summaryrefslogtreecommitdiff
path: root/runtime/interpreter/mterp/nterp.cc
blob: 64f04d6fde2c16489a9bfb81c55da4a35948a2da (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
/*
 * Copyright (C) 2019 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/*
 * Mterp entry point and support functions.
 */
#include "nterp.h"

#include "arch/instruction_set.h"
#include "base/quasi_atomic.h"
#include "class_linker-inl.h"
#include "dex/dex_instruction_utils.h"
#include "debugger.h"
#include "entrypoints/entrypoint_utils-inl.h"
#include "interpreter/interpreter_cache-inl.h"
#include "interpreter/interpreter_common.h"
#include "interpreter/shadow_frame-inl.h"
#include "mirror/string-alloc-inl.h"
#include "nterp_helpers.h"

namespace art HIDDEN {
namespace interpreter {

bool IsNterpSupported() {
  switch (kRuntimeISA) {
    case InstructionSet::kArm:
    case InstructionSet::kThumb2:
    case InstructionSet::kArm64:
      return kReserveMarkingRegister && !kUseTableLookupReadBarrier;
    case InstructionSet::kRiscv64:
      return true;
    case InstructionSet::kX86:
    case InstructionSet::kX86_64:
      return !kUseTableLookupReadBarrier;
    default:
      return false;
  }
}

bool CanRuntimeUseNterp() REQUIRES_SHARED(Locks::mutator_lock_) {
  Runtime* runtime = Runtime::Current();
  instrumentation::Instrumentation* instr = runtime->GetInstrumentation();
  // If the runtime is interpreter only, we currently don't use nterp as some
  // parts of the runtime (like instrumentation) make assumption on an
  // interpreter-only runtime to always be in a switch-like interpreter.
  return IsNterpSupported() && !runtime->IsJavaDebuggable() && !instr->EntryExitStubsInstalled() &&
         !instr->InterpretOnly() && !runtime->IsAotCompiler() &&
         !instr->NeedsSlowInterpreterForListeners() &&
         // An async exception has been thrown. We need to go to the switch interpreter. nterp
         // doesn't know how to deal with these so we could end up never dealing with it if we are
         // in an infinite loop.
         !runtime->AreAsyncExceptionsThrown() &&
         (runtime->GetJit() == nullptr || !runtime->GetJit()->JitAtFirstUse());
}

// The entrypoint for nterp, which ArtMethods can directly point to.
extern "C" void ExecuteNterpImpl() REQUIRES_SHARED(Locks::mutator_lock_);
extern "C" void EndExecuteNterpImpl() REQUIRES_SHARED(Locks::mutator_lock_);

const void* GetNterpEntryPoint() {
  return reinterpret_cast<const void*>(interpreter::ExecuteNterpImpl);
}

ArrayRef<const uint8_t> NterpImpl() {
  const uint8_t* entry_point = reinterpret_cast<const uint8_t*>(ExecuteNterpImpl);
  size_t size = reinterpret_cast<const uint8_t*>(EndExecuteNterpImpl) - entry_point;
  const uint8_t* code = reinterpret_cast<const uint8_t*>(EntryPointToCodePointer(entry_point));
  return ArrayRef<const uint8_t>(code, size);
}

// Another entrypoint, which does a clinit check at entry.
extern "C" void ExecuteNterpWithClinitImpl() REQUIRES_SHARED(Locks::mutator_lock_);
extern "C" void EndExecuteNterpWithClinitImpl() REQUIRES_SHARED(Locks::mutator_lock_);

const void* GetNterpWithClinitEntryPoint() {
  return reinterpret_cast<const void*>(interpreter::ExecuteNterpWithClinitImpl);
}

ArrayRef<const uint8_t> NterpWithClinitImpl() {
  const uint8_t* entry_point = reinterpret_cast<const uint8_t*>(ExecuteNterpWithClinitImpl);
  size_t size = reinterpret_cast<const uint8_t*>(EndExecuteNterpWithClinitImpl) - entry_point;
  const uint8_t* code = reinterpret_cast<const uint8_t*>(EntryPointToCodePointer(entry_point));
  return ArrayRef<const uint8_t>(code, size);
}

