summaryrefslogtreecommitdiff
path: root/runtime/oat/image.cc
blob: ae602ece05f19c75efc437615665f68c1efd2ca8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "image.h"

#include <lz4.h>
#include <lz4hc.h>
#include <sstream>
#include <sys/stat.h>
#include <zlib.h>

#include "android-base/stringprintf.h"

#include "base/bit_utils.h"
#include "base/length_prefixed_array.h"
#include "base/utils.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "mirror/object_array.h"

namespace art {

const uint8_t ImageHeader::kImageMagic[] = { 'a', 'r', 't', '\n' };
// Last change: Add DexCacheSection.
const uint8_t ImageHeader::kImageVersion[] = { '1', '0', '8', '\0' };

ImageHeader::ImageHeader(uint32_t image_reservation_size,
                         uint32_t component_count,
                         uint32_t image_begin,
                         uint32_t image_size,
                         ImageSection* sections,
                         uint32_t image_roots,
                         uint32_t oat_checksum,
                         uint32_t oat_file_begin,
                         uint32_t oat_data_begin,
                         uint32_t oat_data_end,
                         uint32_t oat_file_end,
                         uint32_t boot_image_begin,
                         uint32_t boot_image_size,
                         uint32_t boot_image_component_count,
                         uint32_t boot_image_checksum,
                         uint32_t pointer_size)
  : image_reservation_size_(image_reservation_size),
    component_count_(component_count),
    image_begin_(image_begin),
    image_size_(image_size),
    image_checksum_(0u),
    oat_checksum_(oat_checksum),
    oat_file_begin_(oat_file_begin),
    oat_data_begin_(oat_data_begin),
    oat_data_end_(oat_data_end),
    oat_file_end_(oat_file_end),
    boot_image_begin_(boot_image_begin),
    boot_image_size_(boot_image_size),
    boot_image_component_count_(boot_image_component_count),
    boot_image_checksum_(boot_image_checksum),
    image_roots_(image_roots),
    pointer_size_(pointer_size) {
  CHECK_EQ(image_begin, RoundUp(image_begin, kElfSegmentAlignment));
  if (oat_checksum != 0u) {
    CHECK_EQ(oat_file_begin, RoundUp(oat_file_begin, kElfSegmentAlignment));
    CHECK_EQ(oat_data_begin, RoundUp(oat_data_begin, kElfSegmentAlignment));
    CHECK_LT(image_roots, oat_file_begin);
    CHECK_LE(oat_file_begin, oat_data_begin);
    CHECK_LT(oat_data_begin, oat_data_end);
    CHECK_LE(oat_data_end, oat_file_end);
  }
  CHECK(ValidPointerSize(pointer_size_)) << pointer_size_;
  memcpy(magic_, kImageMagic, sizeof(kImageMagic));
  memcpy(version_, kImageVersion, sizeof(kImageVersion));
  std::copy_n(sections, kSectionCount, sections_);
}

void ImageHeader::RelocateImageReferences(int64_t delta) {
  // App Images can be relocated to a page aligned address.
  // Unlike with the Boot Image, for which the memory is reserved in advance of
  // loading and is aligned to kElfSegmentAlignment, the App Images can be mapped
  // without reserving memory i.e. via direct file mapping in which case the
  // memory range is aligned by the kernel and the only guarantee is that it is
  // aligned to the page sizes.
  //
  // NOTE: While this might be less than alignment required via information in
  //       the ELF header, it should be sufficient in practice as the only reason
  //       for the ELF segment alignment to be more than one page size is the
  //       compatibility of the ELF with system configurations that use larger
  //       page size.
  //
  //       Adding preliminary memory reservation would introduce certain overhead.
  //
  //       However, technically the alignment requirement isn't fulfilled and that
  //       might be worth addressing even if it adds certain overhead. This will have
  //       to be done in alignment with the dynamic linker's ELF loader as
  //       otherwise inconsistency would still be possible e.g. when using
  //       `dlopen`-like calls to load OAT files.
  CHECK_ALIGNED_PARAM(delta, gPageSize) << "relocation delta must be page aligned";
  oat_file_begin_ += delta;
  oat_data_begin_ += delta;
  oat_data_end_ += delta;
  oat_file_end_ += delta;
  image_begin_ += delta;
  image_roots_ += delta;
}

