summaryrefslogtreecommitdiff
path: root/runtime/interpreter/interpreter_common.cc
blob: 8c63a9e979b57aa3eb5c83bd097e26ca57003a62 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
/*
 * Copyright (C) 2012 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "interpreter_common.h"

#include <cmath>

#include "base/enums.h"
#include "debugger.h"
#include "entrypoints/runtime_asm_entrypoints.h"
#include "jit/jit.h"
#include "jvalue.h"
#include "method_handles.h"
#include "method_handles-inl.h"
#include "mirror/array-inl.h"
#include "mirror/class.h"
#include "mirror/emulated_stack_frame.h"
#include "mirror/method_handle_impl.h"
#include "reflection.h"
#include "reflection-inl.h"
#include "stack.h"
#include "unstarted_runtime.h"
#include "verifier/method_verifier.h"
#include "well_known_classes.h"

namespace art {
namespace interpreter {

void ThrowNullPointerExceptionFromInterpreter() {
  ThrowNullPointerExceptionFromDexPC();
}

template<Primitive::Type field_type>
static ALWAYS_INLINE void DoFieldGetCommon(Thread* self,
                                           const ShadowFrame& shadow_frame,
                                           ObjPtr<mirror::Object>& obj,
                                           ArtField* field,
                                           JValue* result)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  field->GetDeclaringClass()->AssertInitializedOrInitializingInThread(self);

  // Report this field access to instrumentation if needed.
  instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
  if (UNLIKELY(instrumentation->HasFieldReadListeners())) {
    StackHandleScope<1> hs(self);
    // Wrap in handle wrapper in case the listener does thread suspension.
    HandleWrapperObjPtr<mirror::Object> h(hs.NewHandleWrapper(&obj));
    ObjPtr<mirror::Object> this_object;
    if (!field->IsStatic()) {
      this_object = obj;
    }
    instrumentation->FieldReadEvent(self,
                                    this_object.Ptr(),
                                    shadow_frame.GetMethod(),
                                    shadow_frame.GetDexPC(),
                                    field);
  }

  switch (field_type) {
    case Primitive::kPrimBoolean:
      result->SetZ(field->GetBoolean(obj));
      break;
    case Primitive::kPrimByte:
      result->SetB(field->GetByte(obj));
      break;
    case Primitive::kPrimChar:
      result->SetC(field->GetChar(obj));
      break;
    case Primitive::kPrimShort:
      result->SetS(field->GetShort(obj));
      break;
    case Primitive::kPrimInt:
      result->SetI(field->GetInt(obj));
      break;
    case Primitive::kPrimLong:
      result->SetJ(field->GetLong(obj));
      break;
    case Primitive::kPrimNot:
      result->SetL(field->GetObject(obj));
      break;
    default:
      LOG(FATAL) << "Unreachable: " << field_type;
      UNREACHABLE();
  }
}

template<FindFieldType find_type, Primitive::Type field_type, bool do_access_check>
bool DoFieldGet(Thread* self, ShadowFrame& shadow_frame, const Instruction* inst,
                uint16_t inst_data) {
  const bool is_static = (find_type == StaticObjectRead) || (find_type == StaticPrimitiveRead);
  const uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
  ArtField* f =
      FindFieldFromCode<find_type, do_access_check>(field_idx, shadow_frame.GetMethod(), self,
                                                    Primitive::ComponentSize(field_type));
  if (UNLIKELY(f == nullptr)) {
    CHECK(self->IsExceptionPending());
    return false;
  }
  ObjPtr<mirror::Object> obj;
  if (is_static) {
    obj = f->GetDeclaringClass();
  } else {
    obj = shadow_frame.GetVRegReference(inst->VRegB_22c(inst_data));
    if (UNLIKELY(obj == nullptr)) {
      ThrowNullPointerExceptionForFieldAccess(f, true);
      return false;
    }
  }

  JValue result;
  DoFieldGetCommon<field_type>(self, shadow_frame, obj, f, &result);
  uint32_t vregA = is_static ? inst->VRegA_21c(inst_data) : inst->VRegA_22c(inst_data);
  switch (field_type) {
    case Primitive::kPrimBoolean:
      shadow_frame.SetVReg(vregA, result.GetZ());
      break;
    case Primitive::kPrimByte:
      shadow_frame.SetVReg(vregA, result.GetB());
      break;
    case Primitive::kPrimChar:
      shadow_frame.SetVReg(vregA, result.GetC());
      break;
    case Primitive::kPrimShort:
      shadow_frame.SetVReg(vregA, result.GetS());
      break;
    case Primitive::kPrimInt:
      shadow_frame.SetVReg(vregA, result.GetI());
      break;
    case Primitive::kPrimLong:
      shadow_frame.SetVRegLong(vregA, result.GetJ());
      break;
    case Primitive::kPrimNot:
      shadow_frame.SetVRegReference(vregA, result.GetL());
      break;
    default:
      LOG(FATAL) << "Unreachable: " << field_type;
      UNREACHABLE();
  }
  return true;
}

// Explicitly instantiate all DoFieldGet functions.
#define EXPLICIT_DO_FIELD_GET_TEMPLATE_DECL(_find_type, _field_type, _do_check) \
  template bool DoFieldGet<_find_type, _field_type, _do_check>(Thread* self, \
                                                               ShadowFrame& shadow_frame, \
                                                               const Instruction* inst, \
                                                               uint16_t inst_data)

#define EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(_find_type, _field_type)  \
    EXPLICIT_DO_FIELD_GET_TEMPLATE_DECL(_find_type, _field_type, false);  \
    EXPLICIT_DO_FIELD_GET_TEMPLATE_DECL(_find_type, _field_type, true);

// iget-XXX
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstancePrimitiveRead, Primitive::kPrimBoolean)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstancePrimitiveRead, Primitive::kPrimByte)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstancePrimitiveRead, Primitive::kPrimChar)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstancePrimitiveRead, Primitive::kPrimShort)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstancePrimitiveRead, Primitive::kPrimInt)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstancePrimitiveRead, Primitive::kPrimLong)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(InstanceObjectRead, Primitive::kPrimNot)

// sget-XXX
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticPrimitiveRead, Primitive::kPrimBoolean)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticPrimitiveRead, Primitive::kPrimByte)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticPrimitiveRead, Primitive::kPrimChar)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticPrimitiveRead, Primitive::kPrimShort)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticPrimitiveRead, Primitive::kPrimInt)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticPrimitiveRead, Primitive::kPrimLong)
EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL(StaticObjectRead, Primitive::kPrimNot)

#undef EXPLICIT_DO_FIELD_GET_ALL_TEMPLATE_DECL
#undef EXPLICIT_DO_FIELD_GET_TEMPLATE_DECL

// Helper for getters in invoke-polymorphic.
inline static void DoFieldGetForInvokePolymorphic(Thread* self,
                                                  const ShadowFrame& shadow_frame,
                                                  ObjPtr<mirror::Object>& obj,
                                                  ArtField* field,
                                                  Primitive::Type field_type,
                                                  JValue* result)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  switch (field_type) {
    case Primitive::kPrimBoolean:
      DoFieldGetCommon<Primitive::kPrimBoolean>(self, shadow_frame, obj, field, result);
      break;
    case Primitive::kPrimByte:
      DoFieldGetCommon<Primitive::kPrimByte>(self, shadow_frame, obj, field, result);
      break;
    case Primitive::kPrimChar:
      DoFieldGetCommon<Primitive::kPrimChar>(self, shadow_frame, obj, field, result);
      break;
    case Primitive::kPrimShort:
      DoFieldGetCommon<Primitive::kPrimShort>(self, shadow_frame, obj, field, result);
      break;
    case Primitive::kPrimInt:
      DoFieldGetCommon<Primitive::kPrimInt>(self, shadow_frame, obj, field, result);
      break;
    case Primitive::kPrimLong:
      DoFieldGetCommon<Primitive::kPrimLong>(self, shadow_frame, obj, field, result);
      break;
    case Primitive::kPrimFloat:
      DoFieldGetCommon<Primitive::kPrimInt>(self, shadow_frame, obj, field, result);
      break;
    case Primitive::kPrimDouble:
      DoFieldGetCommon<Primitive::kPrimLong>(self, shadow_frame, obj, field, result);
      break;
    case Primitive::kPrimNot:
      DoFieldGetCommon<Primitive::kPrimNot>(self, shadow_frame, obj, field, result);
      break;
    case Primitive::kPrimVoid:
      LOG(FATAL) << "Unreachable: " << field_type;
      UNREACHABLE();
  }
}