/*
 * Verify some constants used by the nterp interpreter.
 */
void CheckNterpAsmConstants() {
  /*
   * If we're using computed goto instruction transitions, make sure
   * none of the handlers overflows the byte limit.  This won't tell
   * which one did, but if any one is too big the total size will
   * overflow.
   */
  const int width = kNterpHandlerSize;
  ptrdiff_t interp_size = reinterpret_cast<uintptr_t>(artNterpAsmInstructionEnd) -
                          reinterpret_cast<uintptr_t>(artNterpAsmInstructionStart);
  if ((interp_size == 0) || (interp_size != (art::kNumPackedOpcodes * width))) {
    LOG(FATAL) << "ERROR: unexpected asm interp size " << interp_size
               << "(did an instruction handler exceed " << width << " bytes?)";
  }
}

inline void UpdateHotness(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) {
  // The hotness we will add to a method when we perform a
  // field/method/class/string lookup.
  bool increase_hotness_for_ui = Runtime::Current()->InJankPerceptibleProcessState() &&
       Thread::Current()->IsJitSensitiveThread();
  method->UpdateCounter(increase_hotness_for_ui ? 0x6ff : 0xf);
}

template<typename T>
inline void UpdateCache(Thread* self, const uint16_t* dex_pc_ptr, T value) {
  self->GetInterpreterCache()->Set(self, dex_pc_ptr, value);
}

template<typename T>
inline void UpdateCache(Thread* self, const uint16_t* dex_pc_ptr, T* value) {
  UpdateCache(self, dex_pc_ptr, reinterpret_cast<size_t>(value));
}

#ifdef __arm__

extern "C" void NterpStoreArm32Fprs(const char* shorty,
                                    uint32_t* registers,
                                    uint32_t* stack_args,
                                    const uint32_t* fprs) {
  // Note `shorty` has already the returned type removed.
  ScopedAssertNoThreadSuspension sants("In nterp");
  uint32_t arg_index = 0;
  uint32_t fpr_double_index = 0;
  uint32_t fpr_index = 0;
  for (uint32_t shorty_index = 0; shorty[shorty_index] != '\0'; ++shorty_index) {
    char arg_type = shorty[shorty_index];
    switch (arg_type) {
      case 'D': {
        // Double should not overlap with float.
        fpr_double_index = std::max(fpr_double_index, RoundUp(fpr_index, 2));
        if (fpr_double_index < 16) {
          registers[arg_index] = fprs[fpr_double_index++];
          registers[arg_index + 1] = fprs[fpr_double_index++];
        } else {
          registers[arg_index] = stack_args[arg_index];
          registers[arg_index + 1] = stack_args[arg_index + 1];
        }
        arg_index += 2;
        break;
      }
      case 'F': {
        if (fpr_index % 2 == 0) {
          fpr_index = std::max(fpr_double_index, fpr_index);
        }
        if (fpr_index < 16) {
          registers[arg_index] = fprs[fpr_index++];
        } else {
          registers[arg_index] = stack_args[arg_index];
        }
        arg_index++;
        break;
      }
      case 'J': {
        arg_index += 2;
        break;
      }
      default: {
        arg_index++;
        break;
      }
    }
  }
}

extern "C" void NterpSetupArm32Fprs(const char* shorty,
                                    uint32_t dex_register,
                                    uint32_t stack_index,
                                    uint32_t* fprs,
                                    uint32_t* registers,
                                    uint32_t* stack_args) {
  // Note `shorty` has already the returned type removed.
  ScopedAssertNoThreadSuspension sants("In nterp");
  uint32_t fpr_double_index = 0;
  uint32_t fpr_index = 0;
  for (uint32_t shorty_index = 0; shorty[shorty_index] != '\0'; ++shorty_index) {
    char arg_type = shorty[shorty_index];
    switch (arg_type) {
      case 'D': {
        // Double should not overlap with float.
        fpr_double_index = std::max(fpr_double_index, RoundUp(fpr_index, 2));
        if (fpr_double_index < 16) {
          fprs[fpr_double_index++] = registers[dex_register++];
          fprs[fpr_double_index++] = registers[dex_register++];
          stack_index += 2;
        } else {
          stack_args[stack_index++] = registers[dex_register++];
          stack_args[stack_index++] = registers[dex_register++];
        }
        break;
      }
      case 'F': {
        if (fpr_index % 2 == 0) {
          fpr_index = std::max(fpr_double_index, fpr_index);
        }
        if (fpr_index < 16) {
          fprs[fpr_index++] = registers[dex_register++];
          stack_index++;
        } else {
          stack_args[stack_index++] = registers[dex_register++];
        }
        break;
      }
      case 'J': {
        stack_index += 2;
        dex_register += 2;
        break;
      }
      default: {
        stack_index++;
        dex_register++;
        break;
      }
    }
  }
}

