::Current()->GetStats();
      ++global_stats->allocated_objects;
      ++thread_stats->allocated_objects;
      global_stats->allocated_bytes += size;
      thread_stats->allocated_bytes += size;
    }
  }
  {
    WriterMutexLock mu(*GlobalSynchronization::heap_bitmap_lock_);
    live_bitmap_->Set(obj);
  }
}

void Heap::RecordFree(size_t freed_objects, size_t freed_bytes) {
  MutexLock mu(*statistics_lock_);

  if (freed_objects < num_objects_allocated_) {
    num_objects_allocated_ -= freed_objects;
  } else {
    num_objects_allocated_ = 0;
  }
  if (freed_bytes < num_bytes_allocated_) {
    num_bytes_allocated_ -= freed_bytes;
  } else {
    num_bytes_allocated_ = 0;
  }

  if (Runtime::Current()->HasStatsEnabled()) {
    RuntimeStats* global_stats = Runtime::Current()->GetStats();
    RuntimeStats* thread_stats = Thread::Current()->GetStats();
    ++global_stats->freed_objects;
    ++thread_stats->freed_objects;
    global_stats->freed_bytes += freed_bytes;
    thread_stats->freed_bytes += freed_bytes;
  }
}

Object* Heap::Allocate(size_t size) {
  Object* obj = Allocate(alloc_space_, size);
  if (obj != NULL) {
    RecordAllocation(alloc_space_, obj);
    return obj;
  }

  return NULL;
}

Object* Heap::Allocate(AllocSpace* space, size_t alloc_size) {
  Thread* self = Thread::Current();
  // Since allocation can cause a GC which will need to SuspendAll, make sure all allocations are
  // done in the runnable state where suspension is expected.
#ifndef NDEBUG
  {
    MutexLock mu(*GlobalSynchronization::thread_suspend_count_lock_);
    CHECK_EQ(self->GetState(), kRunnable);
  }
  self->AssertThreadSuspensionIsAllowable();
#endif

  // Fail impossible allocations
  if (alloc_size > space->Capacity()) {
    // On failure collect soft references
    WaitForConcurrentGcToComplete();
    if (Runtime::Current()->HasStatsEnabled()) {
      ++Runtime::Current()->GetStats()->gc_for_alloc_count;
      ++Thread::Current()->GetStats()->gc_for_alloc_count;
    }
    self->TransitionFromRunnableToSuspended(kWaitingPerformingGc);
    CollectGarbageInternal(false, true);
    self->TransitionFromSuspendedToRunnable();
    return NULL;
  }

  Object* ptr = space->AllocWithoutGrowth(alloc_size);
  if (ptr != NULL) {
    return ptr;
  }

  // The allocation failed.  If the GC is running, block until it completes else request a
  // foreground partial collection.
  if (!WaitForConcurrentGcToComplete()) {
    // No concurrent GC so perform a foreground collection.
    if (Runtime::Current()->HasStatsEnabled()) {
      ++Runtime::Current()->GetStats()->gc_for_alloc_count;
      ++Thread::Current()->GetStats()->gc_for_alloc_count;
    }
    self->TransitionFromRunnableToSuspended(kWaitingPerformingGc);
    CollectGarbageInternal(have_zygote_space_, false);
    self->TransitionFromSuspendedToRunnable();
  }

  ptr = space->AllocWithoutGrowth(alloc_size);
  if (ptr != NULL) {
    return ptr;
  }

  if (!have_zygote_space_) {
    // Partial GC didn't free enough memory, try a full GC.
    if (Runtime::Current()->HasStatsEnabled()) {
      ++Runtime::Current()->GetStats()->gc_for_alloc_count;
      ++Thread::Current()->GetStats()->gc_for_alloc_count;
    }
    self->TransitionFromRunnableToSuspended(kWaitingPerformingGc);
    CollectGarbageInternal(false, false);
    self->TransitionFromSuspendedToRunnable();
    ptr = space->AllocWithoutGrowth(alloc_size);
    if (ptr != NULL) {
      return ptr;
    }
  }

  // Allocations have failed after GCs;  this is an exceptional state.
  // Try harder, growing the heap if necessary.
  ptr = space->AllocWithGrowth(alloc_size);
  if (ptr != NULL) {
    size_t new_footprint = space->GetFootprintLimit();
    // OLD-TODO: may want to grow a little bit more so that the amount of
    //       free space is equal to the old free space + the
    //       utilization slop for the new allocation.
    VLOG(gc) << "Grow heap (frag case) to " << PrettySize(new_footprint)
             << " for a " << PrettySize(alloc_size) << " allocation";
    return ptr;
  }

  // Most allocations should have succeeded by now, so the heap is really full, really fragmented,
  // or the requested size is really big. Do another GC, collecting SoftReferences this time. The
  // VM spec requires that all SoftReferences have been collected and cleared before throwing OOME.

