summaryrefslogtreecommitdiff
path: root/runtime/gc/space/image_space.cc
blob: c87312b655f8ed96a04716eb5f134c2819d3c5d2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "image_space.h"

#include <lz4.h>
#include <random>
#include <sys/statvfs.h>
#include <sys/types.h>
#include <unistd.h>

#include "art_method.h"
#include "base/enums.h"
#include "base/macros.h"
#include "base/stl_util.h"
#include "base/scoped_flock.h"
#include "base/systrace.h"
#include "base/time_utils.h"
#include "gc/accounting/space_bitmap-inl.h"
#include "image-inl.h"
#include "image_space_fs.h"
#include "mirror/class-inl.h"
#include "mirror/object-inl.h"
#include "oat_file.h"
#include "os.h"
#include "space-inl.h"
#include "utils.h"

namespace art {
namespace gc {
namespace space {

Atomic<uint32_t> ImageSpace::bitmap_index_(0);

ImageSpace::ImageSpace(const std::string& image_filename,
                       const char* image_location,
                       MemMap* mem_map,
                       accounting::ContinuousSpaceBitmap* live_bitmap,
                       uint8_t* end)
    : MemMapSpace(image_filename,
                  mem_map,
                  mem_map->Begin(),
                  end,
                  end,
                  kGcRetentionPolicyNeverCollect),
      oat_file_non_owned_(nullptr),
      image_location_(image_location) {
  DCHECK(live_bitmap != nullptr);
  live_bitmap_.reset(live_bitmap);
}

static int32_t ChooseRelocationOffsetDelta(int32_t min_delta, int32_t max_delta) {
  CHECK_ALIGNED(min_delta, kPageSize);
  CHECK_ALIGNED(max_delta, kPageSize);
  CHECK_LT(min_delta, max_delta);

  int32_t r = GetRandomNumber<int32_t>(min_delta, max_delta);
  if (r % 2 == 0) {
    r = RoundUp(r, kPageSize);
  } else {
    r = RoundDown(r, kPageSize);
  }
  CHECK_LE(min_delta, r);
  CHECK_GE(max_delta, r);
  CHECK_ALIGNED(r, kPageSize);
  return r;
}

static int32_t ChooseRelocationOffsetDelta() {
  return ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA, ART_BASE_ADDRESS_MAX_DELTA);
}

static bool GenerateImage(const std::string& image_filename,
                          InstructionSet image_isa,
                          std::string* error_msg) {
  const std::string boot_class_path_string(Runtime::Current()->GetBootClassPathString());
  std::vector<std::string> boot_class_path;
  Split(boot_class_path_string, ':', &boot_class_path);
  if (boot_class_path.empty()) {
    *error_msg = "Failed to generate image because no boot class path specified";
    return false;
  }
  // We should clean up so we are more likely to have room for the image.
  if (Runtime::Current()->IsZygote()) {
    LOG(INFO) << "Pruning dalvik-cache since we are generating an image and will need to recompile";
    PruneDalvikCache(image_isa);
  }

  std::vector<std::string> arg_vector;

  std::string dex2oat(Runtime::Current()->GetCompilerExecutable());
  arg_vector.push_back(dex2oat);

  std::string image_option_string("--image=");
  image_option_string += image_filename;
  arg_vector.push_back(image_option_string);

  for (size_t i = 0; i < boot_class_path.size(); i++) {
    arg_vector.push_back(std::string("--dex-file=") + boot_class_path[i]);
  }

  std::string oat_file_option_string("--oat-file=");
  oat_file_option_string += ImageHeader::GetOatLocationFromImageLocation(image_filename);
  arg_vector.push_back(oat_file_option_string);

  // Note: we do not generate a fully debuggable boot image so we do not pass the
  // compiler flag --debuggable here.

  Runtime::Current()->AddCurrentRuntimeFeaturesAsDex2OatArguments(&arg_vector);
  CHECK_EQ(image_isa, kRuntimeISA)
      << "We should always be generating an image for the current isa.";

  int32_t base_offset = ChooseRelocationOffsetDelta();
  LOG(INFO) << "Using an offset of 0x" << std::hex << base_offset << " from default "
            << "art base address of 0x" << std::hex << ART_BASE_ADDRESS;
  arg_vector.push_back(StringPrintf("--base=0x%x", ART_BASE_ADDRESS + base_offset));

  if (!kIsTargetBuild) {
    arg_vector.push_back("--host");
  }

  const std::vector<std::string>& compiler_options = Runtime::Current()->GetImageCompilerOptions();
  for (size_t i = 0; i < compiler_options.size(); ++i) {
    arg_vector.push_back(compiler_options[i].c_str());
  }

  std::string command_line(Join(arg_vector, ' '));
  LOG(INFO) << "GenerateImage: " << command_line;
  return Exec(arg_vector, error_msg);
}

static bool FindImageFilenameImpl(const char* image_location,
                                  const InstructionSet image_isa,
                                  bool* has_system,
                                  std::string* system_filename,
                                  bool* dalvik_cache_exists,
                                  std::string* dalvik_cache,
                                  bool* is_global_cache,
                                  bool* has_cache,
                                  std::string* cache_filename) {
  DCHECK(dalvik_cache != nullptr);

  *has_system = false;
  *has_cache = false;
  // image_location = /system/framework/boot.art
  // system_image_location = /system/framework/<image_isa>/boot.art
  std::string system_image_filename(GetSystemImageFilename(image_location, image_isa));
  if (OS::FileExists(system_image_filename.c_str())) {
    *system_filename = system_image_filename;
    *has_system = true;
  }

  bool have_android_data = false;
  *dalvik_cache_exists = false;
  GetDalvikCache(GetInstructionSetString(image_isa),
                 true,
                 dalvik_cache,
                 &have_android_data,
                 dalvik_cache_exists,
                 is_global_cache);

  if (have_android_data && *dalvik_cache_exists) {
    // Always set output location even if it does not exist,
    // so that the caller knows where to create the image.
    //
    // image_location = /system/framework/boot.art
    // *image_filename = /data/dalvik-cache/<image_isa>/boot.art
    std::string error_msg;
    if (!GetDalvikCacheFilename(image_location,
                                dalvik_cache->c_str(),
                                cache_filename,
                                &error_msg)) {
      LOG(WARNING) << error_msg;
      return *has_system;
    }
    *has_cache = OS::FileExists(cache_filename->c_str());
  }
  return *has_system || *has_cache;
}

bool ImageSpace::FindImageFilename(const char* image_location,
                                   const InstructionSet image_isa,
                                   std::string* system_filename,
                                   bool* has_system,
                                   std::string* cache_filename,
                                   bool* dalvik_cache_exists,
                                   bool* has_cache,
                                   bool* is_global_cache) {
  std::string dalvik_cache_unused;
  return FindImageFilenameImpl(image_location,
                               image_isa,
                               has_system,
                               system_filename,
                               dalvik_cache_exists,
                               &dalvik_cache_unused,
                               is_global_cache,
                               has_cache,
                               cache_filename);
}

static bool ReadSpecificImageHeader(const char* filename, ImageHeader* image_header) {
    std::unique_ptr<File> image_file(OS::OpenFileForReading(filename));
    if (image_file.get() == nullptr) {
      return false;
    }
    const bool success = image_file->ReadFully(image_header, sizeof(ImageHeader));
    if (!success || !image_header->IsValid()) {
      return false;
    }
    return true;
}

// Relocate the image at image_location to dest_filename and relocate it by a random amount.
static bool RelocateImage(const char* image_location,
                          const char* dest_filename,
                          InstructionSet isa,
                          std::string* error_msg) {
  // We should clean up so we are more likely to have room for the image.
  if (Runtime::Current()->IsZygote()) {
    LOG(INFO) << "Pruning dalvik-cache since we are relocating an image and will need to recompile";
    PruneDalvikCache(isa);
  }

  std::string patchoat(Runtime::Current()->GetPatchoatExecutable());

  std::string input_image_location_arg("--input-image-location=");
  input_image_location_arg += image_location;

  std::string output_image_filename_arg("--output-image-file=");
  output_image_filename_arg += dest_filename;

  std::string instruction_set_arg("--instruction-set=");
  instruction_set_arg += GetInstructionSetString(isa);

  std::string base_offset_arg("--base-offset-delta=");
  StringAppendF(&base_offset_arg, "%d", ChooseRelocationOffsetDelta());

  std::vector<std::string> argv;
  argv.push_back(patchoat);

  argv.push_back(input_image_location_arg);
  argv.push_back(output_image_filename_arg);

  argv.push_back(instruction_set_arg);
  argv.push_back(base_offset_arg);

  std::string command_line(Join(argv, ' '));
  LOG(INFO) << "RelocateImage: " << command_line;
  return Exec(argv, error_msg);
}

static ImageHeader* ReadSpecificImageHeader(const char* filename, std::string* error_msg) {
  std::unique_ptr<ImageHeader> hdr(new ImageHeader);
  if (!ReadSpecificImageHeader(filename, hdr.get())) {
    *error_msg = StringPrintf("Unable to read image header for %s", filename);
    return nullptr;
  }
  return hdr.release();
}