#endif

extern "C" const dex::CodeItem* NterpGetCodeItem(ArtMethod* method)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  ScopedAssertNoThreadSuspension sants("In nterp");
  return method->GetCodeItem();
}

extern "C" const char* NterpGetShorty(ArtMethod* method)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  ScopedAssertNoThreadSuspension sants("In nterp");
  return method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetShorty();
}

extern "C" const char* NterpGetShortyFromMethodId(ArtMethod* caller, uint32_t method_index)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  ScopedAssertNoThreadSuspension sants("In nterp");
  return caller->GetDexFile()->GetMethodShorty(method_index);
}

extern "C" const char* NterpGetShortyFromInvokePolymorphic(ArtMethod* caller, uint16_t* dex_pc_ptr)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  ScopedAssertNoThreadSuspension sants("In nterp");
  const Instruction* inst = Instruction::At(dex_pc_ptr);
  dex::ProtoIndex proto_idx(inst->Opcode() == Instruction::INVOKE_POLYMORPHIC
      ? inst->VRegH_45cc()
      : inst->VRegH_4rcc());
  return caller->GetDexFile()->GetShorty(proto_idx);
}

extern "C" const char* NterpGetShortyFromInvokeCustom(ArtMethod* caller, uint16_t* dex_pc_ptr)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  ScopedAssertNoThreadSuspension sants("In nterp");
  const Instruction* inst = Instruction::At(dex_pc_ptr);
  uint16_t call_site_index = (inst->Opcode() == Instruction::INVOKE_CUSTOM
      ? inst->VRegB_35c()
      : inst->VRegB_3rc());
  const DexFile* dex_file = caller->GetDexFile();
  dex::ProtoIndex proto_idx = dex_file->GetProtoIndexForCallSite(call_site_index);
  return dex_file->GetShorty(proto_idx);
}

static constexpr uint8_t kInvalidInvokeType = 255u;
static_assert(static_cast<uint8_t>(kMaxInvokeType) < kInvalidInvokeType);

static constexpr uint8_t GetOpcodeInvokeType(uint8_t opcode) {
  switch (opcode) {
    case Instruction::INVOKE_DIRECT:
    case Instruction::INVOKE_DIRECT_RANGE:
      return static_cast<uint8_t>(kDirect);
    case Instruction::INVOKE_INTERFACE:
    case Instruction::INVOKE_INTERFACE_RANGE:
      return static_cast<uint8_t>(kInterface);
    case Instruction::INVOKE_STATIC:
    case Instruction::INVOKE_STATIC_RANGE:
      return static_cast<uint8_t>(kStatic);
    case Instruction::INVOKE_SUPER:
    case Instruction::INVOKE_SUPER_RANGE:
      return static_cast<uint8_t>(kSuper);
    case Instruction::INVOKE_VIRTUAL:
    case Instruction::INVOKE_VIRTUAL_RANGE:
      return static_cast<uint8_t>(kVirtual);

    default:
      return kInvalidInvokeType;
  }
}

static constexpr std::array<uint8_t, 256u> GenerateOpcodeInvokeTypes() {
  std::array<uint8_t, 256u> opcode_invoke_types{};
  for (size_t opcode = 0u; opcode != opcode_invoke_types.size(); ++opcode) {
    opcode_invoke_types[opcode] = GetOpcodeInvokeType(opcode);
  }
  return opcode_invoke_types;
}

static constexpr std::array<uint8_t, 256u> kOpcodeInvokeTypes = GenerateOpcodeInvokeTypes();

