summaryrefslogtreecommitdiff
path: root/runtime/mirror/dex_cache-inl.h
blob: 29bf6a02407121230eeaa953c8b13bfb9f020359 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
/*
 * Copyright (C) 2013 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef ART_RUNTIME_MIRROR_DEX_CACHE_INL_H_
#define ART_RUNTIME_MIRROR_DEX_CACHE_INL_H_

#include "dex_cache.h"

#include "art_field-inl.h"
#include "art_method-inl.h"
#include "base/casts.h"
#include "base/enums.h"
#include "base/logging.h"
#include "gc_root.h"
#include "mirror/class.h"
#include "mirror/call_site.h"
#include "mirror/method_type.h"
#include "runtime.h"
#include "obj_ptr.h"

#include <atomic>

namespace art {
namespace mirror {

inline uint32_t DexCache::ClassSize(PointerSize pointer_size) {
  uint32_t vtable_entries = Object::kVTableLength + 5;
  return Class::ComputeClassSize(true, vtable_entries, 0, 0, 0, 0, 0, pointer_size);
}

inline uint32_t DexCache::StringSlotIndex(dex::StringIndex string_idx) {
  DCHECK_LT(string_idx.index_, GetDexFile()->NumStringIds());
  const uint32_t slot_idx = string_idx.index_ % kDexCacheStringCacheSize;
  DCHECK_LT(slot_idx, NumStrings());
  return slot_idx;
}

inline String* DexCache::GetResolvedString(dex::StringIndex string_idx) {
  return GetStrings()[StringSlotIndex(string_idx)].load(
      std::memory_order_relaxed).GetObjectForIndex(string_idx.index_);
}

inline void DexCache::SetResolvedString(dex::StringIndex string_idx, ObjPtr<String> resolved) {
  DCHECK(resolved != nullptr);
  GetStrings()[StringSlotIndex(string_idx)].store(
      StringDexCachePair(resolved, string_idx.index_), std::memory_order_relaxed);
  Runtime* const runtime = Runtime::Current();
  if (UNLIKELY(runtime->IsActiveTransaction())) {
    DCHECK(runtime->IsAotCompiler());
    runtime->RecordResolveString(this, string_idx);
  }
  // TODO: Fine-grained marking, so that we don't need to go through all arrays in full.
  runtime->GetHeap()->WriteBarrierEveryFieldOf(this);
}

inline void DexCache::ClearString(dex::StringIndex string_idx) {
  DCHECK(Runtime::Current()->IsAotCompiler());
  uint32_t slot_idx = StringSlotIndex(string_idx);
  StringDexCacheType* slot = &GetStrings()[slot_idx];
  // This is racy but should only be called from the transactional interpreter.
  if (slot->load(std::memory_order_relaxed).index == string_idx.index_) {
    StringDexCachePair cleared(nullptr, StringDexCachePair::InvalidIndexForSlot(slot_idx));
    slot->store(cleared, std::memory_order_relaxed);
  }
}

inline uint32_t DexCache::TypeSlotIndex(dex::TypeIndex type_idx) {
  DCHECK_LT(type_idx.index_, GetDexFile()->NumTypeIds());
  const uint32_t slot_idx = type_idx.index_ % kDexCacheTypeCacheSize;
  DCHECK_LT(slot_idx, NumResolvedTypes());
  return slot_idx;
}

inline Class* DexCache::GetResolvedType(dex::TypeIndex type_idx) {
  // It is theorized that a load acquire is not required since obtaining the resolved class will
  // always have an address dependency or a lock.
  return GetResolvedTypes()[TypeSlotIndex(type_idx)].load(
      std::memory_order_relaxed).GetObjectForIndex(type_idx.index_);
}