ImageHeader* ImageSpace::ReadImageHeader(const char* image_location,
                                         const InstructionSet image_isa,
                                         std::string* error_msg) {
  std::string system_filename;
  bool has_system = false;
  std::string cache_filename;
  bool has_cache = false;
  bool dalvik_cache_exists = false;
  bool is_global_cache = false;
  if (FindImageFilename(image_location, image_isa, &system_filename, &has_system,
                        &cache_filename, &dalvik_cache_exists, &has_cache, &is_global_cache)) {
    if (Runtime::Current()->ShouldRelocate()) {
      if (has_system && has_cache) {
        std::unique_ptr<ImageHeader> sys_hdr(new ImageHeader);
        std::unique_ptr<ImageHeader> cache_hdr(new ImageHeader);
        if (!ReadSpecificImageHeader(system_filename.c_str(), sys_hdr.get())) {
          *error_msg = StringPrintf("Unable to read image header for %s at %s",
                                    image_location, system_filename.c_str());
          return nullptr;
        }
        if (!ReadSpecificImageHeader(cache_filename.c_str(), cache_hdr.get())) {
          *error_msg = StringPrintf("Unable to read image header for %s at %s",
                                    image_location, cache_filename.c_str());
          return nullptr;
        }
        if (sys_hdr->GetOatChecksum() != cache_hdr->GetOatChecksum()) {
          *error_msg = StringPrintf("Unable to find a relocated version of image file %s",
                                    image_location);
          return nullptr;
        }
        return cache_hdr.release();
      } else if (!has_cache) {
        *error_msg = StringPrintf("Unable to find a relocated version of image file %s",
                                  image_location);
        return nullptr;
      } else if (!has_system && has_cache) {
        // This can probably just use the cache one.
        return ReadSpecificImageHeader(cache_filename.c_str(), error_msg);
      }
    } else {
      // We don't want to relocate, Just pick the appropriate one if we have it and return.
      if (has_system && has_cache) {
        // We want the cache if the checksum matches, otherwise the system.
        std::unique_ptr<ImageHeader> system(ReadSpecificImageHeader(system_filename.c_str(),
                                                                    error_msg));
        std::unique_ptr<ImageHeader> cache(ReadSpecificImageHeader(cache_filename.c_str(),
                                                                   error_msg));
        if (system.get() == nullptr ||
            (cache.get() != nullptr && cache->GetOatChecksum() == system->GetOatChecksum())) {
          return cache.release();
        } else {
          return system.release();
        }
      } else if (has_system) {
        return ReadSpecificImageHeader(system_filename.c_str(), error_msg);
      } else if (has_cache) {
        return ReadSpecificImageHeader(cache_filename.c_str(), error_msg);
      }
    }
  }

  *error_msg = StringPrintf("Unable to find image file for %s", image_location);
  return nullptr;
}

static bool ChecksumsMatch(const char* image_a, const char* image_b, std::string* error_msg) {
  DCHECK(error_msg != nullptr);

  ImageHeader hdr_a;
  ImageHeader hdr_b;

  if (!ReadSpecificImageHeader(image_a, &hdr_a)) {
    *error_msg = StringPrintf("Cannot read header of %s", image_a);
    return false;
  }
  if (!ReadSpecificImageHeader(image_b, &hdr_b)) {
    *error_msg = StringPrintf("Cannot read header of %s", image_b);
    return false;
  }

  if (hdr_a.GetOatChecksum() != hdr_b.GetOatChecksum()) {
    *error_msg = StringPrintf("Checksum mismatch: %u(%s) vs %u(%s)",
                              hdr_a.GetOatChecksum(),
                              image_a,
                              hdr_b.GetOatChecksum(),
                              image_b);
    return false;
  }

  return true;
}

static bool ImageCreationAllowed(bool is_global_cache, std::string* error_msg) {
  // Anyone can write into a "local" cache.
  if (!is_global_cache) {
    return true;
  }

  // Only the zygote is allowed to create the global boot image.
  if (Runtime::Current()->IsZygote()) {
    return true;
  }

  *error_msg = "Only the zygote can create the global boot image.";
  return false;
}

void ImageSpace::VerifyImageAllocations() {
  uint8_t* current = Begin() + RoundUp(sizeof(ImageHeader), kObjectAlignment);
  while (current < End()) {
    CHECK_ALIGNED(current, kObjectAlignment);
    auto* obj = reinterpret_cast<mirror::Object*>(current);
    CHECK(obj->GetClass() != nullptr) << "Image object at address " << obj << " has null class";
    CHECK(live_bitmap_->Test(obj)) << PrettyTypeOf(obj);
    if (kUseBakerOrBrooksReadBarrier) {
      obj->AssertReadBarrierPointer();
    }
    current += RoundUp(obj->SizeOf(), kObjectAlignment);
  }
}

// Helper class for relocating from one range of memory to another.
class RelocationRange {
 public:
  RelocationRange() = default;
  RelocationRange(const RelocationRange&) = default;
  RelocationRange(uintptr_t source, uintptr_t dest, uintptr_t length)
      : source_(source),
        dest_(dest),
        length_(length) {}

  bool InSource(uintptr_t address) const {
    return address - source_ < length_;
  }

  bool InDest(uintptr_t address) const {
    return address - dest_ < length_;
  }

  // Translate a source address to the destination space.
  uintptr_t ToDest(uintptr_t address) const {
    DCHECK(InSource(address));
    return address + Delta();
  }

  // Returns the delta between the dest from the source.
  uintptr_t Delta() const {
    return dest_ - source_;
  }

  uintptr_t Source() const {
    return source_;
  }

  uintptr_t Dest() const {
    return dest_;
  }

  uintptr_t Length() const {
    return length_;
  }

 private:
  const uintptr_t source_;
  const uintptr_t dest_;
  const uintptr_t length_;
};

std::ostream& operator<<(std::ostream& os, const RelocationRange& reloc) {
  return os << "(" << reinterpret_cast<const void*>(reloc.Source()) << "-"
            << reinterpret_cast<const void*>(reloc.Source() + reloc.Length()) << ")->("
            << reinterpret_cast<const void*>(reloc.Dest()) << "-"
            << reinterpret_cast<const void*>(reloc.Dest() + reloc.Length()) << ")";
}

// Helper class encapsulating loading, so we can access private ImageSpace members (this is a
// friend class), but not declare functions in the header.
class ImageSpaceLoader {
 public:
  static std::unique_ptr<ImageSpace> Load(const char* image_location,
                                          const std::string& image_filename,
                                          bool is_zygote,
                                          bool is_global_cache,
                                          bool validate_oat_file,
                                          std::string* error_msg)
      SHARED_REQUIRES(Locks::mutator_lock_) {
    // Note that we must not use the file descriptor associated with
    // ScopedFlock::GetFile to Init the image file. We want the file
    // descriptor (and the associated exclusive lock) to be released when
    // we leave Create.
    ScopedFlock image_lock;
    // Should this be a RDWR lock? This is only a defensive measure, as at
    // this point the image should exist.
    // However, only the zygote can write into the global dalvik-cache, so
    // restrict to zygote processes, or any process that isn't using
    // /data/dalvik-cache (which we assume to be allowed to write there).
    const bool rw_lock = is_zygote || !is_global_cache;
    image_lock.Init(image_filename.c_str(),
                    rw_lock ? (O_CREAT | O_RDWR) : O_RDONLY /* flags */,
                    true /* block */,
                    error_msg);
    VLOG(startup) << "Using image file " << image_filename.c_str() << " for image location "
                  << image_location;
    // If we are in /system we can assume the image is good. We can also
    // assume this if we are using a relocated image (i.e. image checksum
    // matches) since this is only different by the offset. We need this to
    // make sure that host tests continue to work.
    // Since we are the boot image, pass null since we load the oat file from the boot image oat
    // file name.
    return Init(image_filename.c_str(),
                image_location,
                validate_oat_file,
                /* oat_file */nullptr,
                error_msg);
  }

  static std::unique_ptr<ImageSpace> Init(const char* image_filename,
                                          const char* image_location,
                                          bool validate_oat_file,
                                          const OatFile* oat_file,
                                          std::string* error_msg)
      SHARED_REQUIRES(Locks::mutator_lock_) {
    CHECK(image_filename != nullptr);
    CHECK(image_location != nullptr);

