1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
|
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_BASE_BIT_UTILS_H_
#define ART_RUNTIME_BASE_BIT_UTILS_H_
#include <iterator>
#include <limits>
#include <type_traits>
// This header is used in the disassembler with libbase's logging. Only include ART logging
// when no other logging macros are available. b/15436106, b/31338270
#ifndef CHECK
#include "base/logging.h"
#endif
#include "base/iteration_range.h"
#include "base/stl_util.h"
namespace art {
template<typename T>
constexpr int CLZ(T x) {
static_assert(std::is_integral<T>::value, "T must be integral");
static_assert(std::is_unsigned<T>::value, "T must be unsigned");
static_assert(sizeof(T) <= sizeof(long long), // NOLINT [runtime/int] [4]
"T too large, must be smaller than long long");
DCHECK_NE(x, 0u);
return (sizeof(T) == sizeof(uint32_t)) ? __builtin_clz(x) : __builtin_clzll(x);
}
template<typename T>
constexpr int CTZ(T x) {
static_assert(std::is_integral<T>::value, "T must be integral");
// It is not unreasonable to ask for trailing zeros in a negative number. As such, do not check
// that T is an unsigned type.
static_assert(sizeof(T) <= sizeof(long long), // NOLINT [runtime/int] [4]
"T too large, must be smaller than long long");
DCHECK_NE(x, static_cast<T>(0));
return (sizeof(T) == sizeof(uint32_t)) ? __builtin_ctz(x) : __builtin_ctzll(x);
}
// Return the number of 1-bits in `x`.
template<typename T>
constexpr int POPCOUNT(T x) {
return (sizeof(T) == sizeof(uint32_t)) ? __builtin_popcount(x) : __builtin_popcountll(x);
}
// Find the bit position of the most significant bit (0-based), or -1 if there were no bits set.
template <typename T>
constexpr ssize_t MostSignificantBit(T value) {
static_assert(std::is_integral<T>::value, "T must be integral");
static_assert(std::is_unsigned<T>::value, "T must be unsigned");
static_assert(std::numeric_limits<T>::radix == 2, "Unexpected radix!");
return (value == 0) ? -1 : std::numeric_limits<T>::digits - 1 - CLZ(value);
}
// Find the bit position of the least significant bit (0-based), or -1 if there were no bits set.
template <typename T>
constexpr ssize_t LeastSignificantBit(T value) {
static_assert(std::is_integral<T>::value, "T must be integral");
static_assert(std::is_unsigned<T>::value, "T must be unsigned");
return (value == 0) ? -1 : CTZ(value);
}
// How many bits (minimally) does it take to store the constant 'value'? i.e. 1 for 1, 3 for 5, etc.
template <typename T>
constexpr size_t MinimumBitsToStore(T value) {
return static_cast<size_t>(MostSignificantBit(value) + 1);
}
template <typename T>
constexpr T RoundUpToPowerOfTwo(T x) {
static_assert(std::is_integral<T>::value, "T must be integral");
static_assert(std::is_unsigned<T>::value, "T must be unsigned");
// NOTE: Undefined if x > (1 << (std::numeric_limits<T>::digits - 1)).
return (x < 2u) ? x : static_cast<T>(1u) << (std::numeric_limits<T>::digits - CLZ(x - 1u));
}
template<typename T>
constexpr bool IsPowerOfTwo(T x) {
static_assert(std::is_integral<T>::value, "T must be integral");
// TODO: assert unsigned. There is currently many uses with signed values.
return (x & (x - 1)) == 0;
}
template<typename T>
constexpr int WhichPowerOf2(T x) {
static_assert(std::is_integral<T>::value, "T must be integral");
// TODO: assert unsigned. There is currently many uses with signed values.
DCHECK((x != 0) && IsPowerOfTwo(x));
return CTZ(x);
}
// For rounding integers.
// Note: Omit the `n` from T type deduction, deduce only from the `x` argument.
template<typename T>
constexpr T RoundDown(T x, typename Identity<T>::type n) WARN_UNUSED;
template<typename T>
constexpr T RoundDown(T x, typename Identity<T>::type n) {
DCHECK(IsPowerOfTwo(n));
return (x & -n);
}
template<typename T>
constexpr T RoundUp(T x, typename std::remove_reference<T>::type n) WARN_UNUSED;
template<typename T>
constexpr T RoundUp(T x, typename std::remove_reference<T>::type n) {
return RoundDown(x + n - 1, n);
}
// For aligning pointers.