// Handles iget-quick, iget-wide-quick and iget-object-quick instructions.
// Returns true on success, otherwise throws an exception and returns false.
template<Primitive::Type field_type>
bool DoIGetQuick(ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data) {
  ObjPtr<mirror::Object> obj = shadow_frame.GetVRegReference(inst->VRegB_22c(inst_data));
  if (UNLIKELY(obj == nullptr)) {
    // We lost the reference to the field index so we cannot get a more
    // precised exception message.
    ThrowNullPointerExceptionFromDexPC();
    return false;
  }
  MemberOffset field_offset(inst->VRegC_22c());
  // Report this field access to instrumentation if needed. Since we only have the offset of
  // the field from the base of the object, we need to look for it first.
  instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
  if (UNLIKELY(instrumentation->HasFieldReadListeners())) {
    ArtField* f = ArtField::FindInstanceFieldWithOffset(obj->GetClass(),
                                                        field_offset.Uint32Value());
    DCHECK(f != nullptr);
    DCHECK(!f->IsStatic());
    StackHandleScope<1> hs(Thread::Current());
    // Save obj in case the instrumentation event has thread suspension.
    HandleWrapperObjPtr<mirror::Object> h = hs.NewHandleWrapper(&obj);
    instrumentation->FieldReadEvent(Thread::Current(),
                                    obj.Ptr(),
                                    shadow_frame.GetMethod(),
                                    shadow_frame.GetDexPC(),
                                    f);
  }
  // Note: iget-x-quick instructions are only for non-volatile fields.
  const uint32_t vregA = inst->VRegA_22c(inst_data);
  switch (field_type) {
    case Primitive::kPrimInt:
      shadow_frame.SetVReg(vregA, static_cast<int32_t>(obj->GetField32(field_offset)));
      break;
    case Primitive::kPrimBoolean:
      shadow_frame.SetVReg(vregA, static_cast<int32_t>(obj->GetFieldBoolean(field_offset)));
      break;
    case Primitive::kPrimByte:
      shadow_frame.SetVReg(vregA, static_cast<int32_t>(obj->GetFieldByte(field_offset)));
      break;
    case Primitive::kPrimChar:
      shadow_frame.SetVReg(vregA, static_cast<int32_t>(obj->GetFieldChar(field_offset)));
      break;
    case Primitive::kPrimShort:
      shadow_frame.SetVReg(vregA, static_cast<int32_t>(obj->GetFieldShort(field_offset)));
      break;
    case Primitive::kPrimLong:
      shadow_frame.SetVRegLong(vregA, static_cast<int64_t>(obj->GetField64(field_offset)));
      break;
    case Primitive::kPrimNot:
      shadow_frame.SetVRegReference(vregA, obj->GetFieldObject<mirror::Object>(field_offset));
      break;
    default:
      LOG(FATAL) << "Unreachable: " << field_type;
      UNREACHABLE();
  }
  return true;
}

// Explicitly instantiate all DoIGetQuick functions.
#define EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(_field_type) \
  template bool DoIGetQuick<_field_type>(ShadowFrame& shadow_frame, const Instruction* inst, \
                                         uint16_t inst_data)

EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(Primitive::kPrimInt);      // iget-quick.
EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(Primitive::kPrimBoolean);  // iget-boolean-quick.
EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(Primitive::kPrimByte);     // iget-byte-quick.
EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(Primitive::kPrimChar);     // iget-char-quick.
EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(Primitive::kPrimShort);    // iget-short-quick.
EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(Primitive::kPrimLong);     // iget-wide-quick.
EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL(Primitive::kPrimNot);      // iget-object-quick.
#undef EXPLICIT_DO_IGET_QUICK_TEMPLATE_DECL

static JValue GetFieldValue(const ShadowFrame& shadow_frame,
                            Primitive::Type field_type,
                            uint32_t vreg)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  JValue field_value;
  switch (field_type) {
    case Primitive::kPrimBoolean:
      field_value.SetZ(static_cast<uint8_t>(shadow_frame.GetVReg(vreg)));
      break;
    case Primitive::kPrimByte:
      field_value.SetB(static_cast<int8_t>(shadow_frame.GetVReg(vreg)));
      break;
    case Primitive::kPrimChar:
      field_value.SetC(static_cast<uint16_t>(shadow_frame.GetVReg(vreg)));
      break;
    case Primitive::kPrimShort:
      field_value.SetS(static_cast<int16_t>(shadow_frame.GetVReg(vreg)));
      break;
    case Primitive::kPrimInt:
    case Primitive::kPrimFloat:
      field_value.SetI(shadow_frame.GetVReg(vreg));
      break;
    case Primitive::kPrimLong:
    case Primitive::kPrimDouble:
      field_value.SetJ(shadow_frame.GetVRegLong(vreg));
      break;
    case Primitive::kPrimNot:
      field_value.SetL(shadow_frame.GetVRegReference(vreg));
      break;
    case Primitive::kPrimVoid:
      LOG(FATAL) << "Unreachable: " << field_type;
      UNREACHABLE();
  }
  return field_value;
}

template<Primitive::Type field_type>
static JValue GetFieldValue(const ShadowFrame& shadow_frame, uint32_t vreg)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  JValue field_value;
  switch (field_type) {
    case Primitive::kPrimBoolean:
      field_value.SetZ(static_cast<uint8_t>(shadow_frame.GetVReg(vreg)));
      break;
    case Primitive::kPrimByte:
      field_value.SetB(static_cast<int8_t>(shadow_frame.GetVReg(vreg)));
      break;
    case Primitive::kPrimChar:
      field_value.SetC(static_cast<uint16_t>(shadow_frame.GetVReg(vreg)));
      break;
    case Primitive::kPrimShort:
      field_value.SetS(static_cast<int16_t>(shadow_frame.GetVReg(vreg)));
      break;
    case Primitive::kPrimInt:
      field_value.SetI(shadow_frame.GetVReg(vreg));
      break;
    case Primitive::kPrimLong:
      field_value.SetJ(shadow_frame.GetVRegLong(vreg));
      break;
    case Primitive::kPrimNot:
      field_value.SetL(shadow_frame.GetVRegReference(vreg));
      break;
    default:
      LOG(FATAL) << "Unreachable: " << field_type;
      UNREACHABLE();
  }
  return field_value;
}

template<Primitive::Type field_type, bool do_assignability_check, bool transaction_active>
static inline bool DoFieldPutCommon(Thread* self,
                                    const ShadowFrame& shadow_frame,
                                    ObjPtr<mirror::Object>& obj,
                                    ArtField* f,
                                    const JValue& value)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  f->GetDeclaringClass()->AssertInitializedOrInitializingInThread(self);

  // Report this field access to instrumentation if needed. Since we only have the offset of
  // the field from the base of the object, we need to look for it first.
  instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
  if (UNLIKELY(instrumentation->HasFieldWriteListeners())) {
    StackHandleScope<1> hs(self);
    // Wrap in handle wrapper in case the listener does thread suspension.
    HandleWrapperObjPtr<mirror::Object> h(hs.NewHandleWrapper(&obj));
    ObjPtr<mirror::Object> this_object = f->IsStatic() ? nullptr : obj;
    instrumentation->FieldWriteEvent(self, this_object.Ptr(),
                                     shadow_frame.GetMethod(),
                                     shadow_frame.GetDexPC(),
                                     f,
                                     value);
  }

  switch (field_type) {
    case Primitive::kPrimBoolean:
      f->SetBoolean<transaction_active>(obj, value.GetZ());
      break;
    case Primitive::kPrimByte:
      f->SetByte<transaction_active>(obj, value.GetB());
      break;
    case Primitive::kPrimChar:
      f->SetChar<transaction_active>(obj, value.GetC());
      break;
    case Primitive::kPrimShort:
      f->SetShort<transaction_active>(obj, value.GetS());
      break;
    case Primitive::kPrimInt:
      f->SetInt<transaction_active>(obj, value.GetI());
      break;
    case Primitive::kPrimLong:
      f->SetLong<transaction_active>(obj, value.GetJ());
      break;
    case Primitive::kPrimNot: {
      ObjPtr<mirror::Object> reg = value.GetL();
      if (do_assignability_check && reg != nullptr) {
        // FieldHelper::GetType can resolve classes, use a handle wrapper which will restore the
        // object in the destructor.
        ObjPtr<mirror::Class> field_class;
        {
          StackHandleScope<2> hs(self);
          HandleWrapperObjPtr<mirror::Object> h_reg(hs.NewHandleWrapper(&reg));
          HandleWrapperObjPtr<mirror::Object> h_obj(hs.NewHandleWrapper(&obj));
          field_class = f->GetType<true>();
        }
        if (!reg->VerifierInstanceOf(field_class.Ptr())) {
          // This should never happen.
          std::string temp1, temp2, temp3;
          self->ThrowNewExceptionF("Ljava/lang/VirtualMachineError;",
                                   "Put '%s' that is not instance of field '%s' in '%s'",
                                   reg->GetClass()->GetDescriptor(&temp1),
                                   field_class->GetDescriptor(&temp2),
                                   f->GetDeclaringClass()->GetDescriptor(&temp3));
          return false;
        }
      }
      f->SetObj<transaction_active>(obj, reg);
      break;
    }
    default:
      LOG(FATAL) << "Unreachable: " << field_type;
      UNREACHABLE();
  }
  return true;
}

template<FindFieldType find_type, Primitive::Type field_type, bool do_access_check,
         bool transaction_active>
bool DoFieldPut(Thread* self, const ShadowFrame& shadow_frame, const Instruction* inst,
                uint16_t inst_data) {
  const bool do_assignability_check = do_access_check;
  bool is_static = (find_type == StaticObjectWrite) || (find_type == StaticPrimitiveWrite);
  uint32_t field_idx = is_static ? inst->VRegB_21c() : inst->VRegC_22c();
  ArtField* f =
      FindFieldFromCode<find_type, do_access_check>(field_idx, shadow_frame.GetMethod(), self,
                                                    Primitive::ComponentSize(field_type));
  if (UNLIKELY(f == nullptr)) {
    CHECK(self->IsExceptionPending());
    return false;
  }
  ObjPtr<mirror::Object> obj;
  if (is_static) {
    obj = f->GetDeclaringClass();
  } else {
    obj = shadow_frame.GetVRegReference(inst->VRegB_22c(inst_data));
    if (UNLIKELY(obj == nullptr)) {
      ThrowNullPointerExceptionForFieldAccess(f, false);
      return false;
    }
  }

  uint32_t vregA = is_static ? inst->VRegA_21c(inst_data) : inst->VRegA_22c(inst_data);
  JValue value = GetFieldValue<field_type>(shadow_frame, vregA);
  return DoFieldPutCommon<field_type, do_assignability_check, transaction_active>(self,
                                                                                  shadow_frame,
                                                                                  obj,
                                                                                  f,
                                                                                  value);
}