FLATTEN
extern "C" size_t NterpGetMethod(Thread* self, ArtMethod* caller, const uint16_t* dex_pc_ptr)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  UpdateHotness(caller);
  const Instruction* inst = Instruction::At(dex_pc_ptr);
  Instruction::Code opcode = inst->Opcode();
  DCHECK(IsUint<8>(static_cast<std::underlying_type_t<Instruction::Code>>(opcode)));
  uint8_t raw_invoke_type = kOpcodeInvokeTypes[opcode];
  DCHECK_LE(raw_invoke_type, kMaxInvokeType);
  InvokeType invoke_type = static_cast<InvokeType>(raw_invoke_type);

  // In release mode, this is just a simple load.
  // In debug mode, this checks that we're using the correct instruction format.
  uint16_t method_index =
      (opcode >= Instruction::INVOKE_VIRTUAL_RANGE) ? inst->VRegB_3rc() : inst->VRegB_35c();

  ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
  ArtMethod* resolved_method = caller->SkipAccessChecks()
      ? class_linker->ResolveMethod<ClassLinker::ResolveMode::kNoChecks>(
            self, method_index, caller, invoke_type)
      : class_linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
            self, method_index, caller, invoke_type);
  if (resolved_method == nullptr) {
    DCHECK(self->IsExceptionPending());
    return 0;
  }

  if (invoke_type == kSuper) {
    resolved_method = caller->SkipAccessChecks()
        ? FindSuperMethodToCall</*access_check=*/false>(method_index, resolved_method, caller, self)
        : FindSuperMethodToCall</*access_check=*/true>(method_index, resolved_method, caller, self);
    if (resolved_method == nullptr) {
      DCHECK(self->IsExceptionPending());
      return 0;
    }
  }

  if (invoke_type == kInterface) {
    size_t result = 0u;
    if (resolved_method->GetDeclaringClass()->IsObjectClass()) {
      // Set the low bit to notify the interpreter it should do a vtable call.
      DCHECK_LT(resolved_method->GetMethodIndex(), 0x10000);
      result = (resolved_method->GetMethodIndex() << 16) | 1U;
    } else {
      DCHECK(resolved_method->GetDeclaringClass()->IsInterface());
      DCHECK(!resolved_method->IsCopied());
      if (!resolved_method->IsAbstract()) {
        // Set the second bit to notify the interpreter this is a default
        // method.
        result = reinterpret_cast<size_t>(resolved_method) | 2U;
      } else {
        result = reinterpret_cast<size_t>(resolved_method);
      }
    }
    UpdateCache(self, dex_pc_ptr, result);
    return result;
  } else if (resolved_method->IsStringConstructor()) {
    CHECK_NE(invoke_type, kSuper);
    resolved_method = WellKnownClasses::StringInitToStringFactory(resolved_method);
    // Or the result with 1 to notify to nterp this is a string init method. We
    // also don't cache the result as we don't want nterp to have its fast path always
    // check for it, and we expect a lot more regular calls than string init
    // calls.
    return reinterpret_cast<size_t>(resolved_method) | 1;
  } else if (invoke_type == kVirtual) {
    UpdateCache(self, dex_pc_ptr, resolved_method->GetMethodIndex());
    return resolved_method->GetMethodIndex();
  } else {
    UpdateCache(self, dex_pc_ptr, resolved_method);
    return reinterpret_cast<size_t>(resolved_method);
  }
}

extern "C" size_t NterpGetStaticField(Thread* self,
                                      ArtMethod* caller,
                                      const uint16_t* dex_pc_ptr,
                                      size_t resolve_field_type)  // Resolve if not zero
    REQUIRES_SHARED(Locks::mutator_lock_) {
  UpdateHotness(caller);
  const Instruction* inst = Instruction::At(dex_pc_ptr);
  uint16_t field_index = inst->VRegB_21c();
  ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
  Instruction::Code opcode = inst->Opcode();
  ArtField* resolved_field = ResolveFieldWithAccessChecks(
      self,
      class_linker,
      field_index,
      caller,
      /*is_static=*/ true,
      /*is_put=*/ IsInstructionSPut(opcode),
      resolve_field_type);