    TimingLogger logger(__PRETTY_FUNCTION__, true, VLOG_IS_ON(image));
    VLOG(image) << "ImageSpace::Init entering image_filename=" << image_filename;

    std::unique_ptr<File> file;
    {
      TimingLogger::ScopedTiming timing("OpenImageFile", &logger);
      file.reset(OS::OpenFileForReading(image_filename));
      if (file == nullptr) {
        *error_msg = StringPrintf("Failed to open '%s'", image_filename);
        return nullptr;
      }
    }
    ImageHeader temp_image_header;
    ImageHeader* image_header = &temp_image_header;
    {
      TimingLogger::ScopedTiming timing("ReadImageHeader", &logger);
      bool success = file->ReadFully(image_header, sizeof(*image_header));
      if (!success || !image_header->IsValid()) {
        *error_msg = StringPrintf("Invalid image header in '%s'", image_filename);
        return nullptr;
      }
    }
    // Check that the file is larger or equal to the header size + data size.
    const uint64_t image_file_size = static_cast<uint64_t>(file->GetLength());
    if (image_file_size < sizeof(ImageHeader) + image_header->GetDataSize()) {
      *error_msg = StringPrintf("Image file truncated: %" PRIu64 " vs. %" PRIu64 ".",
                                image_file_size,
                                sizeof(ImageHeader) + image_header->GetDataSize());
      return nullptr;
    }

    if (oat_file != nullptr) {
      // If we have an oat file, check the oat file checksum. The oat file is only non-null for the
      // app image case. Otherwise, we open the oat file after the image and check the checksum there.
      const uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
      const uint32_t image_oat_checksum = image_header->GetOatChecksum();
      if (oat_checksum != image_oat_checksum) {
        *error_msg = StringPrintf("Oat checksum 0x%x does not match the image one 0x%x in image %s",
                                  oat_checksum,
                                  image_oat_checksum,
                                  image_filename);
        return nullptr;
      }
    }

    if (VLOG_IS_ON(startup)) {
      LOG(INFO) << "Dumping image sections";
      for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
        const auto section_idx = static_cast<ImageHeader::ImageSections>(i);
        auto& section = image_header->GetImageSection(section_idx);
        LOG(INFO) << section_idx << " start="
            << reinterpret_cast<void*>(image_header->GetImageBegin() + section.Offset()) << " "
            << section;
      }
    }

    const auto& bitmap_section = image_header->GetImageSection(ImageHeader::kSectionImageBitmap);
    // The location we want to map from is the first aligned page after the end of the stored
    // (possibly compressed) data.
    const size_t image_bitmap_offset = RoundUp(sizeof(ImageHeader) + image_header->GetDataSize(),
                                               kPageSize);
    const size_t end_of_bitmap = image_bitmap_offset + bitmap_section.Size();
    if (end_of_bitmap != image_file_size) {
      *error_msg = StringPrintf(
          "Image file size does not equal end of bitmap: size=%" PRIu64 " vs. %zu.", image_file_size,
          end_of_bitmap);
      return nullptr;
    }

    std::unique_ptr<MemMap> map;
    // GetImageBegin is the preferred address to map the image. If we manage to map the
    // image at the image begin, the amount of fixup work required is minimized.
    map.reset(LoadImageFile(image_filename,
                            image_location,
                            *image_header,
                            image_header->GetImageBegin(),
                            file->Fd(),
                            logger,
                            error_msg));
    // If the header specifies PIC mode, we can also map at a random low_4gb address since we can
    // relocate in-place.
    if (map == nullptr && image_header->IsPic()) {
      map.reset(LoadImageFile(image_filename,
                              image_location,
                              *image_header,
                              /* address */ nullptr,
                              file->Fd(),
                              logger,
                              error_msg));
    }
    // Were we able to load something and continue?
    if (map == nullptr) {
      DCHECK(!error_msg->empty());
      return nullptr;
    }
    DCHECK_EQ(0, memcmp(image_header, map->Begin(), sizeof(ImageHeader)));

    std::unique_ptr<MemMap> image_bitmap_map(MemMap::MapFileAtAddress(nullptr,
                                                                      bitmap_section.Size(),
                                                                      PROT_READ, MAP_PRIVATE,
                                                                      file->Fd(),
                                                                      image_bitmap_offset,
                                                                      /*low_4gb*/false,
                                                                      /*reuse*/false,
                                                                      image_filename,
                                                                      error_msg));
    if (image_bitmap_map == nullptr) {
      *error_msg = StringPrintf("Failed to map image bitmap: %s", error_msg->c_str());
      return nullptr;
    }
    // Loaded the map, use the image header from the file now in case we patch it with
    // RelocateInPlace.
    image_header = reinterpret_cast<ImageHeader*>(map->Begin());
    const uint32_t bitmap_index = ImageSpace::bitmap_index_.FetchAndAddSequentiallyConsistent(1);
    std::string bitmap_name(StringPrintf("imagespace %s live-bitmap %u",
                                         image_filename,
                                         bitmap_index));
    // Bitmap only needs to cover until the end of the mirror objects section.
    const ImageSection& image_objects = image_header->GetImageSection(ImageHeader::kSectionObjects);
    // We only want the mirror object, not the ArtFields and ArtMethods.
    uint8_t* const image_end = map->Begin() + image_objects.End();
    std::unique_ptr<accounting::ContinuousSpaceBitmap> bitmap;
    {
      TimingLogger::ScopedTiming timing("CreateImageBitmap", &logger);
      bitmap.reset(
          accounting::ContinuousSpaceBitmap::CreateFromMemMap(
              bitmap_name,
              image_bitmap_map.release(),
              reinterpret_cast<uint8_t*>(map->Begin()),
              image_objects.End()));
      if (bitmap == nullptr) {
        *error_msg = StringPrintf("Could not create bitmap '%s'", bitmap_name.c_str());
        return nullptr;
      }
    }
    {
      TimingLogger::ScopedTiming timing("RelocateImage", &logger);
      if (!RelocateInPlace(*image_header,
                           map->Begin(),
                           bitmap.get(),
                           oat_file,
                           error_msg)) {
        return nullptr;
      }
    }
    // We only want the mirror object, not the ArtFields and ArtMethods.
    std::unique_ptr<ImageSpace> space(new ImageSpace(image_filename,
                                                     image_location,
                                                     map.release(),
                                                     bitmap.release(),
                                                     image_end));

    // VerifyImageAllocations() will be called later in Runtime::Init()
    // as some class roots like ArtMethod::java_lang_reflect_ArtMethod_
    // and ArtField::java_lang_reflect_ArtField_, which are used from
    // Object::SizeOf() which VerifyImageAllocations() calls, are not
    // set yet at this point.
    if (oat_file == nullptr) {
      TimingLogger::ScopedTiming timing("OpenOatFile", &logger);
      space->oat_file_ = OpenOatFile(*space, image_filename, error_msg);
      if (space->oat_file_ == nullptr) {
        DCHECK(!error_msg->empty());
        return nullptr;
      }
      space->oat_file_non_owned_ = space->oat_file_.get();
    } else {
      space->oat_file_non_owned_ = oat_file;
    }

    if (validate_oat_file) {
      TimingLogger::ScopedTiming timing("ValidateOatFile", &logger);
      CHECK(space->oat_file_ != nullptr);
      if (!ValidateOatFile(*space, *space->oat_file_, error_msg)) {
        DCHECK(!error_msg->empty());
        return nullptr;
      }
    }