// Explicitly instantiate all DoFieldPut functions.
#define EXPLICIT_DO_FIELD_PUT_TEMPLATE_DECL(_find_type, _field_type, _do_check, _transaction_active) \
  template bool DoFieldPut<_find_type, _field_type, _do_check, _transaction_active>(Thread* self, \
      const ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data)

#define EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(_find_type, _field_type)  \
    EXPLICIT_DO_FIELD_PUT_TEMPLATE_DECL(_find_type, _field_type, false, false);  \
    EXPLICIT_DO_FIELD_PUT_TEMPLATE_DECL(_find_type, _field_type, true, false);  \
    EXPLICIT_DO_FIELD_PUT_TEMPLATE_DECL(_find_type, _field_type, false, true);  \
    EXPLICIT_DO_FIELD_PUT_TEMPLATE_DECL(_find_type, _field_type, true, true);

// iput-XXX
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstancePrimitiveWrite, Primitive::kPrimBoolean)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstancePrimitiveWrite, Primitive::kPrimByte)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstancePrimitiveWrite, Primitive::kPrimChar)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstancePrimitiveWrite, Primitive::kPrimShort)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstancePrimitiveWrite, Primitive::kPrimInt)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstancePrimitiveWrite, Primitive::kPrimLong)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(InstanceObjectWrite, Primitive::kPrimNot)

// sput-XXX
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticPrimitiveWrite, Primitive::kPrimBoolean)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticPrimitiveWrite, Primitive::kPrimByte)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticPrimitiveWrite, Primitive::kPrimChar)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticPrimitiveWrite, Primitive::kPrimShort)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticPrimitiveWrite, Primitive::kPrimInt)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticPrimitiveWrite, Primitive::kPrimLong)
EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL(StaticObjectWrite, Primitive::kPrimNot)

#undef EXPLICIT_DO_FIELD_PUT_ALL_TEMPLATE_DECL
#undef EXPLICIT_DO_FIELD_PUT_TEMPLATE_DECL

// Helper for setters in invoke-polymorphic.
bool DoFieldPutForInvokePolymorphic(Thread* self,
                                    ShadowFrame& shadow_frame,
                                    ObjPtr<mirror::Object>& obj,
                                    ArtField* field,
                                    Primitive::Type field_type,
                                    const JValue& value)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  static const bool kDoCheckAssignability = false;
  static const bool kTransaction = false;
  switch (field_type) {
    case Primitive::kPrimBoolean:
      return DoFieldPutCommon<Primitive::kPrimBoolean, kDoCheckAssignability, kTransaction>(
          self, shadow_frame, obj, field, value);
    case Primitive::kPrimByte:
      return DoFieldPutCommon<Primitive::kPrimByte, kDoCheckAssignability, kTransaction>(
          self, shadow_frame, obj, field, value);
    case Primitive::kPrimChar:
      return DoFieldPutCommon<Primitive::kPrimChar, kDoCheckAssignability, kTransaction>(
          self, shadow_frame, obj, field, value);
    case Primitive::kPrimShort:
      return DoFieldPutCommon<Primitive::kPrimShort, kDoCheckAssignability, kTransaction>(
          self, shadow_frame, obj, field, value);
    case Primitive::kPrimInt:
    case Primitive::kPrimFloat:
      return DoFieldPutCommon<Primitive::kPrimInt, kDoCheckAssignability, kTransaction>(
          self, shadow_frame, obj, field, value);
    case Primitive::kPrimLong:
    case Primitive::kPrimDouble:
      return DoFieldPutCommon<Primitive::kPrimLong, kDoCheckAssignability, kTransaction>(
          self, shadow_frame, obj, field, value);
    case Primitive::kPrimNot:
      return DoFieldPutCommon<Primitive::kPrimNot, kDoCheckAssignability, kTransaction>(
          self, shadow_frame, obj, field, value);
    case Primitive::kPrimVoid:
      LOG(FATAL) << "Unreachable: " << field_type;
      UNREACHABLE();
  }
}

template<Primitive::Type field_type, bool transaction_active>
bool DoIPutQuick(const ShadowFrame& shadow_frame, const Instruction* inst, uint16_t inst_data) {
  ObjPtr<mirror::Object> obj = shadow_frame.GetVRegReference(inst->VRegB_22c(inst_data));
  if (UNLIKELY(obj == nullptr)) {
    // We lost the reference to the field index so we cannot get a more
    // precised exception message.
    ThrowNullPointerExceptionFromDexPC();
    return false;
  }
  MemberOffset field_offset(inst->VRegC_22c());
  const uint32_t vregA = inst->VRegA_22c(inst_data);
  // Report this field modification to instrumentation if needed. Since we only have the offset of
  // the field from the base of the object, we need to look for it first.
  instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
  if (UNLIKELY(instrumentation->HasFieldWriteListeners())) {
    ArtField* f = ArtField::FindInstanceFieldWithOffset(obj->GetClass(),
                                                        field_offset.Uint32Value());
    DCHECK(f != nullptr);
    DCHECK(!f->IsStatic());
    JValue field_value = GetFieldValue<field_type>(shadow_frame, vregA);
    StackHandleScope<1> hs(Thread::Current());
    // Save obj in case the instrumentation event has thread suspension.
    HandleWrapperObjPtr<mirror::Object> h = hs.NewHandleWrapper(&obj);
    instrumentation->FieldWriteEvent(Thread::Current(),
                                     obj.Ptr(),
                                     shadow_frame.GetMethod(),
                                     shadow_frame.GetDexPC(),
                                     f,
                                     field_value);
  }
  // Note: iput-x-quick instructions are only for non-volatile fields.
  switch (field_type) {
    case Primitive::kPrimBoolean:
      obj->SetFieldBoolean<transaction_active>(field_offset, shadow_frame.GetVReg(vregA));
      break;
    case Primitive::kPrimByte:
      obj->SetFieldByte<transaction_active>(field_offset, shadow_frame.GetVReg(vregA));
      break;
    case Primitive::kPrimChar:
      obj->SetFieldChar<transaction_active>(field_offset, shadow_frame.GetVReg(vregA));
      break;
    case Primitive::kPrimShort:
      obj->SetFieldShort<transaction_active>(field_offset, shadow_frame.GetVReg(vregA));
      break;
    case Primitive::kPrimInt:
      obj->SetField32<transaction_active>(field_offset, shadow_frame.GetVReg(vregA));
      break;
    case Primitive::kPrimLong:
      obj->SetField64<transaction_active>(field_offset, shadow_frame.GetVRegLong(vregA));
      break;
    case Primitive::kPrimNot:
      obj->SetFieldObject<transaction_active>(field_offset, shadow_frame.GetVRegReference(vregA));
      break;
    default:
      LOG(FATAL) << "Unreachable: " << field_type;
      UNREACHABLE();
  }
  return true;
}

// Explicitly instantiate all DoIPutQuick functions.
#define EXPLICIT_DO_IPUT_QUICK_TEMPLATE_DECL(_field_type, _transaction_active) \
  template bool DoIPutQuick<_field_type, _transaction_active>(const ShadowFrame& shadow_frame, \
                                                              const Instruction* inst, \
                                                              uint16_t inst_data)

#define EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(_field_type)   \
  EXPLICIT_DO_IPUT_QUICK_TEMPLATE_DECL(_field_type, false);     \
  EXPLICIT_DO_IPUT_QUICK_TEMPLATE_DECL(_field_type, true);

EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimInt)      // iput-quick.
EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimBoolean)  // iput-boolean-quick.
EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimByte)     // iput-byte-quick.
EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimChar)     // iput-char-quick.
EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimShort)    // iput-short-quick.
EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimLong)     // iput-wide-quick.
EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL(Primitive::kPrimNot)      // iput-object-quick.
#undef EXPLICIT_DO_IPUT_QUICK_ALL_TEMPLATE_DECL
#undef EXPLICIT_DO_IPUT_QUICK_TEMPLATE_DECL