  if (resolved_field == nullptr) {
    DCHECK(self->IsExceptionPending());
    return 0;
  }
  if (UNLIKELY(!resolved_field->GetDeclaringClass()->IsVisiblyInitialized())) {
    StackHandleScope<1> hs(self);
    Handle<mirror::Class> h_class(hs.NewHandle(resolved_field->GetDeclaringClass()));
    if (UNLIKELY(!class_linker->EnsureInitialized(
                      self, h_class, /*can_init_fields=*/ true, /*can_init_parents=*/ true))) {
      DCHECK(self->IsExceptionPending());
      return 0;
    }
    DCHECK(h_class->IsInitializing());
  }
  if (resolved_field->IsVolatile()) {
    // Or the result with 1 to notify to nterp this is a volatile field. We
    // also don't cache the result as we don't want nterp to have its fast path always
    // check for it.
    return reinterpret_cast<size_t>(resolved_field) | 1;
  } else {
    // For sput-object, try to resolve the field type even if we were not requested to.
    // Only if the field type is successfully resolved can we update the cache. If we
    // fail to resolve the type, we clear the exception to keep interpreter
    // semantics of not throwing when null is stored.
    if (opcode == Instruction::SPUT_OBJECT &&
        resolve_field_type == 0 &&
        resolved_field->ResolveType() == nullptr) {
      DCHECK(self->IsExceptionPending());
      self->ClearException();
    } else {
      UpdateCache(self, dex_pc_ptr, resolved_field);
    }
    return reinterpret_cast<size_t>(resolved_field);
  }
}

extern "C" uint32_t NterpGetInstanceFieldOffset(Thread* self,
                                                ArtMethod* caller,
                                                const uint16_t* dex_pc_ptr,
                                                size_t resolve_field_type)  // Resolve if not zero
    REQUIRES_SHARED(Locks::mutator_lock_) {
  UpdateHotness(caller);
  const Instruction* inst = Instruction::At(dex_pc_ptr);
  uint16_t field_index = inst->VRegC_22c();
  ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
  Instruction::Code opcode = inst->Opcode();
  ArtField* resolved_field = ResolveFieldWithAccessChecks(
      self,
      class_linker,
      field_index,
      caller,
      /*is_static=*/ false,
      /*is_put=*/ IsInstructionIPut(opcode),
      resolve_field_type);
  if (resolved_field == nullptr) {
    DCHECK(self->IsExceptionPending());
    return 0;
  }
  if (resolved_field->IsVolatile()) {
    // Don't cache for a volatile field, and return a negative offset as marker
    // of volatile.
    return -resolved_field->GetOffset().Uint32Value();
  }
  // For iput-object, try to resolve the field type even if we were not requested to.
  // Only if the field type is successfully resolved can we update the cache. If we
  // fail to resolve the type, we clear the exception to keep interpreter
  // semantics of not throwing when null is stored.
  if (opcode == Instruction::IPUT_OBJECT &&
      resolve_field_type == 0 &&
      resolved_field->ResolveType() == nullptr) {
    DCHECK(self->IsExceptionPending());
    self->ClearException();
  } else {
    UpdateCache(self, dex_pc_ptr, resolved_field->GetOffset().Uint32Value());
  }
  return resolved_field->GetOffset().Uint32Value();
}

extern "C" mirror::Object* NterpGetClass(Thread* self, ArtMethod* caller, uint16_t* dex_pc_ptr)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  UpdateHotness(caller);
  const Instruction* inst = Instruction::At(dex_pc_ptr);
  Instruction::Code opcode = inst->Opcode();
  DCHECK(opcode == Instruction::CHECK_CAST ||
         opcode == Instruction::INSTANCE_OF ||
         opcode == Instruction::CONST_CLASS ||
         opcode == Instruction::NEW_ARRAY);