void ImageHeader::RelocateBootImageReferences(int64_t delta) {
  CHECK_ALIGNED(delta, kElfSegmentAlignment) << "relocation delta must be Elf segment aligned";
  DCHECK_EQ(boot_image_begin_ != 0u, boot_image_size_ != 0u);
  if (boot_image_begin_ != 0u) {
    boot_image_begin_ += delta;
  }
  for (size_t i = 0; i < kImageMethodsCount; ++i) {
    image_methods_[i] += delta;
  }
}

bool ImageHeader::IsAppImage() const {
  // Unlike boot image and boot image extensions which include address space for
  // oat files in their reservation size, app images are loaded separately from oat
  // files and their reservation size is the image size rounded up to Elf alignment.
  return image_reservation_size_ == RoundUp(image_size_, kElfSegmentAlignment);
}

uint32_t ImageHeader::GetImageSpaceCount() const {
  DCHECK(!IsAppImage());
  DCHECK_NE(component_count_, 0u);  // Must be the header for the first component.
  // For images compiled with --single-image, there is only one oat file. To detect
  // that, check whether the reservation ends at the end of the first oat file.
  return (image_begin_ + image_reservation_size_ == oat_file_end_) ? 1u : component_count_;
}

bool ImageHeader::IsValid() const {
  if (memcmp(magic_, kImageMagic, sizeof(kImageMagic)) != 0) {
    return false;
  }
  if (memcmp(version_, kImageVersion, sizeof(kImageVersion)) != 0) {
    return false;
  }
  if (!IsAligned<kElfSegmentAlignment>(image_reservation_size_)) {
    return false;
  }
  // Unsigned so wraparound is well defined.
  if (image_begin_ >= image_begin_ + image_size_) {
    return false;
  }
  if (oat_checksum_ != 0u) {
    if (oat_file_begin_ > oat_file_end_) {
      return false;
    }
    if (oat_data_begin_ > oat_data_end_) {
      return false;
    }
    if (oat_file_begin_ >= oat_data_begin_) {
      return false;
    }
  }
  return true;
}

const char* ImageHeader::GetMagic() const {
  CHECK(IsValid());
  return reinterpret_cast<const char*>(magic_);
}

ArtMethod* ImageHeader::GetImageMethod(ImageMethod index) const {
  CHECK_LT(static_cast<size_t>(index), kImageMethodsCount);
  return reinterpret_cast<ArtMethod*>(image_methods_[index]);
}

std::ostream& operator<<(std::ostream& os, const ImageSection& section) {
  return os << "size=" << section.Size() << " range=" << section.Offset() << "-" << section.End();
}

void ImageHeader::VisitObjects(ObjectVisitor* visitor,
                               uint8_t* base,
                               PointerSize pointer_size) const {
  DCHECK_EQ(pointer_size, GetPointerSize());
  const ImageSection& objects = GetObjectsSection();
  static const size_t kStartPos = RoundUp(sizeof(ImageHeader), kObjectAlignment);
  for (size_t pos = kStartPos; pos < objects.Size(); ) {
    mirror::Object* object = reinterpret_cast<mirror::Object*>(base + objects.Offset() + pos);
    visitor->Visit(object);
    pos += RoundUp(object->SizeOf(), kObjectAlignment);
  }
}

PointerSize ImageHeader::GetPointerSize() const {
  return ConvertToPointerSize(pointer_size_);
}

bool LZ4_decompress_safe_checked(const char* source,
                                 char* dest,
                                 int compressed_size,
                                 int max_decompressed_size,
                                 /*out*/ size_t* decompressed_size_checked,
                                 /*out*/ std::string* error_msg) {
  int decompressed_size = LZ4_decompress_safe(source, dest, compressed_size, max_decompressed_size);
  if (UNLIKELY(decompressed_size < 0)) {
    *error_msg = android::base::StringPrintf("LZ4_decompress_safe() returned negative size: %d",
                                             decompressed_size);
    return false;
  } else {
    *decompressed_size_checked = static_cast<size_t>(decompressed_size);
    return true;
  }
}

bool ImageHeader::Block::Decompress(uint8_t* out_ptr,
                                    const uint8_t* in_ptr,
                                    std::string* error_msg) const {
  switch (storage_mode_) {
    case kStorageModeUncompressed: {
      CHECK_EQ(image_size_, data_size_);
      memcpy(out_ptr + image_offset_, in_ptr + data_offset_, data_size_);
      break;
    }
    case kStorageModeLZ4:
    case kStorageModeLZ4HC: {
      // LZ4HC and LZ4 have same internal format, both use LZ4_decompress.
      size_t decompressed_size;
      bool ok = LZ4_decompress_safe_checked(
          reinterpret_cast<const char*>(in_ptr) + data_offset_,
          reinterpret_cast<char*>(out_ptr) + image_offset_,
          data_size_,
          image_size_,
          &decompressed_size,
          error_msg);
      if (!ok) {
        return false;
      }
      if (decompressed_size != image_size_) {
        if (error_msg != nullptr) {
          // Maybe some disk / memory corruption, just bail.
          *error_msg = (std::ostringstream() << "Decompressed size different than image size: "
                                             << decompressed_size << ", and " << image_size_).str();
        }
        return false;
      }
      break;
    }
    default: {
      if (error_msg != nullptr) {
        *error_msg = (std::ostringstream() << "Invalid image format " << storage_mode_).str();
      }
      return false;
    }
  }
  return true;
}