    Runtime* runtime = Runtime::Current();

    // If oat_file is null, then it is the boot image space. Use oat_file_non_owned_ from the space
    // to set the runtime methods.
    CHECK_EQ(oat_file != nullptr, image_header->IsAppImage());
    if (image_header->IsAppImage()) {
      CHECK_EQ(runtime->GetResolutionMethod(),
               image_header->GetImageMethod(ImageHeader::kResolutionMethod));
      CHECK_EQ(runtime->GetImtConflictMethod(),
               image_header->GetImageMethod(ImageHeader::kImtConflictMethod));
      CHECK_EQ(runtime->GetImtUnimplementedMethod(),
               image_header->GetImageMethod(ImageHeader::kImtUnimplementedMethod));
      CHECK_EQ(runtime->GetCalleeSaveMethod(Runtime::kSaveAllCalleeSaves),
               image_header->GetImageMethod(ImageHeader::kSaveAllCalleeSavesMethod));
      CHECK_EQ(runtime->GetCalleeSaveMethod(Runtime::kSaveRefsOnly),
               image_header->GetImageMethod(ImageHeader::kSaveRefsOnlyMethod));
      CHECK_EQ(runtime->GetCalleeSaveMethod(Runtime::kSaveRefsAndArgs),
               image_header->GetImageMethod(ImageHeader::kSaveRefsAndArgsMethod));
      CHECK_EQ(runtime->GetCalleeSaveMethod(Runtime::kSaveEverything),
               image_header->GetImageMethod(ImageHeader::kSaveEverythingMethod));
    } else if (!runtime->HasResolutionMethod()) {
      runtime->SetInstructionSet(space->oat_file_non_owned_->GetOatHeader().GetInstructionSet());
      runtime->SetResolutionMethod(image_header->GetImageMethod(ImageHeader::kResolutionMethod));
      runtime->SetImtConflictMethod(image_header->GetImageMethod(ImageHeader::kImtConflictMethod));
      runtime->SetImtUnimplementedMethod(
          image_header->GetImageMethod(ImageHeader::kImtUnimplementedMethod));
      runtime->SetCalleeSaveMethod(
          image_header->GetImageMethod(ImageHeader::kSaveAllCalleeSavesMethod),
          Runtime::kSaveAllCalleeSaves);
      runtime->SetCalleeSaveMethod(
          image_header->GetImageMethod(ImageHeader::kSaveRefsOnlyMethod), Runtime::kSaveRefsOnly);
      runtime->SetCalleeSaveMethod(
          image_header->GetImageMethod(ImageHeader::kSaveRefsAndArgsMethod),
          Runtime::kSaveRefsAndArgs);
      runtime->SetCalleeSaveMethod(
          image_header->GetImageMethod(ImageHeader::kSaveEverythingMethod), Runtime::kSaveEverything);
    }

    VLOG(image) << "ImageSpace::Init exiting " << *space.get();
    if (VLOG_IS_ON(image)) {
      logger.Dump(LOG(INFO));
    }
    return space;
  }

 private:
  static MemMap* LoadImageFile(const char* image_filename,
                               const char* image_location,
                               const ImageHeader& image_header,
                               uint8_t* address,
                               int fd,
                               TimingLogger& logger,
                               std::string* error_msg) {
    TimingLogger::ScopedTiming timing("MapImageFile", &logger);
    const ImageHeader::StorageMode storage_mode = image_header.GetStorageMode();
    if (storage_mode == ImageHeader::kStorageModeUncompressed) {
      return MemMap::MapFileAtAddress(address,
                                      image_header.GetImageSize(),
                                      PROT_READ | PROT_WRITE,
                                      MAP_PRIVATE,
                                      fd,
                                      0,
                                      /*low_4gb*/true,
                                      /*reuse*/false,
                                      image_filename,
                                      error_msg);
    }

    if (storage_mode != ImageHeader::kStorageModeLZ4 &&
        storage_mode != ImageHeader::kStorageModeLZ4HC) {
      *error_msg = StringPrintf("Invalid storage mode in image header %d",
                                static_cast<int>(storage_mode));
      return nullptr;
    }

    // Reserve output and decompress into it.
    std::unique_ptr<MemMap> map(MemMap::MapAnonymous(image_location,
                                                     address,
                                                     image_header.GetImageSize(),
                                                     PROT_READ | PROT_WRITE,
                                                     /*low_4gb*/true,
                                                     /*reuse*/false,
                                                     error_msg));
    if (map != nullptr) {
      const size_t stored_size = image_header.GetDataSize();
      const size_t decompress_offset = sizeof(ImageHeader);  // Skip the header.
      std::unique_ptr<MemMap> temp_map(MemMap::MapFile(sizeof(ImageHeader) + stored_size,
                                                       PROT_READ,
                                                       MAP_PRIVATE,
                                                       fd,
                                                       /*offset*/0,
                                                       /*low_4gb*/false,
                                                       image_filename,
                                                       error_msg));
      if (temp_map == nullptr) {
        DCHECK(!error_msg->empty());
        return nullptr;
      }
      memcpy(map->Begin(), &image_header, sizeof(ImageHeader));
      const uint64_t start = NanoTime();
      // LZ4HC and LZ4 have same internal format, both use LZ4_decompress.
      TimingLogger::ScopedTiming timing2("LZ4 decompress image", &logger);
      const size_t decompressed_size = LZ4_decompress_safe(
          reinterpret_cast<char*>(temp_map->Begin()) + sizeof(ImageHeader),
          reinterpret_cast<char*>(map->Begin()) + decompress_offset,
          stored_size,
          map->Size() - decompress_offset);
      VLOG(image) << "Decompressing image took " << PrettyDuration(NanoTime() - start);
      if (decompressed_size + sizeof(ImageHeader) != image_header.GetImageSize()) {
        *error_msg = StringPrintf(
            "Decompressed size does not match expected image size %zu vs %zu",
            decompressed_size + sizeof(ImageHeader),
            image_header.GetImageSize());
        return nullptr;
      }
    }

    return map.release();
  }

  class FixupVisitor : public ValueObject {
   public:
    FixupVisitor(const RelocationRange& boot_image,
                 const RelocationRange& boot_oat,
                 const RelocationRange& app_image,
                 const RelocationRange& app_oat)
        : boot_image_(boot_image),
          boot_oat_(boot_oat),
          app_image_(app_image),
          app_oat_(app_oat) {}

    // Return the relocated address of a heap object.
    template <typename T>
    ALWAYS_INLINE T* ForwardObject(T* src) const {
      const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src);
      if (boot_image_.InSource(uint_src)) {
        return reinterpret_cast<T*>(boot_image_.ToDest(uint_src));
      }
      if (app_image_.InSource(uint_src)) {
        return reinterpret_cast<T*>(app_image_.ToDest(uint_src));
      }
      // Since we are fixing up the app image, there should only be pointers to the app image and
      // boot image.
      DCHECK(src == nullptr) << reinterpret_cast<const void*>(src);
      return src;
    }

    // Return the relocated address of a code pointer (contained by an oat file).
    ALWAYS_INLINE const void* ForwardCode(const void* src) const {
      const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src);
      if (boot_oat_.InSource(uint_src)) {
        return reinterpret_cast<const void*>(boot_oat_.ToDest(uint_src));
      }
      if (app_oat_.InSource(uint_src)) {
        return reinterpret_cast<const void*>(app_oat_.ToDest(uint_src));
      }
      DCHECK(src == nullptr) << src;
      return src;
    }

    // Must be called on pointers that already have been relocated to the destination relocation.
    ALWAYS_INLINE bool IsInAppImage(mirror::Object* object) const {
      return app_image_.InDest(reinterpret_cast<uintptr_t>(object));
    }

   protected:
    // Source section.
    const RelocationRange boot_image_;
    const RelocationRange boot_oat_;
    const RelocationRange app_image_;
    const RelocationRange app_oat_;
  };

  // Adapt for mirror::Class::FixupNativePointers.
  class FixupObjectAdapter : public FixupVisitor {
   public:
    template<typename... Args>
    explicit FixupObjectAdapter(Args... args) : FixupVisitor(args...) {}

    template <typename T>
    T* operator()(T* obj) const {
      return ForwardObject(obj);
    }
  };

  class FixupRootVisitor : public FixupVisitor {
   public:
    template<typename... Args>
    explicit FixupRootVisitor(Args... args) : FixupVisitor(args...) {}

    ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
        SHARED_REQUIRES(Locks::mutator_lock_) {
      if (!root->IsNull()) {
        VisitRoot(root);
      }
    }

    ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
        SHARED_REQUIRES(Locks::mutator_lock_) {
      mirror::Object* ref = root->AsMirrorPtr();
      mirror::Object* new_ref = ForwardObject(ref);
      if (ref != new_ref) {
        root->Assign(new_ref);
      }
    }
  };

  class FixupObjectVisitor : public FixupVisitor {
   public:
    template<typename... Args>
    explicit FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap* visited,
                                const PointerSize pointer_size,
                                Args... args)
        : FixupVisitor(args...),
          pointer_size_(pointer_size),
          visited_(visited) {}

    // Fix up separately since we also need to fix up method entrypoints.
    ALWAYS_INLINE void VisitRootIfNonNull(
        mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}

    ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
        const {}

    ALWAYS_INLINE void operator()(mirror::Object* obj,
                                  MemberOffset offset,
                                  bool is_static ATTRIBUTE_UNUSED) const
        NO_THREAD_SAFETY_ANALYSIS {
      // There could be overlap between ranges, we must avoid visiting the same reference twice.
      // Avoid the class field since we already fixed it up in FixupClassVisitor.
      if (offset.Uint32Value() != mirror::Object::ClassOffset().Uint32Value()) {
        // Space is not yet added to the heap, don't do a read barrier.
        mirror::Object* ref = obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(
            offset);
        // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the
        // image.
        obj->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(offset, ForwardObject(ref));
      }
    }

    // Visit a pointer array and forward corresponding native data. Ignores pointer arrays in the
    // boot image. Uses the bitmap to ensure the same array is not visited multiple times.
    template <typename Visitor>
    void UpdatePointerArrayContents(mirror::PointerArray* array, const Visitor& visitor) const
        NO_THREAD_SAFETY_ANALYSIS {
      DCHECK(array != nullptr);
      DCHECK(visitor.IsInAppImage(array));
      // The bit for the array contents is different than the bit for the array. Since we may have
      // already visited the array as a long / int array from walking the bitmap without knowing it
      // was a pointer array.
      static_assert(kObjectAlignment == 8u, "array bit may be in another object");
      mirror::Object* const contents_bit = reinterpret_cast<mirror::Object*>(
          reinterpret_cast<uintptr_t>(array) + kObjectAlignment);
      // If the bit is not set then the contents have not yet been updated.
      if (!visited_->Test(contents_bit)) {
        array->Fixup<kVerifyNone, kWithoutReadBarrier>(array, pointer_size_, visitor);
        visited_->Set(contents_bit);
      }
    }

    // java.lang.ref.Reference visitor.
    void operator()(mirror::Class* klass ATTRIBUTE_UNUSED, mirror::Reference* ref) const
        SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
      mirror::Object* obj = ref->GetReferent<kWithoutReadBarrier>();
      ref->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(
          mirror::Reference::ReferentOffset(),
          ForwardObject(obj));
    }

    void operator()(mirror::Object* obj) const NO_THREAD_SAFETY_ANALYSIS {
      if (visited_->Test(obj)) {
        // Already visited.
        return;
      }
      visited_->Set(obj);

      // Handle class specially first since we need it to be updated to properly visit the rest of
      // the instance fields.
      {
        mirror::Class* klass = obj->GetClass<kVerifyNone, kWithoutReadBarrier>();
        DCHECK(klass != nullptr) << "Null class in image";
        // No AsClass since our fields aren't quite fixed up yet.
        mirror::Class* new_klass = down_cast<mirror::Class*>(ForwardObject(klass));
        if (klass != new_klass) {
          obj->SetClass<kVerifyNone>(new_klass);
        }
        if (new_klass != klass && IsInAppImage(new_klass)) {
          // Make sure the klass contents are fixed up since we depend on it to walk the fields.
          operator()(new_klass);
        }
      }

      obj->VisitReferences</*visit native roots*/false, kVerifyNone, kWithoutReadBarrier>(
          *this,
          *this);
      // Note that this code relies on no circular dependencies.
      // We want to use our own class loader and not the one in the image.
      if (obj->IsClass<kVerifyNone, kWithoutReadBarrier>()) {
        mirror::Class* as_klass = obj->AsClass<kVerifyNone, kWithoutReadBarrier>();
        FixupObjectAdapter visitor(boot_image_, boot_oat_, app_image_, app_oat_);
        as_klass->FixupNativePointers<kVerifyNone, kWithoutReadBarrier>(as_klass,
                                                                        pointer_size_,
                                                                        visitor);
        // Deal with the pointer arrays. Use the helper function since multiple classes can reference
        // the same arrays.
        mirror::PointerArray* const vtable = as_klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
        if (vtable != nullptr && IsInAppImage(vtable)) {
          operator()(vtable);
          UpdatePointerArrayContents(vtable, visitor);
        }
        mirror::IfTable* iftable = as_klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
        // Ensure iftable arrays are fixed up since we need GetMethodArray to return the valid
        // contents.
        if (iftable != nullptr && IsInAppImage(iftable)) {
          operator()(iftable);
          for (int32_t i = 0, count = iftable->Count(); i < count; ++i) {
            if (iftable->GetMethodArrayCount<kVerifyNone, kWithoutReadBarrier>(i) > 0) {
              mirror::PointerArray* methods =
                  iftable->GetMethodArray<kVerifyNone, kWithoutReadBarrier>(i);
              if (visitor.IsInAppImage(methods)) {
                operator()(methods);
                DCHECK(methods != nullptr);
                UpdatePointerArrayContents(methods, visitor);
              }
            }
          }
        }
      }
    }

   private:
    const PointerSize pointer_size_;
    gc::accounting::ContinuousSpaceBitmap* const visited_;
  };

  class ForwardObjectAdapter {
   public:
    ALWAYS_INLINE explicit ForwardObjectAdapter(const FixupVisitor* visitor) : visitor_(visitor) {}

    template <typename T>
    ALWAYS_INLINE T* operator()(T* src) const {
      return visitor_->ForwardObject(src);
    }

   private:
    const FixupVisitor* const visitor_;
  };

  class ForwardCodeAdapter {
   public:
    ALWAYS_INLINE explicit ForwardCodeAdapter(const FixupVisitor* visitor)
        : visitor_(visitor) {}

    template <typename T>
    ALWAYS_INLINE T* operator()(T* src) const {
      return visitor_->ForwardCode(src);
    }

   private:
    const FixupVisitor* const visitor_;
  };

  class FixupArtMethodVisitor : public FixupVisitor, public ArtMethodVisitor {
   public:
    template<typename... Args>
    explicit FixupArtMethodVisitor(bool fixup_heap_objects, PointerSize pointer_size, Args... args)
        : FixupVisitor(args...),
          fixup_heap_objects_(fixup_heap_objects),
          pointer_size_(pointer_size) {}

    virtual void Visit(ArtMethod* method) NO_THREAD_SAFETY_ANALYSIS {
      // TODO: Separate visitor for runtime vs normal methods.
      if (UNLIKELY(method->IsRuntimeMethod())) {
        ImtConflictTable* table = method->GetImtConflictTable(pointer_size_);
        if (table != nullptr) {
          ImtConflictTable* new_table = ForwardObject(table);
          if (table != new_table) {
            method->SetImtConflictTable(new_table, pointer_size_);
          }
        }
        const void* old_code = method->GetEntryPointFromQuickCompiledCodePtrSize(pointer_size_);
        const void* new_code = ForwardCode(old_code);
        if (old_code != new_code) {
          method->SetEntryPointFromQuickCompiledCodePtrSize(new_code, pointer_size_);
        }
      } else {
        if (fixup_heap_objects_) {
          method->UpdateObjectsForImageRelocation(ForwardObjectAdapter(this), pointer_size_);
        }
        method->UpdateEntrypoints<kWithoutReadBarrier>(ForwardCodeAdapter(this), pointer_size_);
      }
    }

   private:
    const bool fixup_heap_objects_;
    const PointerSize pointer_size_;
  };

  class FixupArtFieldVisitor : public FixupVisitor, public ArtFieldVisitor {
   public:
    template<typename... Args>
    explicit FixupArtFieldVisitor(Args... args) : FixupVisitor(args...) {}

    virtual void Visit(ArtField* field) NO_THREAD_SAFETY_ANALYSIS {
      field->UpdateObjects(ForwardObjectAdapter(this));
    }
  };