  // In release mode, this is just a simple load.
  // In debug mode, this checks that we're using the correct instruction format.
  dex::TypeIndex index = dex::TypeIndex(
      (opcode == Instruction::CHECK_CAST || opcode == Instruction::CONST_CLASS)
          ? inst->VRegB_21c()
          : inst->VRegC_22c());

  ObjPtr<mirror::Class> c =
      ResolveVerifyAndClinit(index,
                             caller,
                             self,
                             /* can_run_clinit= */ false,
                             /* verify_access= */ !caller->SkipAccessChecks());
  if (UNLIKELY(c == nullptr)) {
    DCHECK(self->IsExceptionPending());
    return nullptr;
  }

  UpdateCache(self, dex_pc_ptr, c.Ptr());
  return c.Ptr();
}

extern "C" mirror::Object* NterpAllocateObject(Thread* self,
                                               ArtMethod* caller,
                                               uint16_t* dex_pc_ptr)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  UpdateHotness(caller);
  const Instruction* inst = Instruction::At(dex_pc_ptr);
  DCHECK_EQ(inst->Opcode(), Instruction::NEW_INSTANCE);
  dex::TypeIndex index = dex::TypeIndex(inst->VRegB_21c());
  ObjPtr<mirror::Class> c =
      ResolveVerifyAndClinit(index,
                             caller,
                             self,
                             /* can_run_clinit= */ false,
                             /* verify_access= */ !caller->SkipAccessChecks());
  if (UNLIKELY(c == nullptr)) {
    DCHECK(self->IsExceptionPending());
    return nullptr;
  }

  gc::AllocatorType allocator_type = Runtime::Current()->GetHeap()->GetCurrentAllocator();
  if (UNLIKELY(c->IsStringClass())) {
    // We don't cache the class for strings as we need to special case their
    // allocation.
    return mirror::String::AllocEmptyString(self, allocator_type).Ptr();
  } else {
    if (!c->IsFinalizable() && c->IsInstantiable()) {
      // Cache non-finalizable classes for next calls.
      UpdateCache(self, dex_pc_ptr, c.Ptr());
    }
    return AllocObjectFromCode(c, self, allocator_type).Ptr();
  }
}

extern "C" mirror::Object* NterpLoadObject(Thread* self, ArtMethod* caller, uint16_t* dex_pc_ptr)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  const Instruction* inst = Instruction::At(dex_pc_ptr);
  ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
  switch (inst->Opcode()) {
    case Instruction::CONST_STRING:
    case Instruction::CONST_STRING_JUMBO: {
      UpdateHotness(caller);
      dex::StringIndex string_index(
          (inst->Opcode() == Instruction::CONST_STRING)
              ? inst->VRegB_21c()
              : inst->VRegB_31c());
      ObjPtr<mirror::String> str = class_linker->ResolveString(string_index, caller);
      if (str == nullptr) {
        DCHECK(self->IsExceptionPending());
        return nullptr;
      }
      UpdateCache(self, dex_pc_ptr, str.Ptr());
      return str.Ptr();
    }
    case Instruction::CONST_METHOD_HANDLE: {
      // Don't cache: we don't expect this to be performance sensitive, and we
      // don't want the cache to conflict with a performance sensitive entry.
      return class_linker->ResolveMethodHandle(self, inst->VRegB_21c(), caller).Ptr();
    }
    case Instruction::CONST_METHOD_TYPE: {
      // Don't cache: we don't expect this to be performance sensitive, and we
      // don't want the cache to conflict with a performance sensitive entry.
      return class_linker->ResolveMethodType(
          self, dex::ProtoIndex(inst->VRegB_21c()), caller).Ptr();
    }
    default:
      LOG(FATAL) << "Unreachable";
  }
  return nullptr;
}