// We accept a null Instrumentation* meaning we must not report anything to the instrumentation.
uint32_t FindNextInstructionFollowingException(
    Thread* self, ShadowFrame& shadow_frame, uint32_t dex_pc,
    const instrumentation::Instrumentation* instrumentation) {
  self->VerifyStack();
  StackHandleScope<2> hs(self);
  Handle<mirror::Throwable> exception(hs.NewHandle(self->GetException()));
  if (instrumentation != nullptr && instrumentation->HasExceptionCaughtListeners()
      && self->IsExceptionThrownByCurrentMethod(exception.Get())) {
    instrumentation->ExceptionCaughtEvent(self, exception.Get());
  }
  bool clear_exception = false;
  uint32_t found_dex_pc = shadow_frame.GetMethod()->FindCatchBlock(
      hs.NewHandle(exception->GetClass()), dex_pc, &clear_exception);
  if (found_dex_pc == DexFile::kDexNoIndex && instrumentation != nullptr) {
    // Exception is not caught by the current method. We will unwind to the
    // caller. Notify any instrumentation listener.
    instrumentation->MethodUnwindEvent(self, shadow_frame.GetThisObject(),
                                       shadow_frame.GetMethod(), dex_pc);
  } else {
    // Exception is caught in the current method. We will jump to the found_dex_pc.
    if (clear_exception) {
      self->ClearException();
    }
  }
  return found_dex_pc;
}

void UnexpectedOpcode(const Instruction* inst, const ShadowFrame& shadow_frame) {
  LOG(FATAL) << "Unexpected instruction: "
             << inst->DumpString(shadow_frame.GetMethod()->GetDexFile());
  UNREACHABLE();
}

void AbortTransactionF(Thread* self, const char* fmt, ...) {
  va_list args;
  va_start(args, fmt);
  AbortTransactionV(self, fmt, args);
  va_end(args);
}

void AbortTransactionV(Thread* self, const char* fmt, va_list args) {
  CHECK(Runtime::Current()->IsActiveTransaction());
  // Constructs abort message.
  std::string abort_msg;
  StringAppendV(&abort_msg, fmt, args);
  // Throws an exception so we can abort the transaction and rollback every change.
  Runtime::Current()->AbortTransactionAndThrowAbortError(self, abort_msg);
}

// START DECLARATIONS :
//
// These additional declarations are required because clang complains
// about ALWAYS_INLINE (-Werror, -Wgcc-compat) in definitions.
//

template <bool is_range, bool do_assignability_check>
static ALWAYS_INLINE bool DoCallCommon(ArtMethod* called_method,
                                       Thread* self,
                                       ShadowFrame& shadow_frame,
                                       JValue* result,
                                       uint16_t number_of_inputs,
                                       uint32_t (&arg)[Instruction::kMaxVarArgRegs],
                                       uint32_t vregC) REQUIRES_SHARED(Locks::mutator_lock_);

template <bool is_range>
static ALWAYS_INLINE bool DoCallPolymorphic(ArtMethod* called_method,
                                            Handle<mirror::MethodType> callsite_type,
                                            Handle<mirror::MethodType> target_type,
                                            Thread* self,
                                            ShadowFrame& shadow_frame,
                                            JValue* result,
                                            uint32_t (&arg)[Instruction::kMaxVarArgRegs],
                                            uint32_t vregC,
                                            const MethodHandleKind handle_kind)
  REQUIRES_SHARED(Locks::mutator_lock_);

template <bool is_range>
static ALWAYS_INLINE bool DoCallTransform(ArtMethod* called_method,
                                          Handle<mirror::MethodType> callsite_type,
                                          Handle<mirror::MethodType> callee_type,
                                          Thread* self,
                                          ShadowFrame& shadow_frame,
                                          Handle<mirror::MethodHandleImpl> receiver,
                                          JValue* result,
                                          uint32_t (&arg)[Instruction::kMaxVarArgRegs],
                                          uint32_t vregC) REQUIRES_SHARED(Locks::mutator_lock_);

ALWAYS_INLINE void PerformCall(Thread* self,
                               const DexFile::CodeItem* code_item,
                               ArtMethod* caller_method,
                               const size_t first_dest_reg,
                               ShadowFrame* callee_frame,
                               JValue* result) REQUIRES_SHARED(Locks::mutator_lock_);

template <bool is_range>
ALWAYS_INLINE void CopyRegisters(ShadowFrame& caller_frame,
                                 ShadowFrame* callee_frame,
                                 const uint32_t (&arg)[Instruction::kMaxVarArgRegs],
                                 const size_t first_src_reg,
                                 const size_t first_dest_reg,
                                 const size_t num_regs) REQUIRES_SHARED(Locks::mutator_lock_);

// END DECLARATIONS.

void ArtInterpreterToCompiledCodeBridge(Thread* self,
                                        ArtMethod* caller,
                                        const DexFile::CodeItem* code_item,
                                        ShadowFrame* shadow_frame,
                                        JValue* result)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  ArtMethod* method = shadow_frame->GetMethod();
  // Ensure static methods are initialized.
  if (method->IsStatic()) {
    ObjPtr<mirror::Class> declaringClass = method->GetDeclaringClass();
    if (UNLIKELY(!declaringClass->IsInitialized())) {
      self->PushShadowFrame(shadow_frame);
      StackHandleScope<1> hs(self);
      Handle<mirror::Class> h_class(hs.NewHandle(declaringClass));
      if (UNLIKELY(!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true,
                                                                            true))) {
        self->PopShadowFrame();
        DCHECK(self->IsExceptionPending());
        return;
      }
      self->PopShadowFrame();
      CHECK(h_class->IsInitializing());
      // Reload from shadow frame in case the method moved, this is faster than adding a handle.
      method = shadow_frame->GetMethod();
    }
  }
  uint16_t arg_offset = (code_item == nullptr)
                            ? 0
                            : code_item->registers_size_ - code_item->ins_size_;
  jit::Jit* jit = Runtime::Current()->GetJit();
  if (jit != nullptr && caller != nullptr) {
    jit->NotifyInterpreterToCompiledCodeTransition(self, caller);
  }
  method->Invoke(self, shadow_frame->GetVRegArgs(arg_offset),
                 (shadow_frame->NumberOfVRegs() - arg_offset) * sizeof(uint32_t),
                 result, method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetShorty());
}

void SetStringInitValueToAllAliases(ShadowFrame* shadow_frame,
                                    uint16_t this_obj_vreg,
                                    JValue result)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  ObjPtr<mirror::Object> existing = shadow_frame->GetVRegReference(this_obj_vreg);
  if (existing == nullptr) {
    // If it's null, we come from compiled code that was deoptimized. Nothing to do,
    // as the compiler verified there was no alias.
    // Set the new string result of the StringFactory.
    shadow_frame->SetVRegReference(this_obj_vreg, result.GetL());
    return;
  }
  // Set the string init result into all aliases.
  for (uint32_t i = 0, e = shadow_frame->NumberOfVRegs(); i < e; ++i) {
    if (shadow_frame->GetVRegReference(i) == existing) {
      DCHECK_EQ(shadow_frame->GetVRegReference(i),
                reinterpret_cast<mirror::Object*>(shadow_frame->GetVReg(i)));
      shadow_frame->SetVRegReference(i, result.GetL());
      DCHECK_EQ(shadow_frame->GetVRegReference(i),
                reinterpret_cast<mirror::Object*>(shadow_frame->GetVReg(i)));
    }
  }
}

inline static bool IsInvokeExact(const DexFile& dex_file, int invoke_method_idx) {
  // This check uses string comparison as it needs less code and data
  // to do than fetching the associated ArtMethod from the DexCache
  // and checking against ArtMethods in the well known classes. The
  // verifier needs to perform a more rigorous check.
  const char* method_name = dex_file.GetMethodName(dex_file.GetMethodId(invoke_method_idx));
  bool is_invoke_exact = (0 == strcmp(method_name, "invokeExact"));
  DCHECK(is_invoke_exact || (0 == strcmp(method_name, "invoke")));
  return is_invoke_exact;
}

inline static ObjPtr<mirror::Class> GetAndInitializeDeclaringClass(Thread* self, ArtField* field)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  // Method handle invocations on static fields should ensure class is
  // initialized. This usually happens when an instance is constructed
  // or class members referenced, but this is not guaranteed when
  // looking up method handles.
  ObjPtr<mirror::Class> klass = field->GetDeclaringClass();
  if (UNLIKELY(!klass->IsInitialized())) {
    StackHandleScope<1> hs(self);
    HandleWrapperObjPtr<mirror::Class> h(hs.NewHandleWrapper(&klass));
    if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h, true, true)) {
      DCHECK(self->IsExceptionPending());
      return nullptr;
    }
  }
  return klass;
}

// Returns true iff. the callsite type for a polymorphic invoke is transformer
// like, i.e that it has a single input argument whose type is
// dalvik.system.EmulatedStackFrame.
static inline bool IsCallerTransformer(Handle<mirror::MethodType> callsite_type)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  ObjPtr<mirror::ObjectArray<mirror::Class>> param_types(callsite_type->GetPTypes());
  if (param_types->GetLength() == 1) {
    ObjPtr<mirror::Class> param(param_types->GetWithoutChecks(0));
    return param == WellKnownClasses::ToClass(WellKnownClasses::dalvik_system_EmulatedStackFrame);
  }

  return false;
}

template<bool is_range, bool do_access_check>
inline bool DoInvokePolymorphic(Thread* self,
                                ShadowFrame& shadow_frame,
                                const Instruction* inst,
                                uint16_t inst_data,
                                JValue* result)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  // Invoke-polymorphic instructions always take a receiver. i.e, they are never static.
  const uint32_t vRegC = (is_range) ? inst->VRegC_4rcc() : inst->VRegC_45cc();
  const int invoke_method_idx = (is_range) ? inst->VRegB_4rcc() : inst->VRegB_45cc();