  // Relocate an image space mapped at target_base which possibly used to be at a different base
  // address. Only needs a single image space, not one for both source and destination.
  // In place means modifying a single ImageSpace in place rather than relocating from one ImageSpace
  // to another.
  static bool RelocateInPlace(ImageHeader& image_header,
                              uint8_t* target_base,
                              accounting::ContinuousSpaceBitmap* bitmap,
                              const OatFile* app_oat_file,
                              std::string* error_msg) {
    DCHECK(error_msg != nullptr);
    if (!image_header.IsPic()) {
      if (image_header.GetImageBegin() == target_base) {
        return true;
      }
      *error_msg = StringPrintf("Cannot relocate non-pic image for oat file %s",
                                (app_oat_file != nullptr) ? app_oat_file->GetLocation().c_str() : "");
      return false;
    }
    // Set up sections.
    uint32_t boot_image_begin = 0;
    uint32_t boot_image_end = 0;
    uint32_t boot_oat_begin = 0;
    uint32_t boot_oat_end = 0;
    const PointerSize pointer_size = image_header.GetPointerSize();
    gc::Heap* const heap = Runtime::Current()->GetHeap();
    heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end);
    if (boot_image_begin == boot_image_end) {
      *error_msg = "Can not relocate app image without boot image space";
      return false;
    }
    if (boot_oat_begin == boot_oat_end) {
      *error_msg = "Can not relocate app image without boot oat file";
      return false;
    }
    const uint32_t boot_image_size = boot_image_end - boot_image_begin;
    const uint32_t boot_oat_size = boot_oat_end - boot_oat_begin;
    const uint32_t image_header_boot_image_size = image_header.GetBootImageSize();
    const uint32_t image_header_boot_oat_size = image_header.GetBootOatSize();
    if (boot_image_size != image_header_boot_image_size) {
      *error_msg = StringPrintf("Boot image size %" PRIu64 " does not match expected size %"
                                    PRIu64,
                                static_cast<uint64_t>(boot_image_size),
                                static_cast<uint64_t>(image_header_boot_image_size));
      return false;
    }
    if (boot_oat_size != image_header_boot_oat_size) {
      *error_msg = StringPrintf("Boot oat size %" PRIu64 " does not match expected size %"
                                    PRIu64,
                                static_cast<uint64_t>(boot_oat_size),
                                static_cast<uint64_t>(image_header_boot_oat_size));
      return false;
    }
    TimingLogger logger(__FUNCTION__, true, false);
    RelocationRange boot_image(image_header.GetBootImageBegin(),
                               boot_image_begin,
                               boot_image_size);
    RelocationRange boot_oat(image_header.GetBootOatBegin(),
                             boot_oat_begin,
                             boot_oat_size);
    RelocationRange app_image(reinterpret_cast<uintptr_t>(image_header.GetImageBegin()),
                              reinterpret_cast<uintptr_t>(target_base),
                              image_header.GetImageSize());
    // Use the oat data section since this is where the OatFile::Begin is.
    RelocationRange app_oat(reinterpret_cast<uintptr_t>(image_header.GetOatDataBegin()),
                            // Not necessarily in low 4GB.
                            reinterpret_cast<uintptr_t>(app_oat_file->Begin()),
                            image_header.GetOatDataEnd() - image_header.GetOatDataBegin());
    VLOG(image) << "App image " << app_image;
    VLOG(image) << "App oat " << app_oat;
    VLOG(image) << "Boot image " << boot_image;
    VLOG(image) << "Boot oat " << boot_oat;
    // True if we need to fixup any heap pointers, otherwise only code pointers.
    const bool fixup_image = boot_image.Delta() != 0 || app_image.Delta() != 0;
    const bool fixup_code = boot_oat.Delta() != 0 || app_oat.Delta() != 0;
    if (!fixup_image && !fixup_code) {
      // Nothing to fix up.
      return true;
    }
    ScopedDebugDisallowReadBarriers sddrb(Thread::Current());
    // Need to update the image to be at the target base.
    const ImageSection& objects_section = image_header.GetImageSection(ImageHeader::kSectionObjects);
    uintptr_t objects_begin = reinterpret_cast<uintptr_t>(target_base + objects_section.Offset());
    uintptr_t objects_end = reinterpret_cast<uintptr_t>(target_base + objects_section.End());
    FixupObjectAdapter fixup_adapter(boot_image, boot_oat, app_image, app_oat);
    if (fixup_image) {
      // Two pass approach, fix up all classes first, then fix up non class-objects.
      // The visited bitmap is used to ensure that pointer arrays are not forwarded twice.
      std::unique_ptr<gc::accounting::ContinuousSpaceBitmap> visited_bitmap(
          gc::accounting::ContinuousSpaceBitmap::Create("Relocate bitmap",
                                                        target_base,
                                                        image_header.GetImageSize()));
      FixupObjectVisitor fixup_object_visitor(visited_bitmap.get(),
                                              pointer_size,
                                              boot_image,
                                              boot_oat,
                                              app_image,
                                              app_oat);
      TimingLogger::ScopedTiming timing("Fixup classes", &logger);
      // Fixup objects may read fields in the boot image, use the mutator lock here for sanity. Though
      // its probably not required.
      ScopedObjectAccess soa(Thread::Current());
      timing.NewTiming("Fixup objects");
      bitmap->VisitMarkedRange(objects_begin, objects_end, fixup_object_visitor);
      // Fixup image roots.
      CHECK(app_image.InSource(reinterpret_cast<uintptr_t>(
          image_header.GetImageRoots<kWithoutReadBarrier>())));
      image_header.RelocateImageObjects(app_image.Delta());
      CHECK_EQ(image_header.GetImageBegin(), target_base);
      // Fix up dex cache DexFile pointers.
      auto* dex_caches = image_header.GetImageRoot<kWithoutReadBarrier>(ImageHeader::kDexCaches)->
          AsObjectArray<mirror::DexCache, kVerifyNone, kWithoutReadBarrier>();
      for (int32_t i = 0, count = dex_caches->GetLength(); i < count; ++i) {
        mirror::DexCache* dex_cache = dex_caches->Get<kVerifyNone, kWithoutReadBarrier>(i);
        // Fix up dex cache pointers.
        mirror::StringDexCacheType* strings = dex_cache->GetStrings();
        if (strings != nullptr) {
          mirror::StringDexCacheType* new_strings = fixup_adapter.ForwardObject(strings);
          if (strings != new_strings) {
            dex_cache->SetStrings(new_strings);
          }
          dex_cache->FixupStrings<kWithoutReadBarrier>(new_strings, fixup_adapter);
        }
        GcRoot<mirror::Class>* types = dex_cache->GetResolvedTypes();
        if (types != nullptr) {
          GcRoot<mirror::Class>* new_types = fixup_adapter.ForwardObject(types);
          if (types != new_types) {
            dex_cache->SetResolvedTypes(new_types);
          }
          dex_cache->FixupResolvedTypes<kWithoutReadBarrier>(new_types, fixup_adapter);
        }
        ArtMethod** methods = dex_cache->GetResolvedMethods();
        if (methods != nullptr) {
          ArtMethod** new_methods = fixup_adapter.ForwardObject(methods);
          if (methods != new_methods) {
            dex_cache->SetResolvedMethods(new_methods);
          }
          for (size_t j = 0, num = dex_cache->NumResolvedMethods(); j != num; ++j) {
            ArtMethod* orig = mirror::DexCache::GetElementPtrSize(new_methods, j, pointer_size);
            ArtMethod* copy = fixup_adapter.ForwardObject(orig);
            if (orig != copy) {
              mirror::DexCache::SetElementPtrSize(new_methods, j, copy, pointer_size);
            }
          }
        }
        ArtField** fields = dex_cache->GetResolvedFields();
        if (fields != nullptr) {
          ArtField** new_fields = fixup_adapter.ForwardObject(fields);
          if (fields != new_fields) {
            dex_cache->SetResolvedFields(new_fields);
          }
          for (size_t j = 0, num = dex_cache->NumResolvedFields(); j != num; ++j) {
            ArtField* orig = mirror::DexCache::GetElementPtrSize(new_fields, j, pointer_size);
            ArtField* copy = fixup_adapter.ForwardObject(orig);
            if (orig != copy) {
              mirror::DexCache::SetElementPtrSize(new_fields, j, copy, pointer_size);
            }
          }
        }
      }
    }
    {
      // Only touches objects in the app image, no need for mutator lock.
      TimingLogger::ScopedTiming timing("Fixup methods", &logger);
      FixupArtMethodVisitor method_visitor(fixup_image,
                                           pointer_size,
                                           boot_image,
                                           boot_oat,
                                           app_image,
                                           app_oat);
      image_header.VisitPackedArtMethods(&method_visitor, target_base, pointer_size);
    }
    if (fixup_image) {
      {
        // Only touches objects in the app image, no need for mutator lock.
        TimingLogger::ScopedTiming timing("Fixup fields", &logger);
        FixupArtFieldVisitor field_visitor(boot_image, boot_oat, app_image, app_oat);
        image_header.VisitPackedArtFields(&field_visitor, target_base);
      }
      {
        TimingLogger::ScopedTiming timing("Fixup imt", &logger);
        image_header.VisitPackedImTables(fixup_adapter, target_base, pointer_size);
      }
      {
        TimingLogger::ScopedTiming timing("Fixup conflict tables", &logger);
        image_header.VisitPackedImtConflictTables(fixup_adapter, target_base, pointer_size);
      }
      // In the app image case, the image methods are actually in the boot image.
      image_header.RelocateImageMethods(boot_image.Delta());
      const auto& class_table_section = image_header.GetImageSection(ImageHeader::kSectionClassTable);
      if (class_table_section.Size() > 0u) {
        // Note that we require that ReadFromMemory does not make an internal copy of the elements.
        // This also relies on visit roots not doing any verification which could fail after we update
        // the roots to be the image addresses.
        ScopedObjectAccess soa(Thread::Current());
        WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
        ClassTable temp_table;
        temp_table.ReadFromMemory(target_base + class_table_section.Offset());
        FixupRootVisitor root_visitor(boot_image, boot_oat, app_image, app_oat);
        temp_table.VisitRoots(root_visitor);
      }
    }
    if (VLOG_IS_ON(image)) {
      logger.Dump(LOG(INFO));
    }
    return true;
  }