inline void DexCache::SetResolvedType(dex::TypeIndex type_idx, ObjPtr<Class> resolved) {
  DCHECK(resolved != nullptr);
  // TODO default transaction support.
  // Use a release store for SetResolvedType. This is done to prevent other threads from seeing a
  // class but not necessarily seeing the loaded members like the static fields array.
  // See b/32075261.
  GetResolvedTypes()[TypeSlotIndex(type_idx)].store(
      TypeDexCachePair(resolved, type_idx.index_), std::memory_order_release);
  // TODO: Fine-grained marking, so that we don't need to go through all arrays in full.
  Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(this);
}

inline void DexCache::ClearResolvedType(dex::TypeIndex type_idx) {
  DCHECK(Runtime::Current()->IsAotCompiler());
  uint32_t slot_idx = TypeSlotIndex(type_idx);
  TypeDexCacheType* slot = &GetResolvedTypes()[slot_idx];
  // This is racy but should only be called from the single-threaded ImageWriter and tests.
  if (slot->load(std::memory_order_relaxed).index == type_idx.index_) {
    TypeDexCachePair cleared(nullptr, TypeDexCachePair::InvalidIndexForSlot(slot_idx));
    slot->store(cleared, std::memory_order_relaxed);
  }
}

inline uint32_t DexCache::MethodTypeSlotIndex(uint32_t proto_idx) {
  DCHECK(Runtime::Current()->IsMethodHandlesEnabled());
  DCHECK_LT(proto_idx, GetDexFile()->NumProtoIds());
  const uint32_t slot_idx = proto_idx % kDexCacheMethodTypeCacheSize;
  DCHECK_LT(slot_idx, NumResolvedMethodTypes());
  return slot_idx;
}

inline MethodType* DexCache::GetResolvedMethodType(uint32_t proto_idx) {
  return GetResolvedMethodTypes()[MethodTypeSlotIndex(proto_idx)].load(
      std::memory_order_relaxed).GetObjectForIndex(proto_idx);
}

inline void DexCache::SetResolvedMethodType(uint32_t proto_idx, MethodType* resolved) {
  DCHECK(resolved != nullptr);
  GetResolvedMethodTypes()[MethodTypeSlotIndex(proto_idx)].store(
      MethodTypeDexCachePair(resolved, proto_idx), std::memory_order_relaxed);
  // TODO: Fine-grained marking, so that we don't need to go through all arrays in full.
  Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(this);
}

inline CallSite* DexCache::GetResolvedCallSite(uint32_t call_site_idx) {
  DCHECK(Runtime::Current()->IsMethodHandlesEnabled());
  DCHECK_LT(call_site_idx, GetDexFile()->NumCallSiteIds());
  GcRoot<mirror::CallSite>& target = GetResolvedCallSites()[call_site_idx];
  Atomic<GcRoot<mirror::CallSite>>& ref =
      reinterpret_cast<Atomic<GcRoot<mirror::CallSite>>&>(target);
  return ref.LoadSequentiallyConsistent().Read();
}

inline CallSite* DexCache::SetResolvedCallSite(uint32_t call_site_idx, CallSite* call_site) {
  DCHECK(Runtime::Current()->IsMethodHandlesEnabled());
  DCHECK_LT(call_site_idx, GetDexFile()->NumCallSiteIds());

  GcRoot<mirror::CallSite> null_call_site(nullptr);
  GcRoot<mirror::CallSite> candidate(call_site);
  GcRoot<mirror::CallSite>& target = GetResolvedCallSites()[call_site_idx];

  // The first assignment for a given call site wins.
  Atomic<GcRoot<mirror::CallSite>>& ref =
      reinterpret_cast<Atomic<GcRoot<mirror::CallSite>>&>(target);
  if (ref.CompareExchangeStrongSequentiallyConsistent(null_call_site, candidate)) {
    // TODO: Fine-grained marking, so that we don't need to go through all arrays in full.
    Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(this);
    return call_site;
  } else {
    return target.Read();
  }
}