  // Initialize |result| to 0 as this is the default return value for
  // polymorphic invocations of method handle types with void return
  // and provides sane return result in error cases.
  result->SetJ(0);

  // Determine if this invocation is MethodHandle.invoke() or
  // MethodHandle.invokeExact().
  bool is_invoke_exact = IsInvokeExact(shadow_frame.GetMethod()->GetDeclaringClass()->GetDexFile(),
                                       invoke_method_idx);

  // The invoke_method_idx here is the name of the signature polymorphic method that
  // was symbolically invoked in bytecode (say MethodHandle.invoke or MethodHandle.invokeExact)
  // and not the method that we'll dispatch to in the end.
  //
  // TODO(narayan) We'll have to check in the verifier that this is in fact a
  // signature polymorphic method so that we disallow calls via invoke-polymorphic
  // to non sig-poly methods. This would also have the side effect of verifying
  // that vRegC really is a reference type.
  StackHandleScope<6> hs(self);
  Handle<mirror::MethodHandleImpl> method_handle(hs.NewHandle(
      ObjPtr<mirror::MethodHandleImpl>::DownCast(
          MakeObjPtr(shadow_frame.GetVRegReference(vRegC)))));
  if (UNLIKELY(method_handle.Get() == nullptr)) {
    // Note that the invoke type is kVirtual here because a call to a signature
    // polymorphic method is shaped like a virtual call at the bytecode level.
    ThrowNullPointerExceptionForMethodAccess(invoke_method_idx, InvokeType::kVirtual);
    return false;
  }

  // The vRegH value gives the index of the proto_id associated with this
  // signature polymorphic callsite.
  const uint32_t callsite_proto_id = (is_range) ? inst->VRegH_4rcc() : inst->VRegH_45cc();

  // Call through to the classlinker and ask it to resolve the static type associated
  // with the callsite. This information is stored in the dex cache so it's
  // guaranteed to be fast after the first resolution.
  ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
  Handle<mirror::Class> caller_class(hs.NewHandle(shadow_frame.GetMethod()->GetDeclaringClass()));
  Handle<mirror::MethodType> callsite_type(hs.NewHandle(class_linker->ResolveMethodType(
      caller_class->GetDexFile(), callsite_proto_id,
      hs.NewHandle<mirror::DexCache>(caller_class->GetDexCache()),
      hs.NewHandle<mirror::ClassLoader>(caller_class->GetClassLoader()))));

  // This implies we couldn't resolve one or more types in this method handle.
  if (UNLIKELY(callsite_type.Get() == nullptr)) {
    CHECK(self->IsExceptionPending());
    return false;
  }

  const MethodHandleKind handle_kind = method_handle->GetHandleKind();
  Handle<mirror::MethodType> handle_type(hs.NewHandle(method_handle->GetMethodType()));
  CHECK(handle_type.Get() != nullptr);
  {
    // We need to check the nominal type of the handle in addition to the
    // real type. The "nominal" type is present when MethodHandle.asType is
    // called any handle, and results in the declared type of the handle
    // changing.
    ObjPtr<mirror::MethodType> nominal_type(method_handle->GetNominalType());
    ObjPtr<mirror::MethodType> check_type(nullptr);
    if (LIKELY(nominal_type.Ptr() == nullptr)) {
      check_type.Assign(handle_type.Get());
    } else {
      check_type.Assign(nominal_type.Ptr());
    }

    if (is_invoke_exact) {
      if (UNLIKELY(!callsite_type->IsExactMatch(check_type.Ptr()))) {
        ThrowWrongMethodTypeException(check_type.Ptr(), callsite_type.Get());
        return false;
      }
    } else {
      if (UNLIKELY(!IsCallerTransformer(callsite_type) &&
                   !callsite_type->IsConvertible(check_type.Ptr()))) {
        ThrowWrongMethodTypeException(check_type.Ptr(), callsite_type.Get());
        return false;
      }
    }
  }

  uint32_t arg[Instruction::kMaxVarArgRegs] = {};
  uint32_t first_src_reg = 0;
  if (is_range) {
    first_src_reg = (inst->VRegC_4rcc() + 1);
  } else {
    inst->GetVarArgs(arg, inst_data);
    arg[0] = arg[1];
    arg[1] = arg[2];
    arg[2] = arg[3];
    arg[3] = arg[4];
    arg[4] = 0;
    first_src_reg = arg[0];
  }

  if (IsInvoke(handle_kind)) {
    // Get the method we're actually invoking along with the kind of
    // invoke that is desired. We don't need to perform access checks at this
    // point because they would have been performed on our behalf at the point
    // of creation of the method handle.
    ArtMethod* called_method = method_handle->GetTargetMethod();
    CHECK(called_method != nullptr);

    if (handle_kind == kInvokeVirtual || handle_kind == kInvokeInterface) {
      // TODO: Unfortunately, we have to postpone dynamic receiver based checks
      // because the receiver might be cast or might come from an emulated stack
      // frame, which means that it is unknown at this point. We perform these
      // checks inside DoCallPolymorphic right before we do the actual invoke.
    } else if (handle_kind == kInvokeDirect) {
      // String constructors are a special case, they are replaced with StringFactory
      // methods.
      if (called_method->IsConstructor() && called_method->GetDeclaringClass()->IsStringClass()) {
        DCHECK(handle_type->GetRType()->IsStringClass());
        called_method = WellKnownClasses::StringInitToStringFactory(called_method);
      }
    } else if (handle_kind == kInvokeSuper) {
      ObjPtr<mirror::Class> declaring_class = called_method->GetDeclaringClass();

      // Note that we're not dynamically dispatching on the type of the receiver
      // here. We use the static type of the "receiver" object that we've
      // recorded in the method handle's type, which will be the same as the
      // special caller that was specified at the point of lookup.
      ObjPtr<mirror::Class> referrer_class = handle_type->GetPTypes()->Get(0);
      if (!declaring_class->IsInterface()) {
        ObjPtr<mirror::Class> super_class = referrer_class->GetSuperClass();
        uint16_t vtable_index = called_method->GetMethodIndex();
        DCHECK(super_class != nullptr);
        DCHECK(super_class->HasVTable());
        // Note that super_class is a super of referrer_class and called_method
        // will always be declared by super_class (or one of its super classes).
        DCHECK_LT(vtable_index, super_class->GetVTableLength());
        called_method = super_class->GetVTableEntry(vtable_index, kRuntimePointerSize);
      } else {
        called_method = referrer_class->FindVirtualMethodForInterfaceSuper(
            called_method, kRuntimePointerSize);
      }

      CHECK(called_method != nullptr);
    }

    bool call_success;
    if (handle_kind == kInvokeTransform) {
      call_success = DoCallTransform<is_range>(called_method,
                                               callsite_type,
                                               handle_type,
                                               self,
                                               shadow_frame,
                                               method_handle /* receiver */,
                                               result,
                                               arg,
                                               first_src_reg);
    } else {
      call_success = DoCallPolymorphic<is_range>(called_method,
                                                 callsite_type,
                                                 handle_type,
                                                 self,
                                                 shadow_frame,
                                                 result,
                                                 arg,
                                                 first_src_reg,
                                                 handle_kind);
    }
    if (LIKELY(call_success && ConvertReturnValue(callsite_type, handle_type, result))) {
      return true;
    }
    DCHECK(self->IsExceptionPending());
    return false;
  } else {
    DCHECK(!is_range);
    ArtField* field = method_handle->GetTargetField();
    Primitive::Type field_type = field->GetTypeAsPrimitiveType();

    switch (handle_kind) {
      case kInstanceGet: {
        ObjPtr<mirror::Object> obj = shadow_frame.GetVRegReference(first_src_reg);
        DoFieldGetForInvokePolymorphic(self, shadow_frame, obj, field, field_type, result);
        if (!ConvertReturnValue(callsite_type, handle_type, result)) {
          DCHECK(self->IsExceptionPending());
          return false;
        }
        return true;
      }
      case kStaticGet: {
        ObjPtr<mirror::Object> obj = GetAndInitializeDeclaringClass(self, field);
        if (obj == nullptr) {
          DCHECK(self->IsExceptionPending());
          return false;
        }
        DoFieldGetForInvokePolymorphic(self, shadow_frame, obj, field, field_type, result);
        if (!ConvertReturnValue(callsite_type, handle_type, result)) {
          DCHECK(self->IsExceptionPending());
          return false;
        }
        return true;
      }
      case kInstancePut: {
        JValue value = GetFieldValue(shadow_frame, field_type, arg[1]);
        if (!ConvertArgumentValue(callsite_type, handle_type, 1, &value)) {
          DCHECK(self->IsExceptionPending());
          return false;
        }
        ObjPtr<mirror::Object> obj = shadow_frame.GetVRegReference(first_src_reg);
        return DoFieldPutForInvokePolymorphic(self, shadow_frame, obj, field, field_type, value);
      }
      case kStaticPut: {
        JValue value = GetFieldValue(shadow_frame, field_type, arg[0]);
        if (!ConvertArgumentValue(callsite_type, handle_type, 0, &value)) {
          DCHECK(self->IsExceptionPending());
          return false;
        }
        ObjPtr<mirror::Object> obj = field->GetDeclaringClass();
        return DoFieldPutForInvokePolymorphic(self, shadow_frame, obj, field, field_type, value);
      }
      default:
        LOG(FATAL) << "Unreachable: " << handle_kind;
        UNREACHABLE();
    }
  }
}