  // OLD-TODO: wait for the finalizers from the previous GC to finish
  VLOG(gc) << "Forcing collection of SoftReferences for " << PrettySize(alloc_size) << " allocation";

  if (Runtime::Current()->HasStatsEnabled()) {
    ++Runtime::Current()->GetStats()->gc_for_alloc_count;
    ++Thread::Current()->GetStats()->gc_for_alloc_count;
  }
  // We don't need a WaitForConcurrentGcToComplete here either.
  self->TransitionFromRunnableToSuspended(kWaitingPerformingGc);
  CollectGarbageInternal(false, true);
  self->TransitionFromSuspendedToRunnable();
  ptr = space->AllocWithGrowth(alloc_size);
  if (ptr != NULL) {
    return ptr;
  }
  // Allocation failed.
  return NULL;
}

int64_t Heap::GetMaxMemory() {
  size_t total = 0;
  // TODO: C++0x auto
  for (Spaces::const_iterator cur = spaces_.begin(); cur != spaces_.end(); ++cur) {
    if ((*cur)->IsAllocSpace()) {
      total += (*cur)->AsAllocSpace()->Capacity();
    }
  }
  return total;
}

int64_t Heap::GetTotalMemory() {
  return GetMaxMemory();
}

int64_t Heap::GetFreeMemory() {
  MutexLock mu(*statistics_lock_);
  return GetMaxMemory() - num_bytes_allocated_;
}

class InstanceCounter {
 public:
  InstanceCounter(Class* c, bool count_assignable)
      SHARED_LOCKS_REQUIRED(GlobalSynchronization::mutator_lock_)
      : class_(c), count_assignable_(count_assignable), count_(0) {
  }

  size_t GetCount() {
    return count_;
  }

  static void Callback(Object* o, void* arg)
      SHARED_LOCKS_REQUIRED(GlobalSynchronization::mutator_lock_) {
    reinterpret_cast<InstanceCounter*>(arg)->VisitInstance(o);
  }

 private:
  void VisitInstance(Object* o) SHARED_LOCKS_REQUIRED(GlobalSynchronization::mutator_lock_) {
    Class* instance_class = o->GetClass();
    if (count_assignable_) {
      if (instance_class == class_) {
        ++count_;
      }
    } else {
      if (instance_class != NULL && class_->IsAssignableFrom(instance_class)) {
        ++count_;
      }
    }
  }

  Class* class_;
  bool count_assignable_;
  size_t count_;
};

int64_t Heap::CountInstances(Class* c, bool count_assignable) {
  ReaderMutexLock mu(*GlobalSynchronization::heap_bitmap_lock_);
  InstanceCounter counter(c, count_assignable);
  GetLiveBitmap()->Walk(InstanceCounter::Callback, &counter);
  return counter.GetCount();
}

void Heap::CollectGarbage(bool clear_soft_references) {
  // If we just waited for a GC to complete then we do not need to do another
  // GC unless we clear soft references.
  if (!WaitForConcurrentGcToComplete() || clear_soft_references) {
    ScopedThreadStateChange tsc(Thread::Current(), kWaitingPerformingGc);
    CollectGarbageInternal(have_zygote_space_, clear_soft_references);
  }
}

void Heap::PreZygoteFork() {
  static Mutex zygote_creation_lock_("zygote creation lock", kZygoteCreationLock);
  MutexLock mu(zygote_creation_lock_);

  // Try to see if we have any Zygote spaces.
  if (have_zygote_space_) {
    return;
  }

  VLOG(heap) << "Starting PreZygoteFork with alloc space size " << PrettySize(GetBytesAllocated());

  // Replace the first alloc space we find with a zygote space.
  // TODO: C++0x auto
  for (Spaces::iterator it = spaces_.begin(); it != spaces_.end(); ++it) {
    if ((*it)->IsAllocSpace()) {
      AllocSpace* zygote_space = (*it)->AsAllocSpace();

      // Turns the current alloc space into a Zygote space and obtain the new alloc space composed
      // of the remaining available heap memory.
      alloc_space_ = zygote_space->CreateZygoteSpace();