const char* ImageHeader::GetImageSectionName(ImageSections index) {
  switch (index) {
    case kSectionObjects: return "Objects";
    case kSectionArtFields: return "ArtFields";
    case kSectionArtMethods: return "ArtMethods";
    case kSectionRuntimeMethods: return "RuntimeMethods";
    case kSectionImTables: return "ImTables";
    case kSectionIMTConflictTables: return "IMTConflictTables";
    case kSectionInternedStrings: return "InternedStrings";
    case kSectionClassTable: return "ClassTable";
    case kSectionStringReferenceOffsets: return "StringReferenceOffsets";
    case kSectionDexCacheArrays: return "DexCacheArrays";
    case kSectionMetadata: return "Metadata";
    case kSectionImageBitmap: return "ImageBitmap";
    case kSectionCount: return nullptr;
  }
}

// Compress data from `source` into `storage`.
static bool CompressData(ArrayRef<const uint8_t> source,
                         ImageHeader::StorageMode image_storage_mode,
                         /*out*/ dchecked_vector<uint8_t>* storage) {
  const uint64_t compress_start_time = NanoTime();

  // Bound is same for both LZ4 and LZ4HC.
  storage->resize(LZ4_compressBound(source.size()));
  size_t data_size = 0;
  if (image_storage_mode == ImageHeader::kStorageModeLZ4) {
    data_size = LZ4_compress_default(
        reinterpret_cast<char*>(const_cast<uint8_t*>(source.data())),
        reinterpret_cast<char*>(storage->data()),
        source.size(),
        storage->size());
  } else {
    DCHECK_EQ(image_storage_mode, ImageHeader::kStorageModeLZ4HC);
    data_size = LZ4_compress_HC(
        reinterpret_cast<const char*>(const_cast<uint8_t*>(source.data())),
        reinterpret_cast<char*>(storage->data()),
        source.size(),
        storage->size(),
        LZ4HC_CLEVEL_MAX);
  }

  if (data_size == 0) {
    return false;
  }
  storage->resize(data_size);

  VLOG(image) << "Compressed from " << source.size() << " to " << storage->size() << " in "
              << PrettyDuration(NanoTime() - compress_start_time);
  if (kIsDebugBuild) {
    dchecked_vector<uint8_t> decompressed(source.size());
    size_t decompressed_size;
    std::string error_msg;
    bool ok = LZ4_decompress_safe_checked(
        reinterpret_cast<char*>(storage->data()),
        reinterpret_cast<char*>(decompressed.data()),
        storage->size(),
        decompressed.size(),
        &decompressed_size,
        &error_msg);
    if (!ok) {
      LOG(FATAL) << error_msg;
      UNREACHABLE();
    }
    CHECK_EQ(decompressed_size, decompressed.size());
    CHECK_EQ(memcmp(source.data(), decompressed.data(), source.size()), 0) << image_storage_mode;
  }
  return true;
}

bool ImageHeader::WriteData(const ImageFileGuard& image_file,
                            const uint8_t* data,
                            const uint8_t* bitmap_data,
                            ImageHeader::StorageMode image_storage_mode,
                            uint32_t max_image_block_size,
                            bool update_checksum,
                            std::string* error_msg) {
  const bool is_compressed = image_storage_mode != ImageHeader::kStorageModeUncompressed;
  dchecked_vector<std::pair<uint32_t, uint32_t>> block_sources;
  dchecked_vector<ImageHeader::Block> blocks;

  // Add a set of solid blocks such that no block is larger than the maximum size. A solid block
  // is a block that must be decompressed all at once.
  auto add_blocks = [&](uint32_t offset, uint32_t size) {
    while (size != 0u) {
      const uint32_t cur_size = std::min(size, max_image_block_size);
      block_sources.emplace_back(offset, cur_size);
      offset += cur_size;
      size -= cur_size;
    }
  };

  add_blocks(sizeof(ImageHeader), this->GetImageSize() - sizeof(ImageHeader));