extern "C" void NterpUnimplemented() {
  LOG(FATAL) << "Unimplemented";
}

static mirror::Object* DoFilledNewArray(Thread* self,
                                        ArtMethod* caller,
                                        uint16_t* dex_pc_ptr,
                                        uint32_t* regs,
                                        bool is_range)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  const Instruction* inst = Instruction::At(dex_pc_ptr);
  if (kIsDebugBuild) {
    if (is_range) {
      DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY_RANGE);
    } else {
      DCHECK_EQ(inst->Opcode(), Instruction::FILLED_NEW_ARRAY);
    }
  }
  const int32_t length = is_range ? inst->VRegA_3rc() : inst->VRegA_35c();
  DCHECK_GE(length, 0);
  if (!is_range) {
    // Checks FILLED_NEW_ARRAY's length does not exceed 5 arguments.
    DCHECK_LE(length, 5);
  }
  uint16_t type_idx = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
  ObjPtr<mirror::Class> array_class =
      ResolveVerifyAndClinit(dex::TypeIndex(type_idx),
                             caller,
                             self,
                             /* can_run_clinit= */ true,
                             /* verify_access= */ !caller->SkipAccessChecks());
  if (UNLIKELY(array_class == nullptr)) {
    DCHECK(self->IsExceptionPending());
    return nullptr;
  }
  DCHECK(array_class->IsArrayClass());
  ObjPtr<mirror::Class> component_class = array_class->GetComponentType();
  const bool is_primitive_int_component = component_class->IsPrimitiveInt();
  if (UNLIKELY(component_class->IsPrimitive() && !is_primitive_int_component)) {
    if (component_class->IsPrimitiveLong() || component_class->IsPrimitiveDouble()) {
      ThrowRuntimeException("Bad filled array request for type %s",
                            component_class->PrettyDescriptor().c_str());
    } else {
      self->ThrowNewExceptionF(
          "Ljava/lang/InternalError;",
          "Found type %s; filled-new-array not implemented for anything but 'int'",
          component_class->PrettyDescriptor().c_str());
    }
    return nullptr;
  }
  ObjPtr<mirror::Object> new_array = mirror::Array::Alloc(
      self,
      array_class,
      length,
      array_class->GetComponentSizeShift(),
      Runtime::Current()->GetHeap()->GetCurrentAllocator());
  if (UNLIKELY(new_array == nullptr)) {
    self->AssertPendingOOMException();
    return nullptr;
  }
  uint32_t arg[Instruction::kMaxVarArgRegs];  // only used in filled-new-array.
  uint32_t vregC = 0;   // only used in filled-new-array-range.
  if (is_range) {
    vregC = inst->VRegC_3rc();
  } else {
    inst->GetVarArgs(arg);
  }
  for (int32_t i = 0; i < length; ++i) {
    size_t src_reg = is_range ? vregC + i : arg[i];
    if (is_primitive_int_component) {
      new_array->AsIntArray()->SetWithoutChecks</* kTransactionActive= */ false>(i, regs[src_reg]);
    } else {
      new_array->AsObjectArray<mirror::Object>()->SetWithoutChecks</* kTransactionActive= */ false>(
          i, reinterpret_cast<mirror::Object*>(regs[src_reg]));
    }
  }
  return new_array.Ptr();
}

extern "C" mirror::Object* NterpFilledNewArray(Thread* self,
                                               ArtMethod* caller,
                                               uint32_t* registers,
                                               uint16_t* dex_pc_ptr)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  return DoFilledNewArray(self, caller, dex_pc_ptr, registers, /* is_range= */ false);
}

extern "C" mirror::Object* NterpFilledNewArrayRange(Thread* self,
                                                    ArtMethod* caller,
                                                    uint32_t* registers,
                                                    uint16_t* dex_pc_ptr)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  return DoFilledNewArray(self, caller, dex_pc_ptr, registers, /* is_range= */ true);
}