      // Change the GC retention policy of the zygote space to only collect when full.
      zygote_space->SetGcRetentionPolicy(GCRP_FULL_COLLECT);
      AddSpace(alloc_space_);
      have_zygote_space_ = true;
      break;
    }
  }
}

void Heap::CollectGarbageInternal(bool partial_gc, bool clear_soft_references) {
  GlobalSynchronization::mutator_lock_->AssertNotHeld();
#ifndef NDEBUG
  {
    MutexLock mu(*GlobalSynchronization::thread_suspend_count_lock_);
    CHECK_EQ(Thread::Current()->GetState(), kWaitingPerformingGc);
  }
#endif

  // Ensure there is only one GC at a time.
  bool start_collect = false;
  while (!start_collect) {
    {
      MutexLock mu(*gc_complete_lock_);
      if (!is_gc_running_) {
        is_gc_running_ = true;
        start_collect = true;
      }
    }
    if (!start_collect) {
      WaitForConcurrentGcToComplete();
      // TODO: if another thread beat this one to do the GC, perhaps we should just return here?
      //       Not doing at the moment to ensure soft references are cleared.
    }
  }
  gc_complete_lock_->AssertNotHeld();
  if (concurrent_gc_) {
    CollectGarbageConcurrentMarkSweepPlan(partial_gc, clear_soft_references);
  } else {
    CollectGarbageMarkSweepPlan(partial_gc, clear_soft_references);
  }
  gc_complete_lock_->AssertNotHeld();
  MutexLock mu(*gc_complete_lock_);
  is_gc_running_ = false;
  // Wake anyone who may have been waiting for the GC to complete.
  gc_complete_cond_->Broadcast();
}

void Heap::CollectGarbageMarkSweepPlan(bool partial_gc, bool clear_soft_references) {
  TimingLogger timings("CollectGarbageInternal");
  uint64_t t0 = NanoTime(), dirty_end = 0;

  // Suspend all threads are get exclusive access to the heap.
  ThreadList* thread_list = Runtime::Current()->GetThreadList();
  thread_list->SuspendAll();
  timings.AddSplit("SuspendAll");
  GlobalSynchronization::mutator_lock_->AssertExclusiveHeld();

  size_t initial_size;
  {
    MutexLock mu(*statistics_lock_);
    initial_size = num_bytes_allocated_;
  }
  Object* cleared_references = NULL;
  {
    MarkSweep mark_sweep(mark_stack_.get());
    timings.AddSplit("ctor");

    mark_sweep.Init();
    timings.AddSplit("Init");

    // Make sure that the tables have the correct pointer for the mark sweep.
    mod_union_table_->Init(&mark_sweep);
    zygote_mod_union_table_->Init(&mark_sweep);

    // Clear image space cards and keep track of cards we cleared in the mod-union table.
    for (Spaces::iterator it = spaces_.begin(); it != spaces_.end(); ++it) {
      Space* space = *it;
      if (space->IsImageSpace()) {
        mod_union_table_->ClearCards(*it);
      } else if (space->GetGcRetentionPolicy() == GCRP_FULL_COLLECT) {
        zygote_mod_union_table_->ClearCards(space);
      }
    }
    timings.AddSplit("ClearCards");

#if VERIFY_MOD_UNION
    mod_union_table_->Verify();
    zygote_mod_union_table_->Verify();
#endif

    WriterMutexLock mu(*GlobalSynchronization::heap_bitmap_lock_);
    if (partial_gc) {
      // Copy the mark bits over from the live bits, do this as early as possible or else we can
      // accidentally un-mark roots.
      // Needed for scanning dirty objects.
      mark_sweep.CopyMarkBits();
      timings.AddSplit("CopyMarkBits");
    }

    mark_sweep.MarkRoots();
    timings.AddSplit("MarkRoots");

    // Roots are marked on the bitmap and the mark_stack is empty.
    DCHECK(mark_sweep.IsMarkStackEmpty());

    // Update zygote mod union table.
    if (partial_gc) {
      zygote_mod_union_table_->Update();
      timings.AddSplit("UpdateZygoteModUnionTable");

      zygote_mod_union_table_->MarkReferences();
      timings.AddSplit("ZygoteMarkReferences");
    }

    // Processes the cards we cleared earlier and adds their objects into the mod-union table.
    mod_union_table_->Update();
    timings.AddSplit("UpdateModUnionTable");

    // Scans all objects in the mod-union table.
    mod_union_table_->MarkReferences();
    timings.AddSplit("MarkImageToAllocSpaceReferences");

    // Recursively mark all the non-image bits set in the mark bitmap.
    mark_sweep.RecursiveMark(partial_gc);
    timings.AddSplit(partial_gc ? "PartialMark" : "RecursiveMark");

    mark_sweep.ProcessReferences(clear_soft_references);
    timings.AddSplit("ProcessReferences");