inline ArtField* DexCache::GetResolvedField(uint32_t field_idx, PointerSize ptr_size) {
  DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), ptr_size);
  DCHECK_LT(field_idx, NumResolvedFields());  // NOTE: Unchecked, i.e. not throwing AIOOB.
  ArtField* field = GetElementPtrSize(GetResolvedFields(), field_idx, ptr_size);
  if (field == nullptr || field->GetDeclaringClass()->IsErroneous()) {
    return nullptr;
  }
  return field;
}

inline void DexCache::SetResolvedField(uint32_t field_idx, ArtField* field, PointerSize ptr_size) {
  DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), ptr_size);
  DCHECK_LT(field_idx, NumResolvedFields());  // NOTE: Unchecked, i.e. not throwing AIOOB.
  SetElementPtrSize(GetResolvedFields(), field_idx, field, ptr_size);
}

inline ArtMethod* DexCache::GetResolvedMethod(uint32_t method_idx, PointerSize ptr_size) {
  DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), ptr_size);
  DCHECK_LT(method_idx, NumResolvedMethods());  // NOTE: Unchecked, i.e. not throwing AIOOB.
  ArtMethod* method = GetElementPtrSize<ArtMethod*>(GetResolvedMethods(), method_idx, ptr_size);
  // Hide resolution trampoline methods from the caller
  if (method != nullptr && method->IsRuntimeMethod()) {
    DCHECK_EQ(method, Runtime::Current()->GetResolutionMethod());
    return nullptr;
  }
  return method;
}

inline void DexCache::SetResolvedMethod(uint32_t method_idx,
                                        ArtMethod* method,
                                        PointerSize ptr_size) {
  DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), ptr_size);
  DCHECK_LT(method_idx, NumResolvedMethods());  // NOTE: Unchecked, i.e. not throwing AIOOB.
  SetElementPtrSize(GetResolvedMethods(), method_idx, method, ptr_size);
}

template <typename PtrType>
inline PtrType DexCache::GetElementPtrSize(PtrType* ptr_array, size_t idx, PointerSize ptr_size) {
  if (ptr_size == PointerSize::k64) {
    uint64_t element = reinterpret_cast<const uint64_t*>(ptr_array)[idx];
    return reinterpret_cast<PtrType>(dchecked_integral_cast<uintptr_t>(element));
  } else {
    uint32_t element = reinterpret_cast<const uint32_t*>(ptr_array)[idx];
    return reinterpret_cast<PtrType>(dchecked_integral_cast<uintptr_t>(element));
  }
}

template <typename PtrType>
inline void DexCache::SetElementPtrSize(PtrType* ptr_array,
                                        size_t idx,
                                        PtrType ptr,
                                        PointerSize ptr_size) {
  if (ptr_size == PointerSize::k64) {
    reinterpret_cast<uint64_t*>(ptr_array)[idx] =
        dchecked_integral_cast<uint64_t>(reinterpret_cast<uintptr_t>(ptr));
  } else {
    reinterpret_cast<uint32_t*>(ptr_array)[idx] =
        dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(ptr));
  }
}

template <typename T,
          ReadBarrierOption kReadBarrierOption,
          typename Visitor>
inline void VisitDexCachePairs(std::atomic<DexCachePair<T>>* pairs,
                               size_t num_pairs,
                               const Visitor& visitor)
    REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
  for (size_t i = 0; i < num_pairs; ++i) {
    DexCachePair<T> source = pairs[i].load(std::memory_order_relaxed);
    // NOTE: We need the "template" keyword here to avoid a compilation
    // failure. GcRoot<T> is a template argument-dependent type and we need to
    // tell the compiler to treat "Read" as a template rather than a field or
    // function. Otherwise, on encountering the "<" token, the compiler would
    // treat "Read" as a field.
    T* const before = source.object.template Read<kReadBarrierOption>();
    visitor.VisitRootIfNonNull(source.object.AddressWithoutBarrier());
    if (source.object.template Read<kReadBarrierOption>() != before) {
      pairs[i].store(source, std::memory_order_relaxed);
    }
  }
}