  static std::unique_ptr<OatFile> OpenOatFile(const ImageSpace& image,
                                              const char* image_path,
                                              std::string* error_msg) {
    const ImageHeader& image_header = image.GetImageHeader();
    std::string oat_filename = ImageHeader::GetOatLocationFromImageLocation(image_path);

    CHECK(image_header.GetOatDataBegin() != nullptr);

    std::unique_ptr<OatFile> oat_file(OatFile::Open(oat_filename,
                                                    oat_filename,
                                                    image_header.GetOatDataBegin(),
                                                    image_header.GetOatFileBegin(),
                                                    !Runtime::Current()->IsAotCompiler(),
                                                    /*low_4gb*/false,
                                                    nullptr,
                                                    error_msg));
    if (oat_file == nullptr) {
      *error_msg = StringPrintf("Failed to open oat file '%s' referenced from image %s: %s",
                                oat_filename.c_str(),
                                image.GetName(),
                                error_msg->c_str());
      return nullptr;
    }
    uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
    uint32_t image_oat_checksum = image_header.GetOatChecksum();
    if (oat_checksum != image_oat_checksum) {
      *error_msg = StringPrintf("Failed to match oat file checksum 0x%x to expected oat checksum 0x%x"
                                " in image %s",
                                oat_checksum,
                                image_oat_checksum,
                                image.GetName());
      return nullptr;
    }
    int32_t image_patch_delta = image_header.GetPatchDelta();
    int32_t oat_patch_delta = oat_file->GetOatHeader().GetImagePatchDelta();
    if (oat_patch_delta != image_patch_delta && !image_header.CompilePic()) {
      // We should have already relocated by this point. Bail out.
      *error_msg = StringPrintf("Failed to match oat file patch delta %d to expected patch delta %d "
                                "in image %s",
                                oat_patch_delta,
                                image_patch_delta,
                                image.GetName());
      return nullptr;
    }

    return oat_file;
  }

  static bool ValidateOatFile(const ImageSpace& space,
                              const OatFile& oat_file,
                              std::string* error_msg) {
    for (const OatFile::OatDexFile* oat_dex_file : oat_file.GetOatDexFiles()) {
      const std::string& dex_file_location = oat_dex_file->GetDexFileLocation();
      uint32_t dex_file_location_checksum;
      if (!DexFile::GetChecksum(dex_file_location.c_str(), &dex_file_location_checksum, error_msg)) {
        *error_msg = StringPrintf("Failed to get checksum of dex file '%s' referenced by image %s: "
                                  "%s",
                                  dex_file_location.c_str(),
                                  space.GetName(),
                                  error_msg->c_str());
        return false;
      }
      if (dex_file_location_checksum != oat_dex_file->GetDexFileLocationChecksum()) {
        *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file '%s' and "
                                  "dex file '%s' (0x%x != 0x%x)",
                                  oat_file.GetLocation().c_str(),
                                  dex_file_location.c_str(),
                                  oat_dex_file->GetDexFileLocationChecksum(),
                                  dex_file_location_checksum);
        return false;
      }
    }
    return true;
  }
};

static constexpr uint64_t kLowSpaceValue = 50 * MB;
static constexpr uint64_t kTmpFsSentinelValue = 384 * MB;

// Read the free space of the cache partition and make a decision whether to keep the generated
// image. This is to try to mitigate situations where the system might run out of space later.
static bool CheckSpace(const std::string& cache_filename, std::string* error_msg) {
  // Using statvfs vs statvfs64 because of b/18207376, and it is enough for all practical purposes.
  struct statvfs buf;

  int res = TEMP_FAILURE_RETRY(statvfs(cache_filename.c_str(), &buf));
  if (res != 0) {
    // Could not stat. Conservatively tell the system to delete the image.
    *error_msg = "Could not stat the filesystem, assuming low-memory situation.";
    return false;
  }

  uint64_t fs_overall_size = buf.f_bsize * static_cast<uint64_t>(buf.f_blocks);
  // Zygote is privileged, but other things are not. Use bavail.
  uint64_t fs_free_size = buf.f_bsize * static_cast<uint64_t>(buf.f_bavail);

  // Take the overall size as an indicator for a tmpfs, which is being used for the decryption
  // environment. We do not want to fail quickening the boot image there, as it is beneficial
  // for time-to-UI.
  if (fs_overall_size > kTmpFsSentinelValue) {
    if (fs_free_size < kLowSpaceValue) {
      *error_msg = StringPrintf("Low-memory situation: only %4.2f megabytes available, need at "
                                "least %" PRIu64 ".",
                                static_cast<double>(fs_free_size) / MB,
                                kLowSpaceValue / MB);
      return false;
    }
  }
  return true;
}

std::unique_ptr<ImageSpace> ImageSpace::CreateBootImage(const char* image_location,
                                                        const InstructionSet image_isa,
                                                        bool secondary_image,
                                                        std::string* error_msg) {
  ScopedTrace trace(__FUNCTION__);

  // Step 0: Extra zygote work.

  // Step 0.a: If we're the zygote, mark boot.
  const bool is_zygote = Runtime::Current()->IsZygote();
  if (is_zygote && !secondary_image) {
    MarkZygoteStart(image_isa, Runtime::Current()->GetZygoteMaxFailedBoots());
  }

  // Step 0.b: If we're the zygote, check for free space, and prune the cache preemptively,
  //           if necessary. While the runtime may be fine (it is pretty tolerant to
  //           out-of-disk-space situations), other parts of the platform are not.
  //
  //           The advantage of doing this proactively is that the later steps are simplified,
  //           i.e., we do not need to code retries.
  std::string system_filename;
  bool has_system = false;
  std::string cache_filename;
  bool has_cache = false;
  bool dalvik_cache_exists = false;
  bool is_global_cache = true;
  std::string dalvik_cache;
  bool found_image = FindImageFilenameImpl(image_location,
                                           image_isa,
                                           &has_system,
                                           &system_filename,
                                           &dalvik_cache_exists,
                                           &dalvik_cache,
                                           &is_global_cache,
                                           &has_cache,
                                           &cache_filename);

  if (is_zygote && dalvik_cache_exists) {
    DCHECK(!dalvik_cache.empty());
    std::string local_error_msg;
    if (!CheckSpace(dalvik_cache, &local_error_msg)) {
      LOG(WARNING) << local_error_msg << " Preemptively pruning the dalvik cache.";
      PruneDalvikCache(image_isa);

      // Re-evaluate the image.
      found_image = FindImageFilenameImpl(image_location,
                                          image_isa,
                                          &has_system,
                                          &system_filename,
                                          &dalvik_cache_exists,
                                          &dalvik_cache,
                                          &is_global_cache,
                                          &has_cache,
                                          &cache_filename);
    }
  }

  // Collect all the errors.
  std::vector<std::string> error_msgs;

  // Step 1: Check if we have an existing and relocated image.