    // Swap the live and mark bitmaps for each alloc space. This is needed since sweep re-swaps
    // these bitmaps. Doing this enables us to sweep with the heap unlocked since new allocations
    // set the live bit, but since we have the bitmaps reversed at this point, this sets the mark bit
    // instead, resulting in no new allocated objects being incorrectly freed by sweep.
    for (Spaces::iterator it = spaces_.begin(); it != spaces_.end(); ++it) {
      Space* space = *it;
      // We never allocate into zygote spaces.
      if (space->GetGcRetentionPolicy() == GCRP_ALWAYS_COLLECT) {
        live_bitmap_->ReplaceBitmap(space->GetLiveBitmap(), space->GetMarkBitmap());
        mark_bitmap_->ReplaceBitmap(space->GetMarkBitmap(), space->GetLiveBitmap());
        space->AsAllocSpace()->SwapBitmaps();
      }
    }

    // Verify that we only reach marked objects from the image space
    mark_sweep.VerifyImageRoots();
    timings.AddSplit("VerifyImageRoots");

    mark_sweep.Sweep(partial_gc);
    timings.AddSplit("Sweep");

    cleared_references = mark_sweep.GetClearedReferences();
  }

  GrowForUtilization();
  timings.AddSplit("GrowForUtilization");

  thread_list->ResumeAll();
  dirty_end = NanoTime();

  EnqueueClearedReferences(&cleared_references);
  RequestHeapTrim();
  timings.AddSplit("Finish");

  if (VLOG_IS_ON(gc)) {
    uint64_t t1 = NanoTime();

    MutexLock mu(*statistics_lock_);
    // TODO: somehow make the specific GC implementation (here MarkSweep) responsible for logging.
    // Reason: For CMS sometimes initial_size < num_bytes_allocated_ results in overflow (3GB freed message).
    size_t bytes_freed = initial_size - num_bytes_allocated_;
    uint64_t duration_ns = t1 - t0;
    duration_ns -= duration_ns % 1000;

    // If the GC was slow, then print timings in the log.
    if (duration_ns > MsToNs(50)) {
      uint64_t markSweepTime = (dirty_end - t0) / 1000 * 1000;
      LOG(INFO) << (partial_gc ? "Partial " : "")
                      << "GC freed " << PrettySize(bytes_freed) << ", " << GetPercentFree() << "% free, "
                      << PrettySize(num_bytes_allocated_) << "/" << PrettySize(GetTotalMemory()) << ", "
                      << "paused " << PrettyDuration(markSweepTime)
                      << ", total " << PrettyDuration(duration_ns);
    }
  }
  Dbg::GcDidFinish();
  if (VLOG_IS_ON(heap)) {
    timings.Dump();
  }
}

void Heap::CollectGarbageConcurrentMarkSweepPlan(bool partial_gc, bool clear_soft_references) {
  TimingLogger timings("CollectGarbageInternal");
  uint64_t t0 = NanoTime(), root_end = 0, dirty_begin = 0, dirty_end = 0;

  // Suspend all threads are get exclusive access to the heap.
  ThreadList* thread_list = Runtime::Current()->GetThreadList();
  thread_list->SuspendAll();
  timings.AddSplit("SuspendAll");
  GlobalSynchronization::mutator_lock_->AssertExclusiveHeld();

  size_t initial_size;
  {
    MutexLock mu(*statistics_lock_);
    initial_size = num_bytes_allocated_;
  }
  Object* cleared_references = NULL;
  {
    MarkSweep mark_sweep(mark_stack_.get());
    timings.AddSplit("ctor");

    mark_sweep.Init();
    timings.AddSplit("Init");

    // Make sure that the tables have the correct pointer for the mark sweep.
    mod_union_table_->Init(&mark_sweep);
    zygote_mod_union_table_->Init(&mark_sweep);

    // Clear image space cards and keep track of cards we cleared in the mod-union table.
    for (Spaces::iterator it = spaces_.begin(); it != spaces_.end(); ++it) {
      Space* space = *it;
      if (space->IsImageSpace()) {
        mod_union_table_->ClearCards(*it);
      } else if (space->GetGcRetentionPolicy() == GCRP_FULL_COLLECT) {
        zygote_mod_union_table_->ClearCards(space);
      } else {
        card_table_->ClearSpaceCards(space);
      }
    }
    timings.AddSplit("ClearCards");