  // Checksum of compressed image data and header.
  uint32_t image_checksum = 0u;
  if (update_checksum) {
    image_checksum = adler32(0L, Z_NULL, 0);
    image_checksum = adler32(image_checksum,
                             reinterpret_cast<const uint8_t*>(this),
                             sizeof(ImageHeader));
  }

  // Copy and compress blocks.
  uint32_t out_offset = sizeof(ImageHeader);
  for (const std::pair<uint32_t, uint32_t> block : block_sources) {
    ArrayRef<const uint8_t> raw_image_data(data + block.first, block.second);
    dchecked_vector<uint8_t> compressed_data;
    ArrayRef<const uint8_t> image_data;
    if (is_compressed) {
      if (!CompressData(raw_image_data, image_storage_mode, &compressed_data)) {
        *error_msg = "Error compressing data for " +
            image_file->GetPath() + ": " + std::string(strerror(errno));
        return false;
      }
      image_data = ArrayRef<const uint8_t>(compressed_data);
    } else {
      image_data = raw_image_data;
      // For uncompressed, preserve alignment since the image will be directly mapped.
      out_offset = block.first;
    }

    // Fill in the compressed location of the block.
    blocks.emplace_back(ImageHeader::Block(
        image_storage_mode,
        /*data_offset=*/ out_offset,
        /*data_size=*/ image_data.size(),
        /*image_offset=*/ block.first,
        /*image_size=*/ block.second));

    if (!image_file->PwriteFully(image_data.data(), image_data.size(), out_offset)) {
      *error_msg = "Failed to write image file data " +
          image_file->GetPath() + ": " + std::string(strerror(errno));
      return false;
    }
    out_offset += image_data.size();
    if (update_checksum) {
      image_checksum = adler32(image_checksum, image_data.data(), image_data.size());
    }
  }

  if (is_compressed) {
    // Align up since the compressed data is not necessarily aligned.
    out_offset = RoundUp(out_offset, alignof(ImageHeader::Block));
    CHECK(!blocks.empty());
    const size_t blocks_bytes = blocks.size() * sizeof(blocks[0]);
    if (!image_file->PwriteFully(&blocks[0], blocks_bytes, out_offset)) {
      *error_msg = "Failed to write image blocks " +
          image_file->GetPath() + ": " + std::string(strerror(errno));
      return false;
    }
    this->blocks_offset_ = out_offset;
    this->blocks_count_ = blocks.size();
    out_offset += blocks_bytes;
  }

  // Data size includes everything except the bitmap.
  this->data_size_ = out_offset - sizeof(ImageHeader);

  // Update and write the bitmap section. Note that the bitmap section is relative to the
  // possibly compressed image.
  ImageSection& bitmap_section = GetImageSection(ImageHeader::kSectionImageBitmap);
  // Align up since data size may be unaligned if the image is compressed.
  out_offset = RoundUp(out_offset, kElfSegmentAlignment);
  bitmap_section = ImageSection(out_offset, bitmap_section.Size());

  if (!image_file->PwriteFully(bitmap_data,
                               bitmap_section.Size(),
                               bitmap_section.Offset())) {
    *error_msg = "Failed to write image file bitmap " +
        image_file->GetPath() + ": " + std::string(strerror(errno));
    return false;
  }

  int err = image_file->Flush();
  if (err < 0) {
    *error_msg = "Failed to flush image file " + image_file->GetPath() + ": " + std::to_string(err);
    return false;
  }

  if (update_checksum) {
    // Calculate the image checksum of the remaining data.
    image_checksum = adler32(image_checksum,
                             reinterpret_cast<const uint8_t*>(bitmap_data),
                             bitmap_section.Size());
    this->SetImageChecksum(image_checksum);
  }

  if (VLOG_IS_ON(image)) {
    const size_t separately_written_section_size = bitmap_section.Size();
    const size_t total_uncompressed_size = image_size_ + separately_written_section_size;
    const size_t total_compressed_size = out_offset + separately_written_section_size;

    VLOG(compiler) << "UncompressedImageSize = " << total_uncompressed_size;
    if (total_uncompressed_size != total_compressed_size) {
      VLOG(compiler) << "CompressedImageSize = " << total_compressed_size;
    }
  }

  DCHECK_EQ(bitmap_section.End(), static_cast<size_t>(image_file->GetLength()))
      << "Bitmap should be at the end of the file";
  return true;
}

}  // namespace art