  // Step 1.a: Have files in system and cache. Then they need to match.
  if (found_image && has_system && has_cache) {
    std::string local_error_msg;
    // Check that the files are matching.
    if (ChecksumsMatch(system_filename.c_str(), cache_filename.c_str(), &local_error_msg)) {
      std::unique_ptr<ImageSpace> relocated_space =
          ImageSpaceLoader::Load(image_location,
                                 cache_filename,
                                 is_zygote,
                                 is_global_cache,
                                 /* validate_oat_file */ false,
                                 &local_error_msg);
      if (relocated_space != nullptr) {
        return relocated_space;
      }
    }
    error_msgs.push_back(local_error_msg);
  }

  // Step 1.b: Only have a cache file.
  if (found_image && !has_system && has_cache) {
    std::string local_error_msg;
    std::unique_ptr<ImageSpace> cache_space =
        ImageSpaceLoader::Load(image_location,
                               cache_filename,
                               is_zygote,
                               is_global_cache,
                               /* validate_oat_file */ true,
                               &local_error_msg);
    if (cache_space != nullptr) {
      return cache_space;
    }
    error_msgs.push_back(local_error_msg);
  }

  // Step 2: We have an existing image in /system.

  // Step 2.a: We are not required to relocate it. Then we can use it directly.
  bool relocate = Runtime::Current()->ShouldRelocate();

  if (found_image && has_system && !relocate) {
    std::string local_error_msg;
    std::unique_ptr<ImageSpace> system_space =
        ImageSpaceLoader::Load(image_location,
                               system_filename,
                               is_zygote,
                               is_global_cache,
                               /* validate_oat_file */ false,
                               &local_error_msg);
    if (system_space != nullptr) {
      return system_space;
    }
    error_msgs.push_back(local_error_msg);
  }

  // Step 2.b: We require a relocated image. Then we must patch it. This step fails if this is a
  //           secondary image.
  if (found_image && has_system && relocate) {
    std::string local_error_msg;
    if (!Runtime::Current()->IsImageDex2OatEnabled()) {
      local_error_msg = "Patching disabled.";
    } else if (secondary_image) {
      local_error_msg = "Cannot patch a secondary image.";
    } else if (ImageCreationAllowed(is_global_cache, &local_error_msg)) {
      bool patch_success =
          RelocateImage(image_location, cache_filename.c_str(), image_isa, &local_error_msg);
      if (patch_success) {
        std::unique_ptr<ImageSpace> patched_space =
            ImageSpaceLoader::Load(image_location,
                                   cache_filename,
                                   is_zygote,
                                   is_global_cache,
                                   /* validate_oat_file */ false,
                                   &local_error_msg);
        if (patched_space != nullptr) {
          return patched_space;
        }
      }
    }
    error_msgs.push_back(StringPrintf("Cannot relocate image %s to %s: %s",
                                      image_location,
                                      cache_filename.c_str(),
                                      local_error_msg.c_str()));
  }

  // Step 3: We do not have an existing image in /system, so generate an image into the dalvik
  //         cache. This step fails if this is a secondary image.
  if (!has_system) {
    std::string local_error_msg;
    if (!Runtime::Current()->IsImageDex2OatEnabled()) {
      local_error_msg = "Image compilation disabled.";
    } else if (secondary_image) {
      local_error_msg = "Cannot compile a secondary image.";
    } else if (ImageCreationAllowed(is_global_cache, &local_error_msg)) {
      bool compilation_success = GenerateImage(cache_filename, image_isa, &local_error_msg);
      if (compilation_success) {
        std::unique_ptr<ImageSpace> compiled_space =
            ImageSpaceLoader::Load(image_location,
                                   cache_filename,
                                   is_zygote,
                                   is_global_cache,
                                   /* validate_oat_file */ false,
                                   &local_error_msg);
        if (compiled_space != nullptr) {
          return compiled_space;
        }
      }
    }
    error_msgs.push_back(StringPrintf("Cannot compile image to %s: %s",
                                      cache_filename.c_str(),
                                      local_error_msg.c_str()));
  }

  // We failed. Prune the cache the free up space, create a compound error message and return no
  // image.
  PruneDalvikCache(image_isa);

  std::ostringstream oss;
  bool first = true;
  for (auto msg : error_msgs) {
    if (!first) {
      oss << "\n    ";
    }
    oss << msg;
  }
  *error_msg = oss.str();

  return nullptr;
}

std::unique_ptr<ImageSpace> ImageSpace::CreateFromAppImage(const char* image,
                                                           const OatFile* oat_file,
                                                           std::string* error_msg) {
  return ImageSpaceLoader::Init(image,
                                image,
                                /*validate_oat_file*/false,
                                oat_file,
                                /*out*/error_msg);
}

const OatFile* ImageSpace::GetOatFile() const {
  return oat_file_non_owned_;
}

std::unique_ptr<const OatFile> ImageSpace::ReleaseOatFile() {
  CHECK(oat_file_ != nullptr);
  return std::move(oat_file_);
}

void ImageSpace::Dump(std::ostream& os) const {
  os << GetType()
      << " begin=" << reinterpret_cast<void*>(Begin())
      << ",end=" << reinterpret_cast<void*>(End())
      << ",size=" << PrettySize(Size())
      << ",name=\"" << GetName() << "\"]";
}

void ImageSpace::CreateMultiImageLocations(const std::string& input_image_file_name,
                                           const std::string& boot_classpath,
                                           std::vector<std::string>* image_file_names) {
  DCHECK(image_file_names != nullptr);

  std::vector<std::string> images;
  Split(boot_classpath, ':', &images);

  // Add the rest into the list. We have to adjust locations, possibly:
  //
  // For example, image_file_name is /a/b/c/d/e.art
  //              images[0] is          f/c/d/e.art
  // ----------------------------------------------
  //              images[1] is          g/h/i/j.art  -> /a/b/h/i/j.art
  const std::string& first_image = images[0];
  // Length of common suffix.
  size_t common = 0;
  while (common < input_image_file_name.size() &&
         common < first_image.size() &&
         *(input_image_file_name.end() - common - 1) == *(first_image.end() - common - 1)) {
    ++common;
  }
  // We want to replace the prefix of the input image with the prefix of the boot class path.
  // This handles the case where the image file contains @ separators.
  // Example image_file_name is oats/system@framework@boot.art
  // images[0] is .../arm/boot.art
  // means that the image name prefix will be oats/system@framework@
  // so that the other images are openable.
  const size_t old_prefix_length = first_image.size() - common;
  const std::string new_prefix = input_image_file_name.substr(
      0,
      input_image_file_name.size() - common);

  // Apply pattern to images[1] .. images[n].
  for (size_t i = 1; i < images.size(); ++i) {
    const std::string& image = images[i];
    CHECK_GT(image.length(), old_prefix_length);
    std::string suffix = image.substr(old_prefix_length);
    image_file_names->push_back(new_prefix + suffix);
  }
}

void ImageSpace::DumpSections(std::ostream& os) const {
  const uint8_t* base = Begin();
  const ImageHeader& header = GetImageHeader();
  for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
    auto section_type = static_cast<ImageHeader::ImageSections>(i);
    const ImageSection& section = header.GetImageSection(section_type);
    os << section_type << " " << reinterpret_cast<const void*>(base + section.Offset())
       << "-" << reinterpret_cast<const void*>(base + section.End()) << "\n";
  }
}

}  // namespace space
}  // namespace gc
}  // namespace art