#if VERIFY_MOD_UNION
    mod_union_table_->Verify();
    zygote_mod_union_table_->Verify();
#endif

    if (partial_gc) {
      // Copy the mark bits over from the live bits, do this as early as possible or else we can
      // accidentally un-mark roots.
      // Needed for scanning dirty objects.
      mark_sweep.CopyMarkBits();
      timings.AddSplit("CopyMarkBits");
    }

    {
      WriterMutexLock mu(*GlobalSynchronization::heap_bitmap_lock_);
      mark_sweep.MarkRoots();
      timings.AddSplit("MarkRoots");
    }

    // Roots are marked on the bitmap and the mark_stack is empty.
    DCHECK(mark_sweep.IsMarkStackEmpty());

    // Allow mutators to go again, acquire share on mutator_lock_ to continue.
    thread_list->ResumeAll();
    {
      ReaderMutexLock reader_lock(*GlobalSynchronization::mutator_lock_);
      root_end = NanoTime();
      timings.AddSplit("RootEnd");

      {
        ReaderMutexLock mu(*GlobalSynchronization::heap_bitmap_lock_);
        // Update zygote mod union table.
        if (partial_gc) {
          zygote_mod_union_table_->Update();
          timings.AddSplit("UpdateZygoteModUnionTable");

          zygote_mod_union_table_->MarkReferences();
          timings.AddSplit("ZygoteMarkReferences");
        }

        // Processes the cards we cleared earlier and adds their objects into the mod-union table.
        mod_union_table_->Update();
        timings.AddSplit("UpdateModUnionTable");
      }
      {
        WriterMutexLock mu(*GlobalSynchronization::heap_bitmap_lock_);
        // Scans all objects in the mod-union table.
        mod_union_table_->MarkReferences();
        timings.AddSplit("MarkImageToAllocSpaceReferences");

        // Recursively mark all the non-image bits set in the mark bitmap.
        mark_sweep.RecursiveMark(partial_gc);
        timings.AddSplit(partial_gc ? "PartialMark" : "RecursiveMark");
      }
    }
    // Release share on mutator_lock_ and then get exclusive access.
    dirty_begin = NanoTime();
    thread_list->SuspendAll();
    timings.AddSplit("ReSuspend");
    GlobalSynchronization::mutator_lock_->AssertExclusiveHeld();

    {
      WriterMutexLock mu(*GlobalSynchronization::heap_bitmap_lock_);
      // Re-mark root set.
      mark_sweep.ReMarkRoots();
      timings.AddSplit("ReMarkRoots");

      // Scan dirty objects, this is only required if we are not doing concurrent GC.
      mark_sweep.RecursiveMarkDirtyObjects();
      timings.AddSplit("RecursiveMarkDirtyObjects");
    }
    {
      ReaderMutexLock mu(*GlobalSynchronization::heap_bitmap_lock_);
      mark_sweep.ProcessReferences(clear_soft_references);
      timings.AddSplit("ProcessReferences");
    }
    // Swap the live and mark bitmaps for each alloc space. This is needed since sweep re-swaps
    // these bitmaps. Doing this enables us to sweep with the heap unlocked since new allocations
    // set the live bit, but since we have the bitmaps reversed at this point, this sets the mark
    // bit instead, resulting in no new allocated objects being incorrectly freed by sweep.
    {
      WriterMutexLock mu(*GlobalSynchronization::heap_bitmap_lock_);
      for (Spaces::iterator it = spaces_.begin(); it != spaces_.end(); ++it) {
        Space* space = *it;
        // We never allocate into zygote spaces.
        if (space->GetGcRetentionPolicy() == GCRP_ALWAYS_COLLECT) {
          live_bitmap_->ReplaceBitmap(space->GetLiveBitmap(), space->GetMarkBitmap());
          mark_bitmap_->ReplaceBitmap(space->GetMarkBitmap(), space->GetLiveBitmap());
          space->AsAllocSpace()->SwapBitmaps();
        }
      }
    }

    if (kIsDebugBuild) {
      // Verify that we only reach marked objects from the image space.
      ReaderMutexLock mu(*GlobalSynchronization::heap_bitmap_lock_);
      mark_sweep.VerifyImageRoots();
      timings.AddSplit("VerifyImageRoots");
    }
    thread_list->ResumeAll();
    dirty_end = NanoTime();
    GlobalSynchronization::mutator_lock_->AssertNotHeld();

    {
      // TODO: this lock shouldn't be necessary (it's why we did the bitmap flip above).
      WriterMutexLock mu(*GlobalSynchronization::heap_bitmap_lock_);
      mark_sweep.Sweep(partial_gc);
      timings.AddSplit("Sweep");
    }

    cleared_references = mark_sweep.GetClearedReferences();
  }

  GrowForUtilization();
  timings.AddSplit("GrowForUtilization");