template <bool kVisitNativeRoots,
          VerifyObjectFlags kVerifyFlags,
          ReadBarrierOption kReadBarrierOption,
          typename Visitor>
inline void DexCache::VisitReferences(ObjPtr<Class> klass, const Visitor& visitor) {
  // Visit instance fields first.
  VisitInstanceFieldsReferences<kVerifyFlags, kReadBarrierOption>(klass, visitor);
  // Visit arrays after.
  if (kVisitNativeRoots) {
    VisitDexCachePairs<String, kReadBarrierOption, Visitor>(
        GetStrings(), NumStrings(), visitor);

    VisitDexCachePairs<Class, kReadBarrierOption, Visitor>(
        GetResolvedTypes(), NumResolvedTypes(), visitor);

    VisitDexCachePairs<MethodType, kReadBarrierOption, Visitor>(
        GetResolvedMethodTypes(), NumResolvedMethodTypes(), visitor);

    GcRoot<mirror::CallSite>* resolved_call_sites = GetResolvedCallSites();
    for (size_t i = 0, num_call_sites = NumResolvedCallSites(); i != num_call_sites; ++i) {
      visitor.VisitRootIfNonNull(resolved_call_sites[i].AddressWithoutBarrier());
    }
  }
}

template <ReadBarrierOption kReadBarrierOption, typename Visitor>
inline void DexCache::FixupStrings(StringDexCacheType* dest, const Visitor& visitor) {
  StringDexCacheType* src = GetStrings();
  for (size_t i = 0, count = NumStrings(); i < count; ++i) {
    StringDexCachePair source = src[i].load(std::memory_order_relaxed);
    String* ptr = source.object.Read<kReadBarrierOption>();
    String* new_source = visitor(ptr);
    source.object = GcRoot<String>(new_source);
    dest[i].store(source, std::memory_order_relaxed);
  }
}

template <ReadBarrierOption kReadBarrierOption, typename Visitor>
inline void DexCache::FixupResolvedTypes(TypeDexCacheType* dest, const Visitor& visitor) {
  TypeDexCacheType* src = GetResolvedTypes();
  for (size_t i = 0, count = NumResolvedTypes(); i < count; ++i) {
    TypeDexCachePair source = src[i].load(std::memory_order_relaxed);
    Class* ptr = source.object.Read<kReadBarrierOption>();
    Class* new_source = visitor(ptr);
    source.object = GcRoot<Class>(new_source);
    dest[i].store(source, std::memory_order_relaxed);
  }
}

template <ReadBarrierOption kReadBarrierOption, typename Visitor>
inline void DexCache::FixupResolvedMethodTypes(MethodTypeDexCacheType* dest,
                                               const Visitor& visitor) {
  MethodTypeDexCacheType* src = GetResolvedMethodTypes();
  for (size_t i = 0, count = NumResolvedMethodTypes(); i < count; ++i) {
    MethodTypeDexCachePair source = src[i].load(std::memory_order_relaxed);
    MethodType* ptr = source.object.Read<kReadBarrierOption>();
    MethodType* new_source = visitor(ptr);
    source.object = GcRoot<MethodType>(new_source);
    dest[i].store(source, std::memory_order_relaxed);
  }
}

template <ReadBarrierOption kReadBarrierOption, typename Visitor>
inline void DexCache::FixupResolvedCallSites(GcRoot<mirror::CallSite>* dest,
                                             const Visitor& visitor) {
  GcRoot<mirror::CallSite>* src = GetResolvedCallSites();
  for (size_t i = 0, count = NumResolvedCallSites(); i < count; ++i) {
    mirror::CallSite* source = src[i].Read<kReadBarrierOption>();
    mirror::CallSite* new_source = visitor(source);
    dest[i] = GcRoot<mirror::CallSite>(new_source);
  }
}

}  // namespace mirror
}  // namespace art

#endif  // ART_RUNTIME_MIRROR_DEX_CACHE_INL_H_