// Calculate the number of ins for a proxy or native method, where we
// can't just look at the code item.
static inline size_t GetInsForProxyOrNativeMethod(ArtMethod* method)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  DCHECK(method->IsNative() || method->IsProxyMethod());

  method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
  size_t num_ins = 0;
  // Separate accounting for the receiver, which isn't a part of the
  // shorty.
  if (!method->IsStatic()) {
    ++num_ins;
  }

  uint32_t shorty_len = 0;
  const char* shorty = method->GetShorty(&shorty_len);
  for (size_t i = 1; i < shorty_len; ++i) {
    const char c = shorty[i];
    ++num_ins;
    if (c == 'J' || c == 'D') {
      ++num_ins;
    }
  }

  return num_ins;
}


inline void PerformCall(Thread* self,
                        const DexFile::CodeItem* code_item,
                        ArtMethod* caller_method,
                        const size_t first_dest_reg,
                        ShadowFrame* callee_frame,
                        JValue* result) {
  if (LIKELY(Runtime::Current()->IsStarted())) {
    ArtMethod* target = callee_frame->GetMethod();
    if (ClassLinker::ShouldUseInterpreterEntrypoint(
        target,
        target->GetEntryPointFromQuickCompiledCode())) {
      ArtInterpreterToInterpreterBridge(self, code_item, callee_frame, result);
    } else {
      ArtInterpreterToCompiledCodeBridge(
          self, caller_method, code_item, callee_frame, result);
    }
  } else {
    UnstartedRuntime::Invoke(self, code_item, callee_frame, result, first_dest_reg);
  }
}

template <bool is_range>
inline void CopyRegisters(ShadowFrame& caller_frame,
                          ShadowFrame* callee_frame,
                          const uint32_t (&arg)[Instruction::kMaxVarArgRegs],
                          const size_t first_src_reg,
                          const size_t first_dest_reg,
                          const size_t num_regs) {
  if (is_range) {
    const size_t dest_reg_bound = first_dest_reg + num_regs;
    for (size_t src_reg = first_src_reg, dest_reg = first_dest_reg; dest_reg < dest_reg_bound;
        ++dest_reg, ++src_reg) {
      AssignRegister(callee_frame, caller_frame, dest_reg, src_reg);
    }
  } else {
    DCHECK_LE(num_regs, arraysize(arg));

    for (size_t arg_index = 0; arg_index < num_regs; ++arg_index) {
      AssignRegister(callee_frame, caller_frame, first_dest_reg + arg_index, arg[arg_index]);
    }
  }
}

template <bool is_range>
static inline bool DoCallPolymorphic(ArtMethod* called_method,
                                     Handle<mirror::MethodType> callsite_type,
                                     Handle<mirror::MethodType> target_type,
                                     Thread* self,
                                     ShadowFrame& shadow_frame,
                                     JValue* result,
                                     uint32_t (&arg)[Instruction::kMaxVarArgRegs],
                                     uint32_t first_src_reg,
                                     const MethodHandleKind handle_kind) {
  // Compute method information.
  const DexFile::CodeItem* code_item = called_method->GetCodeItem();

  // Number of registers for the callee's call frame. Note that for non-exact
  // invokes, we always derive this information from the callee method. We
  // cannot guarantee during verification that the number of registers encoded
  // in the invoke is equal to the number of ins for the callee. This is because
  // some transformations (such as boxing a long -> Long or wideining an
  // int -> long will change that number.
  uint16_t num_regs;
  size_t num_input_regs;
  size_t first_dest_reg;
  if (LIKELY(code_item != nullptr)) {
    num_regs = code_item->registers_size_;
    first_dest_reg = num_regs - code_item->ins_size_;
    num_input_regs = code_item->ins_size_;
    // Parameter registers go at the end of the shadow frame.
    DCHECK_NE(first_dest_reg, (size_t)-1);
  } else {
    // No local regs for proxy and native methods.
    DCHECK(called_method->IsNative() || called_method->IsProxyMethod());
    num_regs = num_input_regs = GetInsForProxyOrNativeMethod(called_method);
    first_dest_reg = 0;
  }

  // Allocate shadow frame on the stack.
  ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
      CREATE_SHADOW_FRAME(num_regs, &shadow_frame, called_method, /* dex pc */ 0);
  ShadowFrame* new_shadow_frame = shadow_frame_unique_ptr.get();

  // Whether this polymorphic invoke was issued by a transformer method.
  bool is_caller_transformer = false;
  // Thread might be suspended during PerformArgumentConversions due to the
  // allocations performed during boxing.
  {
    ScopedStackedShadowFramePusher pusher(
        self, new_shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction);
    if (callsite_type->IsExactMatch(target_type.Get())) {
      // This is an exact invoke, we can take the fast path of just copying all
      // registers without performing any argument conversions.
      CopyRegisters<is_range>(shadow_frame,
                              new_shadow_frame,
                              arg,
                              first_src_reg,
                              first_dest_reg,
                              num_input_regs);
    } else {
      // This includes the case where we're entering this invoke-polymorphic
      // from a transformer method. In that case, the callsite_type will contain
      // a single argument of type dalvik.system.EmulatedStackFrame. In that
      // case, we'll have to unmarshal the EmulatedStackFrame into the
      // new_shadow_frame and perform argument conversions on it.
      if (IsCallerTransformer(callsite_type)) {
        is_caller_transformer = true;
        // The emulated stack frame is the first and only argument when we're coming
        // through from a transformer.
        ObjPtr<mirror::EmulatedStackFrame> emulated_stack_frame(
            reinterpret_cast<mirror::EmulatedStackFrame*>(
                shadow_frame.GetVRegReference(first_src_reg)));
        if (!emulated_stack_frame->WriteToShadowFrame(self,
                                                      target_type,
                                                      first_dest_reg,
                                                      new_shadow_frame)) {
          DCHECK(self->IsExceptionPending());
          result->SetL(0);
          return false;
        }
      } else if (!ConvertAndCopyArgumentsFromCallerFrame<is_range>(self,
                                                                   callsite_type,
                                                                   target_type,
                                                                   shadow_frame,
                                                                   first_src_reg,
                                                                   first_dest_reg,
                                                                   arg,
                                                                   new_shadow_frame)) {
        DCHECK(self->IsExceptionPending());
        result->SetL(0);
        return false;
      }
    }
  }

  // See TODO in DoInvokePolymorphic : We need to perform this dynamic, receiver
  // based dispatch right before we perform the actual call, because the
  // receiver isn't known very early.
  if (handle_kind == kInvokeVirtual || handle_kind == kInvokeInterface) {
    ObjPtr<mirror::Object> receiver(new_shadow_frame->GetVRegReference(first_dest_reg));
    ObjPtr<mirror::Class> declaring_class(called_method->GetDeclaringClass());
    // Verify that _vRegC is an object reference and of the type expected by
    // the receiver.
    if (!VerifyObjectIsClass(receiver, declaring_class)) {
      DCHECK(self->IsExceptionPending());
      return false;
    }

    called_method = receiver->GetClass()->FindVirtualMethodForVirtualOrInterface(
        called_method, kRuntimePointerSize);
  }

  PerformCall(self, code_item, shadow_frame.GetMethod(), first_dest_reg, new_shadow_frame, result);

  // If the caller of this signature polymorphic method was a transformer,
  // we need to copy the result back out to the emulated stack frame.
  if (is_caller_transformer && !self->IsExceptionPending()) {
    ObjPtr<mirror::EmulatedStackFrame> emulated_stack_frame(
        reinterpret_cast<mirror::EmulatedStackFrame*>(
            shadow_frame.GetVRegReference(first_src_reg)));

    emulated_stack_frame->SetReturnValue(self, *result);
  }

  return !self->IsExceptionPending();
}

template <bool is_range>
static inline bool DoCallTransform(ArtMethod* called_method,
                                   Handle<mirror::MethodType> callsite_type,
                                   Handle<mirror::MethodType> callee_type,
                                   Thread* self,
                                   ShadowFrame& shadow_frame,
                                   Handle<mirror::MethodHandleImpl> receiver,
                                   JValue* result,
                                   uint32_t (&arg)[Instruction::kMaxVarArgRegs],
                                   uint32_t first_src_reg) {
  // This can be fixed to two, because the method we're calling here
  // (MethodHandle.transformInternal) doesn't have any locals and the signature
  // is known :
  //
  // private MethodHandle.transformInternal(EmulatedStackFrame sf);
  //
  // This means we need only two vregs :
  // - One for the receiver object.
  // - One for the only method argument (an EmulatedStackFrame).
  static constexpr size_t kNumRegsForTransform = 2;

  const DexFile::CodeItem* code_item = called_method->GetCodeItem();
  DCHECK(code_item != nullptr);
  DCHECK_EQ(kNumRegsForTransform, code_item->registers_size_);
  DCHECK_EQ(kNumRegsForTransform, code_item->ins_size_);

  ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
      CREATE_SHADOW_FRAME(kNumRegsForTransform, &shadow_frame, called_method, /* dex pc */ 0);
  ShadowFrame* new_shadow_frame = shadow_frame_unique_ptr.get();