  EnqueueClearedReferences(&cleared_references);
  RequestHeapTrim();
  timings.AddSplit("Finish");

  if (VLOG_IS_ON(gc)) {
    uint64_t t1 = NanoTime();

    MutexLock mu(*statistics_lock_);
    // TODO: somehow make the specific GC implementation (here MarkSweep) responsible for logging.
    // Reason: For CMS sometimes initial_size < num_bytes_allocated_ results in overflow (3GB freed message).
    size_t bytes_freed = initial_size - num_bytes_allocated_;
    uint64_t duration_ns = t1 - t0;
    duration_ns -= duration_ns % 1000;

    // If the GC was slow, then print timings in the log.
    uint64_t pause_roots = (root_end - t0) / 1000 * 1000;
    uint64_t pause_dirty = (dirty_end - dirty_begin) / 1000 * 1000;
    if (pause_roots > MsToNs(5) || pause_dirty > MsToNs(5)) {
      LOG(INFO) << (partial_gc ? "Partial " : "")
                      << "GC freed " << PrettySize(bytes_freed) << ", " << GetPercentFree() << "% free, "
                      << PrettySize(num_bytes_allocated_) << "/" << PrettySize(GetTotalMemory()) << ", "
                      << "paused " << PrettyDuration(pause_roots) << "+" << PrettyDuration(pause_dirty)
                      << ", total " << PrettyDuration(duration_ns);
    }
  }
  Dbg::GcDidFinish();
  if (VLOG_IS_ON(heap)) {
    timings.Dump();
  }
}

bool Heap::WaitForConcurrentGcToComplete() {
  if (concurrent_gc_) {
    bool do_wait = false;
    uint64_t wait_start;
    {
      // Check if GC is running holding gc_complete_lock_.
      MutexLock mu(*gc_complete_lock_);
      if (is_gc_running_) {
        wait_start = NanoTime();
        do_wait = true;
      }
    }
    if (do_wait) {
      // We must wait, change thread state then sleep on gc_complete_cond_;
      ScopedThreadStateChange tsc(Thread::Current(), kWaitingForGcToComplete);
      {
        MutexLock mu(*gc_complete_lock_);
        while (is_gc_running_) {
          gc_complete_cond_->Wait(*gc_complete_lock_);
        }
      }
      uint64_t wait_time = NanoTime() - wait_start;
      if (wait_time > MsToNs(5)) {
        LOG(INFO) << "WaitForConcurrentGcToComplete blocked for " << PrettyDuration(wait_time);
      }
      return true;
    }
  }
  return false;
}

void Heap::DumpForSigQuit(std::ostream& os) {
  MutexLock mu(*statistics_lock_);
  os << "Heap: " << GetPercentFree() << "% free, "
     << PrettySize(num_bytes_allocated_) << "/" << PrettySize(GetTotalMemory())
     << "; " << num_objects_allocated_ << " objects\n";
}

size_t Heap::GetPercentFree() {
  size_t total = GetTotalMemory();
  return 100 - static_cast<size_t>(100.0f * static_cast<float>(num_bytes_allocated_) / total);
}

void Heap::SetIdealFootprint(size_t max_allowed_footprint) {
  AllocSpace* alloc_space = alloc_space_;
  // TODO: Behavior for multiple alloc spaces?
  size_t alloc_space_capacity = alloc_space->Capacity();
  if (max_allowed_footprint > alloc_space_capacity) {
    VLOG(gc) << "Clamp target GC heap from " << PrettySize(max_allowed_footprint)
             << " to " << PrettySize(alloc_space_capacity);
    max_allowed_footprint = alloc_space_capacity;
  }
  alloc_space->SetFootprintLimit(max_allowed_footprint);
}

// kHeapIdealFree is the ideal maximum free size, when we grow the heap for utilization.
static const size_t kHeapIdealFree = 2 * MB;
// kHeapMinFree guarantees that you always have at least 512 KB free, when you grow for utilization,
// regardless of target utilization ratio.
static const size_t kHeapMinFree = kHeapIdealFree / 4;

void Heap::GrowForUtilization() {
  size_t target_size;
  bool use_footprint_limit = false;
  {
    MutexLock mu(*statistics_lock_);
    // We know what our utilization is at this moment.
    // This doesn't actually resize any memory. It just lets the heap grow more when necessary.
    target_size = num_bytes_allocated_ / Heap::GetTargetHeapUtilization();

    if (target_size > num_bytes_allocated_ + kHeapIdealFree) {
      target_size = num_bytes_allocated_ + kHeapIdealFree;
    } else if (target_size < num_bytes_allocated_ + kHeapMinFree) {
      target_size = num_bytes_allocated_ + kHeapMinFree;
    }