extern "C" jit::OsrData* NterpHotMethod(ArtMethod* method, uint16_t* dex_pc_ptr, uint32_t* vregs)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  // It is important this method is not suspended because it can be called on
  // method entry and async deoptimization does not expect runtime methods other than the
  // suspend entrypoint before executing the first instruction of a Java
  // method.
  ScopedAssertNoThreadSuspension sants("In nterp");
  Runtime* runtime = Runtime::Current();
  if (method->IsMemorySharedMethod()) {
    DCHECK_EQ(Thread::Current()->GetSharedMethodHotness(), 0u);
    Thread::Current()->ResetSharedMethodHotness();
  } else {
    // Move the counter to the initial threshold in case we have to re-JIT it.
    method->ResetCounter(runtime->GetJITOptions()->GetWarmupThreshold());
    // Mark the method as warm for the profile saver.
    method->SetPreviouslyWarm();
  }
  jit::Jit* jit = runtime->GetJit();
  if (jit != nullptr && jit->UseJitCompilation()) {
    // Nterp passes null on entry where we don't want to OSR.
    if (dex_pc_ptr != nullptr) {
      // This could be a loop back edge, check if we can OSR.
      CodeItemInstructionAccessor accessor(method->DexInstructions());
      uint32_t dex_pc = dex_pc_ptr - accessor.Insns();
      jit::OsrData* osr_data = jit->PrepareForOsr(
          method->GetInterfaceMethodIfProxy(kRuntimePointerSize), dex_pc, vregs);
      if (osr_data != nullptr) {
        return osr_data;
      }
    }
    jit->MaybeEnqueueCompilation(method, Thread::Current());
  }
  return nullptr;
}

extern "C" ssize_t NterpDoPackedSwitch(const uint16_t* switchData, int32_t testVal)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  ScopedAssertNoThreadSuspension sants("In nterp");
  const int kInstrLen = 3;

  /*
   * Packed switch data format:
   *  ushort ident = 0x0100   magic value
   *  ushort size             number of entries in the table
   *  int first_key           first (and lowest) switch case value
   *  int targets[size]       branch targets, relative to switch opcode
   *
   * Total size is (4+size*2) 16-bit code units.
   */
  uint16_t signature = *switchData++;
  DCHECK_EQ(signature, static_cast<uint16_t>(art::Instruction::kPackedSwitchSignature));

  uint16_t size = *switchData++;

  int32_t firstKey = *switchData++;
  firstKey |= (*switchData++) << 16;

  int index = testVal - firstKey;
  if (index < 0 || index >= size) {
    return kInstrLen;
  }

  /*
   * The entries are guaranteed to be aligned on a 32-bit boundary;
   * we can treat them as a native int array.
   */
  const int32_t* entries = reinterpret_cast<const int32_t*>(switchData);
  return entries[index];
}

/*
 * Find the matching case.  Returns the offset to the handler instructions.
 *
 * Returns 3 if we don't find a match (it's the size of the sparse-switch
 * instruction).
 */
extern "C" ssize_t NterpDoSparseSwitch(const uint16_t* switchData, int32_t testVal)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  ScopedAssertNoThreadSuspension sants("In nterp");
  const int kInstrLen = 3;
  uint16_t size;
  const int32_t* keys;
  const int32_t* entries;

  /*
   * Sparse switch data format:
   *  ushort ident = 0x0200   magic value
   *  ushort size             number of entries in the table; > 0
   *  int keys[size]          keys, sorted low-to-high; 32-bit aligned
   *  int targets[size]       branch targets, relative to switch opcode
   *
   * Total size is (2+size*4) 16-bit code units.
   */

  uint16_t signature = *switchData++;
  DCHECK_EQ(signature, static_cast<uint16_t>(art::Instruction::kSparseSwitchSignature));

  size = *switchData++;

  /* The keys are guaranteed to be aligned on a 32-bit boundary;
   * we can treat them as a native int array.
   */
  keys = reinterpret_cast<const int32_t*>(switchData);

  /* The entries are guaranteed to be aligned on a 32-bit boundary;
   * we can treat them as a native int array.
   */
  entries = keys + size;

  /*
   * Binary-search through the array of keys, which are guaranteed to
   * be sorted low-to-high.
   */
  int lo = 0;
  int hi = size - 1;
  while (lo <= hi) {
    int mid = (lo + hi) >> 1;

    int32_t foundVal = keys[mid];
    if (testVal < foundVal) {
      hi = mid - 1;
    } else if (testVal > foundVal) {
      lo = mid + 1;
    } else {
      return entries[mid];
    }
  }
  return kInstrLen;
}

extern "C" void NterpFree(void* val) {
  free(val);
}

}  // namespace interpreter
}  // namespace art