  StackHandleScope<1> hs(self);
  MutableHandle<mirror::EmulatedStackFrame> sf(hs.NewHandle<mirror::EmulatedStackFrame>(nullptr));
  if (IsCallerTransformer(callsite_type)) {
    // If we're entering this transformer from another transformer, we can pass
    // through the handle directly to the callee, instead of having to
    // instantiate a new stack frame based on the shadow frame.
    sf.Assign(reinterpret_cast<mirror::EmulatedStackFrame*>(
        shadow_frame.GetVRegReference(first_src_reg)));
  } else {
    sf.Assign(mirror::EmulatedStackFrame::CreateFromShadowFrameAndArgs<is_range>(
        self,
        callsite_type,
        callee_type,
        shadow_frame,
        first_src_reg,
        arg));

    // Something went wrong while creating the emulated stack frame, we should
    // throw the pending exception.
    if (sf.Get() == nullptr) {
      DCHECK(self->IsExceptionPending());
      return false;
    }
  }

  new_shadow_frame->SetVRegReference(0, receiver.Get());
  new_shadow_frame->SetVRegReference(1, sf.Get());

  PerformCall(self,
              code_item,
              shadow_frame.GetMethod(),
              0 /* first dest reg */,
              new_shadow_frame,
              result);

  // If the called transformer method we called has returned a value, then we
  // need to copy it back to |result|.
  if (!self->IsExceptionPending()) {
    sf->GetReturnValue(self, result);
  }

  return !self->IsExceptionPending();
}

template <bool is_range,
          bool do_assignability_check>
static inline bool DoCallCommon(ArtMethod* called_method,
                                Thread* self,
                                ShadowFrame& shadow_frame,
                                JValue* result,
                                uint16_t number_of_inputs,
                                uint32_t (&arg)[Instruction::kMaxVarArgRegs],
                                uint32_t vregC) {
  bool string_init = false;
  // Replace calls to String.<init> with equivalent StringFactory call.
  if (UNLIKELY(called_method->GetDeclaringClass()->IsStringClass()
               && called_method->IsConstructor())) {
    called_method = WellKnownClasses::StringInitToStringFactory(called_method);
    string_init = true;
  }

  // Compute method information.
  const DexFile::CodeItem* code_item = called_method->GetCodeItem();

  // Number of registers for the callee's call frame.
  uint16_t num_regs;
  if (LIKELY(code_item != nullptr)) {
    num_regs = code_item->registers_size_;
    DCHECK_EQ(string_init ? number_of_inputs - 1 : number_of_inputs, code_item->ins_size_);
  } else {
    DCHECK(called_method->IsNative() || called_method->IsProxyMethod());
    num_regs = number_of_inputs;
  }

  // Hack for String init:
  //
  // Rewrite invoke-x java.lang.String.<init>(this, a, b, c, ...) into:
  //         invoke-x StringFactory(a, b, c, ...)
  // by effectively dropping the first virtual register from the invoke.
  //
  // (at this point the ArtMethod has already been replaced,
  // so we just need to fix-up the arguments)
  //
  // Note that FindMethodFromCode in entrypoint_utils-inl.h was also special-cased
  // to handle the compiler optimization of replacing `this` with null without
  // throwing NullPointerException.
  uint32_t string_init_vreg_this = is_range ? vregC : arg[0];
  if (UNLIKELY(string_init)) {
    DCHECK_GT(num_regs, 0u);  // As the method is an instance method, there should be at least 1.

    // The new StringFactory call is static and has one fewer argument.
    if (code_item == nullptr) {
      DCHECK(called_method->IsNative() || called_method->IsProxyMethod());
      num_regs--;
    }  // else ... don't need to change num_regs since it comes up from the string_init's code item
    number_of_inputs--;

    // Rewrite the var-args, dropping the 0th argument ("this")
    for (uint32_t i = 1; i < arraysize(arg); ++i) {
      arg[i - 1] = arg[i];
    }
    arg[arraysize(arg) - 1] = 0;

    // Rewrite the non-var-arg case
    vregC++;  // Skips the 0th vreg in the range ("this").
  }

  // Parameter registers go at the end of the shadow frame.
  DCHECK_GE(num_regs, number_of_inputs);
  size_t first_dest_reg = num_regs - number_of_inputs;
  DCHECK_NE(first_dest_reg, (size_t)-1);

  // Allocate shadow frame on the stack.
  const char* old_cause = self->StartAssertNoThreadSuspension("DoCallCommon");
  ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
      CREATE_SHADOW_FRAME(num_regs, &shadow_frame, called_method, /* dex pc */ 0);
  ShadowFrame* new_shadow_frame = shadow_frame_unique_ptr.get();

  // Initialize new shadow frame by copying the registers from the callee shadow frame.
  if (do_assignability_check) {
    // Slow path.
    // We might need to do class loading, which incurs a thread state change to kNative. So
    // register the shadow frame as under construction and allow suspension again.
    ScopedStackedShadowFramePusher pusher(
        self, new_shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction);
    self->EndAssertNoThreadSuspension(old_cause);

    // ArtMethod here is needed to check type information of the call site against the callee.
    // Type information is retrieved from a DexFile/DexCache for that respective declared method.
    //
    // As a special case for proxy methods, which are not dex-backed,
    // we have to retrieve type information from the proxy's method
    // interface method instead (which is dex backed since proxies are never interfaces).
    ArtMethod* method =
        new_shadow_frame->GetMethod()->GetInterfaceMethodIfProxy(kRuntimePointerSize);

    // We need to do runtime check on reference assignment. We need to load the shorty
    // to get the exact type of each reference argument.
    const DexFile::TypeList* params = method->GetParameterTypeList();
    uint32_t shorty_len = 0;
    const char* shorty = method->GetShorty(&shorty_len);

    // Handle receiver apart since it's not part of the shorty.
    size_t dest_reg = first_dest_reg;
    size_t arg_offset = 0;

    if (!method->IsStatic()) {
      size_t receiver_reg = is_range ? vregC : arg[0];
      new_shadow_frame->SetVRegReference(dest_reg, shadow_frame.GetVRegReference(receiver_reg));
      ++dest_reg;
      ++arg_offset;
      DCHECK(!string_init);  // All StringFactory methods are static.
    }

    // Copy the caller's invoke-* arguments into the callee's parameter registers.
    for (uint32_t shorty_pos = 0; dest_reg < num_regs; ++shorty_pos, ++dest_reg, ++arg_offset) {
      // Skip the 0th 'shorty' type since it represents the return type.
      DCHECK_LT(shorty_pos + 1, shorty_len) << "for shorty '" << shorty << "'";
      const size_t src_reg = (is_range) ? vregC + arg_offset : arg[arg_offset];
      switch (shorty[shorty_pos + 1]) {
        // Handle Object references. 1 virtual register slot.
        case 'L': {
          ObjPtr<mirror::Object> o = shadow_frame.GetVRegReference(src_reg);
          if (do_assignability_check && o != nullptr) {
            PointerSize pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
            const uint32_t type_idx = params->GetTypeItem(shorty_pos).type_idx_;
            ObjPtr<mirror::Class> arg_type = method->GetDexCacheResolvedType(type_idx,
                                                                             pointer_size);
            if (arg_type == nullptr) {
              StackHandleScope<1> hs(self);
              // Preserve o since it is used below and GetClassFromTypeIndex may cause thread
              // suspension.
              HandleWrapperObjPtr<mirror::Object> h = hs.NewHandleWrapper(&o);
              arg_type = method->GetClassFromTypeIndex(type_idx, true /* resolve */, pointer_size);
              if (arg_type == nullptr) {
                CHECK(self->IsExceptionPending());
                return false;
              }
            }
            if (!o->VerifierInstanceOf(arg_type)) {
              // This should never happen.
              std::string temp1, temp2;
              self->ThrowNewExceptionF("Ljava/lang/VirtualMachineError;",
                                       "Invoking %s with bad arg %d, type '%s' not instance of '%s'",
                                       new_shadow_frame->GetMethod()->GetName(), shorty_pos,
                                       o->GetClass()->GetDescriptor(&temp1),
                                       arg_type->GetDescriptor(&temp2));
              return false;
            }
          }
          new_shadow_frame->SetVRegReference(dest_reg, o.Ptr());
          break;
        }
        // Handle doubles and longs. 2 consecutive virtual register slots.
        case 'J': case 'D': {
          uint64_t wide_value =
              (static_cast<uint64_t>(shadow_frame.GetVReg(src_reg + 1)) << BitSizeOf<uint32_t>()) |
               static_cast<uint32_t>(shadow_frame.GetVReg(src_reg));
          new_shadow_frame->SetVRegLong(dest_reg, wide_value);
          // Skip the next virtual register slot since we already used it.
          ++dest_reg;
          ++arg_offset;
          break;
        }
        // Handle all other primitives that are always 1 virtual register slot.
        default:
          new_shadow_frame->SetVReg(dest_reg, shadow_frame.GetVReg(src_reg));
          break;
      }
    }
  } else {
    if (is_range) {
      DCHECK_EQ(num_regs, first_dest_reg + number_of_inputs);
    }

    CopyRegisters<is_range>(shadow_frame,
                            new_shadow_frame,
                            arg,
                            vregC,
                            first_dest_reg,
                            number_of_inputs);
    self->EndAssertNoThreadSuspension(old_cause);
  }