    // Calculate when to perform the next ConcurrentGC.
    if (GetTotalMemory() - num_bytes_allocated_ < concurrent_min_free_) {
      // Not enough free memory to perform concurrent GC.
      concurrent_start_bytes_ = std::numeric_limits<size_t>::max();
    } else {
      // Compute below to avoid holding both the statistics and the alloc space lock
      use_footprint_limit = true;
    }
  }
  if (use_footprint_limit) {
    size_t foot_print_limit = alloc_space_->GetFootprintLimit();
    MutexLock mu(*statistics_lock_);
    concurrent_start_bytes_ = foot_print_limit - concurrent_start_size_;
  }
  SetIdealFootprint(target_size);
}

void Heap::ClearGrowthLimit() {
  WaitForConcurrentGcToComplete();
  alloc_space_->ClearGrowthLimit();
}

void Heap::SetReferenceOffsets(MemberOffset reference_referent_offset,
    MemberOffset reference_queue_offset,
    MemberOffset reference_queueNext_offset,
    MemberOffset reference_pendingNext_offset,
    MemberOffset finalizer_reference_zombie_offset) {
  reference_referent_offset_ = reference_referent_offset;
  reference_queue_offset_ = reference_queue_offset;
  reference_queueNext_offset_ = reference_queueNext_offset;
  reference_pendingNext_offset_ = reference_pendingNext_offset;
  finalizer_reference_zombie_offset_ = finalizer_reference_zombie_offset;
  CHECK_NE(reference_referent_offset_.Uint32Value(), 0U);
  CHECK_NE(reference_queue_offset_.Uint32Value(), 0U);
  CHECK_NE(reference_queueNext_offset_.Uint32Value(), 0U);
  CHECK_NE(reference_pendingNext_offset_.Uint32Value(), 0U);
  CHECK_NE(finalizer_reference_zombie_offset_.Uint32Value(), 0U);
}

Object* Heap::GetReferenceReferent(Object* reference) {
  DCHECK(reference != NULL);
  DCHECK_NE(reference_referent_offset_.Uint32Value(), 0U);
  return reference->GetFieldObject<Object*>(reference_referent_offset_, true);
}

void Heap::ClearReferenceReferent(Object* reference) {
  DCHECK(reference != NULL);
  DCHECK_NE(reference_referent_offset_.Uint32Value(), 0U);
  reference->SetFieldObject(reference_referent_offset_, NULL, true);
}

// Returns true if the reference object has not yet been enqueued.
bool Heap::IsEnqueuable(const Object* ref) {
  DCHECK(ref != NULL);
  const Object* queue = ref->GetFieldObject<Object*>(reference_queue_offset_, false);
  const Object* queue_next = ref->GetFieldObject<Object*>(reference_queueNext_offset_, false);
  return (queue != NULL) && (queue_next == NULL);
}

void Heap::EnqueueReference(Object* ref, Object** cleared_reference_list) {
  DCHECK(ref != NULL);
  CHECK(ref->GetFieldObject<Object*>(reference_queue_offset_, false) != NULL);
  CHECK(ref->GetFieldObject<Object*>(reference_queueNext_offset_, false) == NULL);
  EnqueuePendingReference(ref, cleared_reference_list);
}

void Heap::EnqueuePendingReference(Object* ref, Object** list) {
  DCHECK(ref != NULL);
  DCHECK(list != NULL);

  if (*list == NULL) {
    ref->SetFieldObject(reference_pendingNext_offset_, ref, false);
    *list = ref;
  } else {
    Object* head = (*list)->GetFieldObject<Object*>(reference_pendingNext_offset_, false);
    ref->SetFieldObject(reference_pendingNext_offset_, head, false);
    (*list)->SetFieldObject(reference_pendingNext_offset_, ref, false);
  }
}