  PerformCall(self, code_item, shadow_frame.GetMethod(), first_dest_reg, new_shadow_frame, result);

  if (string_init && !self->IsExceptionPending()) {
    SetStringInitValueToAllAliases(&shadow_frame, string_init_vreg_this, *result);
  }

  return !self->IsExceptionPending();
}

template<bool is_range, bool do_assignability_check>
bool DoCall(ArtMethod* called_method, Thread* self, ShadowFrame& shadow_frame,
            const Instruction* inst, uint16_t inst_data, JValue* result) {
  // Argument word count.
  const uint16_t number_of_inputs =
      (is_range) ? inst->VRegA_3rc(inst_data) : inst->VRegA_35c(inst_data);

  // TODO: find a cleaner way to separate non-range and range information without duplicating
  //       code.
  uint32_t arg[Instruction::kMaxVarArgRegs] = {};  // only used in invoke-XXX.
  uint32_t vregC = 0;
  if (is_range) {
    vregC = inst->VRegC_3rc();
  } else {
    vregC = inst->VRegC_35c();
    inst->GetVarArgs(arg, inst_data);
  }

  return DoCallCommon<is_range, do_assignability_check>(
      called_method, self, shadow_frame,
      result, number_of_inputs, arg, vregC);
}

template <bool is_range, bool do_access_check, bool transaction_active>
bool DoFilledNewArray(const Instruction* inst,
                      const ShadowFrame& shadow_frame,
                      Thread* self,
                      JValue* result) {
  DCHECK(inst->Opcode() == Instruction::FILLED_NEW_ARRAY ||
         inst->Opcode() == Instruction::FILLED_NEW_ARRAY_RANGE);
  const int32_t length = is_range ? inst->VRegA_3rc() : inst->VRegA_35c();
  if (!is_range) {
    // Checks FILLED_NEW_ARRAY's length does not exceed 5 arguments.
    CHECK_LE(length, 5);
  }
  if (UNLIKELY(length < 0)) {
    ThrowNegativeArraySizeException(length);
    return false;
  }
  uint16_t type_idx = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
  ObjPtr<mirror::Class> array_class = ResolveVerifyAndClinit(type_idx,
                                                             shadow_frame.GetMethod(),
                                                             self,
                                                             false,
                                                             do_access_check);
  if (UNLIKELY(array_class == nullptr)) {
    DCHECK(self->IsExceptionPending());
    return false;
  }
  CHECK(array_class->IsArrayClass());
  ObjPtr<mirror::Class> component_class = array_class->GetComponentType();
  const bool is_primitive_int_component = component_class->IsPrimitiveInt();
  if (UNLIKELY(component_class->IsPrimitive() && !is_primitive_int_component)) {
    if (component_class->IsPrimitiveLong() || component_class->IsPrimitiveDouble()) {
      ThrowRuntimeException("Bad filled array request for type %s",
                            component_class->PrettyDescriptor().c_str());
    } else {
      self->ThrowNewExceptionF("Ljava/lang/InternalError;",
                               "Found type %s; filled-new-array not implemented for anything but 'int'",
                               component_class->PrettyDescriptor().c_str());
    }
    return false;
  }
  ObjPtr<mirror::Object> new_array = mirror::Array::Alloc<true>(
      self,
      array_class,
      length,
      array_class->GetComponentSizeShift(),
      Runtime::Current()->GetHeap()->GetCurrentAllocator());
  if (UNLIKELY(new_array == nullptr)) {
    self->AssertPendingOOMException();
    return false;
  }
  uint32_t arg[Instruction::kMaxVarArgRegs];  // only used in filled-new-array.
  uint32_t vregC = 0;   // only used in filled-new-array-range.
  if (is_range) {
    vregC = inst->VRegC_3rc();
  } else {
    inst->GetVarArgs(arg);
  }
  for (int32_t i = 0; i < length; ++i) {
    size_t src_reg = is_range ? vregC + i : arg[i];
    if (is_primitive_int_component) {
      new_array->AsIntArray()->SetWithoutChecks<transaction_active>(
          i, shadow_frame.GetVReg(src_reg));
    } else {
      new_array->AsObjectArray<mirror::Object>()->SetWithoutChecks<transaction_active>(
          i, shadow_frame.GetVRegReference(src_reg));
    }
  }

  result->SetL(new_array);
  return true;
}

// TODO: Use ObjPtr here.
template<typename T>
static void RecordArrayElementsInTransactionImpl(mirror::PrimitiveArray<T>* array,
                                                 int32_t count)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  Runtime* runtime = Runtime::Current();
  for (int32_t i = 0; i < count; ++i) {
    runtime->RecordWriteArray(array, i, array->GetWithoutChecks(i));
  }
}

void RecordArrayElementsInTransaction(ObjPtr<mirror::Array> array, int32_t count)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  DCHECK(Runtime::Current()->IsActiveTransaction());
  DCHECK(array != nullptr);
  DCHECK_LE(count, array->GetLength());
  Primitive::Type primitive_component_type = array->GetClass()->GetComponentType()->GetPrimitiveType();
  switch (primitive_component_type) {
    case Primitive::kPrimBoolean:
      RecordArrayElementsInTransactionImpl(array->AsBooleanArray(), count);
      break;
    case Primitive::kPrimByte:
      RecordArrayElementsInTransactionImpl(array->AsByteArray(), count);
      break;
    case Primitive::kPrimChar:
      RecordArrayElementsInTransactionImpl(array->AsCharArray(), count);
      break;
    case Primitive::kPrimShort:
      RecordArrayElementsInTransactionImpl(array->AsShortArray(), count);
      break;
    case Primitive::kPrimInt:
      RecordArrayElementsInTransactionImpl(array->AsIntArray(), count);
      break;
    case Primitive::kPrimFloat:
      RecordArrayElementsInTransactionImpl(array->AsFloatArray(), count);
      break;
    case Primitive::kPrimLong:
      RecordArrayElementsInTransactionImpl(array->AsLongArray(), count);
      break;
    case Primitive::kPrimDouble:
      RecordArrayElementsInTransactionImpl(array->AsDoubleArray(), count);
      break;
    default:
      LOG(FATAL) << "Unsupported primitive type " << primitive_component_type
                 << " in fill-array-data";
      break;
  }
}

// Explicit DoCall template function declarations.
#define EXPLICIT_DO_CALL_TEMPLATE_DECL(_is_range, _do_assignability_check)                      \
  template REQUIRES_SHARED(Locks::mutator_lock_)                                                \
  bool DoCall<_is_range, _do_assignability_check>(ArtMethod* method, Thread* self,              \
                                                  ShadowFrame& shadow_frame,                    \
                                                  const Instruction* inst, uint16_t inst_data,  \
                                                  JValue* result)
EXPLICIT_DO_CALL_TEMPLATE_DECL(false, false);
EXPLICIT_DO_CALL_TEMPLATE_DECL(false, true);
EXPLICIT_DO_CALL_TEMPLATE_DECL(true, false);
EXPLICIT_DO_CALL_TEMPLATE_DECL(true, true);
#undef EXPLICIT_DO_CALL_TEMPLATE_DECL

// Explicit DoInvokePolymorphic template function declarations.
#define EXPLICIT_DO_INVOKE_POLYMORPHIC_TEMPLATE_DECL(_is_range, _do_assignability_check)  \
  template REQUIRES_SHARED(Locks::mutator_lock_)                                          \
  bool DoInvokePolymorphic<_is_range, _do_assignability_check>(                           \
      Thread* self, ShadowFrame& shadow_frame, const Instruction* inst,                   \
      uint16_t inst_data, JValue* result)

EXPLICIT_DO_INVOKE_POLYMORPHIC_TEMPLATE_DECL(false, false);
EXPLICIT_DO_INVOKE_POLYMORPHIC_TEMPLATE_DECL(false, true);
EXPLICIT_DO_INVOKE_POLYMORPHIC_TEMPLATE_DECL(true, false);
EXPLICIT_DO_INVOKE_POLYMORPHIC_TEMPLATE_DECL(true, true);
#undef EXPLICIT_DO_INVOKE_POLYMORPHIC_TEMPLATE_DECL

// Explicit DoFilledNewArray template function declarations.
#define EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL(_is_range_, _check, _transaction_active)       \
  template REQUIRES_SHARED(Locks::mutator_lock_)                                                  \
  bool DoFilledNewArray<_is_range_, _check, _transaction_active>(const Instruction* inst,         \
                                                                 const ShadowFrame& shadow_frame, \
                                                                 Thread* self, JValue* result)
#define EXPLICIT_DO_FILLED_NEW_ARRAY_ALL_TEMPLATE_DECL(_transaction_active)       \
  EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL(false, false, _transaction_active);  \
  EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL(false, true, _transaction_active);   \
  EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL(true, false, _transaction_active);   \
  EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL(true, true, _transaction_active)
EXPLICIT_DO_FILLED_NEW_ARRAY_ALL_TEMPLATE_DECL(false);
EXPLICIT_DO_FILLED_NEW_ARRAY_ALL_TEMPLATE_DECL(true);
#undef EXPLICIT_DO_FILLED_NEW_ARRAY_ALL_TEMPLATE_DECL
#undef EXPLICIT_DO_FILLED_NEW_ARRAY_TEMPLATE_DECL

}  // namespace interpreter
}  // namespace art