Object* Heap::DequeuePendingReference(Object** list) {
  DCHECK(list != NULL);
  DCHECK(*list != NULL);
  Object* head = (*list)->GetFieldObject<Object*>(reference_pendingNext_offset_, false);
  Object* ref;
  if (*list == head) {
    ref = *list;
    *list = NULL;
  } else {
    Object* next = head->GetFieldObject<Object*>(reference_pendingNext_offset_, false);
    (*list)->SetFieldObject(reference_pendingNext_offset_, next, false);
    ref = head;
  }
  ref->SetFieldObject(reference_pendingNext_offset_, NULL, false);
  return ref;
}

void Heap::AddFinalizerReference(Thread* self, Object* object) {
  ScopedObjectAccess soa(self);
  JValue args[1];
  args[0].SetL(object);
  soa.DecodeMethod(WellKnownClasses::java_lang_ref_FinalizerReference_add)->Invoke(self,
                                                                                  NULL, args, NULL);
}

size_t Heap::GetBytesAllocated() const {
  MutexLock mu(*statistics_lock_);
  return num_bytes_allocated_;
}

size_t Heap::GetObjectsAllocated() const {
  MutexLock mu(*statistics_lock_);
  return num_objects_allocated_;
}

size_t Heap::GetConcurrentStartSize() const {
  MutexLock mu(*statistics_lock_);
  return concurrent_start_size_;
}

size_t Heap::GetConcurrentMinFree() const {
  MutexLock mu(*statistics_lock_);
  return concurrent_min_free_;
}

void Heap::EnqueueClearedReferences(Object** cleared) {
  DCHECK(cleared != NULL);
  if (*cleared != NULL) {
    ScopedObjectAccess soa(Thread::Current());
    JValue args[1];
    args[0].SetL(*cleared);
    soa.DecodeMethod(WellKnownClasses::java_lang_ref_ReferenceQueue_add)->Invoke(soa.Self(),
                                                                                 NULL, args, NULL);
    *cleared = NULL;
  }
}

void Heap::RequestConcurrentGC() {
  // Make sure that we can do a concurrent GC.
  if (requesting_gc_ ||
      !Runtime::Current()->IsFinishedStarting() ||
      Runtime::Current()->IsShuttingDown() ||
      !Runtime::Current()->IsConcurrentGcEnabled()) {
    return;
  }

  requesting_gc_ = true;
  JNIEnv* env = Thread::Current()->GetJniEnv();
  DCHECK(WellKnownClasses::java_lang_Daemons != NULL);
  DCHECK(WellKnownClasses::java_lang_Daemons_requestGC != NULL);
  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
                            WellKnownClasses::java_lang_Daemons_requestGC);
  CHECK(!env->ExceptionCheck());
  requesting_gc_ = false;
}

void Heap::ConcurrentGC() {
  if (Runtime::Current()->IsShuttingDown() || !concurrent_gc_) {
    return;
  }
  // TODO: We shouldn't need a WaitForConcurrentGcToComplete here since only
  //       concurrent GC resumes threads before the GC is completed and this function
  //       is only called within the GC daemon thread.
  if (!WaitForConcurrentGcToComplete()) {
    // Start a concurrent GC as one wasn't in progress
    ScopedThreadStateChange tsc(Thread::Current(), kWaitingPerformingGc);
    CollectGarbageInternal(have_zygote_space_, false);
  }
}

void Heap::Trim(AllocSpace* alloc_space) {
  WaitForConcurrentGcToComplete();
  alloc_space->Trim();
}

void Heap::RequestHeapTrim() {
  // We don't have a good measure of how worthwhile a trim might be. We can't use the live bitmap
  // because that only marks object heads, so a large array looks like lots of empty space. We
  // don't just call dlmalloc all the time, because the cost of an _attempted_ trim is proportional
  // to utilization (which is probably inversely proportional to how much benefit we can expect).
  // We could try mincore(2) but that's only a measure of how many pages we haven't given away,
  // not how much use we're making of those pages.
  uint64_t ms_time = NsToMs(NanoTime());
  {
    MutexLock mu(*statistics_lock_);
    float utilization = static_cast<float>(num_bytes_allocated_) / alloc_space_->Size();
    if ((utilization > 0.75f) || ((ms_time - last_trim_time_) < 2 * 1000)) {
      // Don't bother trimming the heap if it's more than 75% utilized, or if a
      // heap trim occurred in the last two seconds.
      return;
    }
  }
  if (!Runtime::Current()->IsFinishedStarting() || Runtime::Current()->IsShuttingDown()) {
    // Heap trimming isn't supported without a Java runtime or Daemons (such as at dex2oat time)
    // Also: we do not wish to start a heap trim if the runtime is shutting down.
    return;
  }
  last_trim_time_ = ms_time;
  JNIEnv* env = Thread::Current()->GetJniEnv();
  DCHECK(WellKnownClasses::java_lang_Daemons != NULL);
  DCHECK(WellKnownClasses::java_lang_Daemons_requestHeapTrim != NULL);
  env->CallStaticVoidMethod(WellKnownClasses::java_lang_Daemons,
                            WellKnownClasses::java_lang_Daemons_requestHeapTrim);
  CHECK(!env->ExceptionCheck());
}

}  // namespace art