template<typename T>
inline T* AlignDown(T* x, uintptr_t n) WARN_UNUSED;
template<typename T>
inline T* AlignDown(T* x, uintptr_t n) {
return reinterpret_cast<T*>(RoundDown(reinterpret_cast<uintptr_t>(x), n));
}
template<typename T>
inline T* AlignUp(T* x, uintptr_t n) WARN_UNUSED;
template<typename T>
inline T* AlignUp(T* x, uintptr_t n) {
return reinterpret_cast<T*>(RoundUp(reinterpret_cast<uintptr_t>(x), n));
}
template<int n, typename T>
constexpr bool IsAligned(T x) {
static_assert((n & (n - 1)) == 0, "n is not a power of two");
return (x & (n - 1)) == 0;
}
template<int n, typename T>
inline bool IsAligned(T* x) {
return IsAligned<n>(reinterpret_cast<const uintptr_t>(x));
}
template<typename T>
inline bool IsAlignedParam(T x, int n) {
return (x & (n - 1)) == 0;
}
#define CHECK_ALIGNED(value, alignment) \
CHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value)
#define DCHECK_ALIGNED(value, alignment) \
DCHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value)
#define CHECK_ALIGNED_PARAM(value, alignment) \
CHECK(::art::IsAlignedParam(value, alignment)) << reinterpret_cast<const void*>(value)
#define DCHECK_ALIGNED_PARAM(value, alignment) \
DCHECK(::art::IsAlignedParam(value, alignment)) << reinterpret_cast<const void*>(value)
// Like sizeof, but count how many bits a type takes. Pass type explicitly.
template <typename T>
constexpr size_t BitSizeOf() {
static_assert(std::is_integral<T>::value, "T must be integral");
using unsigned_type = typename std::make_unsigned<T>::type;
static_assert(sizeof(T) == sizeof(unsigned_type), "Unexpected type size mismatch!");
static_assert(std::numeric_limits<unsigned_type>::radix == 2, "Unexpected radix!");
return std::numeric_limits<unsigned_type>::digits;
}
// Like sizeof, but count how many bits a type takes. Infers type from parameter.
template <typename T>
constexpr size_t BitSizeOf(T /*x*/) {
return BitSizeOf<T>();
}
inline uint16_t Low16Bits(uint32_t value) {
return static_cast<uint16_t>(value);
}
inline uint16_t High16Bits(uint32_t value) {
return static_cast<uint16_t>(value >> 16);
}
inline uint32_t Low32Bits(uint64_t value) {
return static_cast<uint32_t>(value);
}
inline uint32_t High32Bits(uint64_t value) {
return static_cast<uint32_t>(value >> 32);
}
// Check whether an N-bit two's-complement representation can hold value.
template <typename T>
inline bool IsInt(size_t N, T value) {
if (N == BitSizeOf<T>()) {
return true;
} else {
CHECK_LT(0u, N);
CHECK_LT(N, BitSizeOf<T>());
T limit = static_cast<T>(1) << (N - 1u);
return (-limit <= value) && (value < limit);
}
}
template <typename T>
constexpr T GetIntLimit(size_t bits) {
DCHECK_NE(bits, 0u);
DCHECK_LT(bits, BitSizeOf<T>());
return static_cast<T>(1) << (bits - 1);
}
template <size_t kBits, typename T>
constexpr bool IsInt(T value) {
static_assert(kBits > 0, "kBits cannot be zero.");
static_assert(kBits <= BitSizeOf<T>(), "kBits must be <= max.");
static_assert(std::is_signed<T>::value, "Needs a signed type.");
// Corner case for "use all bits." Can't use the limits, as they would overflow, but it is
// trivially true.
return (kBits == BitSizeOf<T>()) ?
true :
(-GetIntLimit<T>(kBits) <= value) && (value < GetIntLimit<T>(kBits));
}
template <size_t kBits, typename T>
constexpr bool IsUint(T value) {
static_assert(kBits > 0, "kBits cannot be zero.");
static_assert(kBits <= BitSizeOf<T>(), "kBits must be <= max.");
static_assert(std::is_integral<T>::value, "Needs an integral type.");
// Corner case for "use all bits." Can't use the limits, as they would overflow, but it is
// trivially true.
// NOTE: To avoid triggering assertion in GetIntLimit(kBits+1) if kBits+1==BitSizeOf<T>(),
// use GetIntLimit(kBits)*2u. The unsigned arithmetic works well for us if it overflows.
using unsigned_type = typename std::make_unsigned<T>::type;
return (0 <= value) &&
(kBits == BitSizeOf<T>() ||
(static_cast<unsigned_type>(value) <= GetIntLimit<unsigned_type>(kBits) * 2u - 1u));
}
template <size_t kBits, typename T>
constexpr bool IsAbsoluteUint(T value) {
static_assert(kBits <= BitSizeOf<T>(), "kBits must be <= max.");
static_assert(std::is_integral<T>::value, "Needs an integral type.");
using unsigned_type = typename std::make_unsigned<T>::type;
return (kBits == BitSizeOf<T>())
? true
: IsUint<kBits>(value < 0
? static_cast<unsigned_type>(-1 - value) + 1u // Avoid overflow.
: static_cast<unsigned_type>(value));
}
// Generate maximum/minimum values for signed/unsigned n-bit integers
template <typename T>
constexpr T MaxInt(size_t bits) {
DCHECK(std::is_unsigned<T>::value || bits > 0u) << "bits cannot be zero for signed.";
DCHECK_LE(bits, BitSizeOf<T>());
using unsigned_type = typename std::make_unsigned<T>::type;
return bits == BitSizeOf<T>()
? std::numeric_limits<T>::max()
: std::is_signed<T>::value
? ((bits == 1u) ? 0 : static_cast<T>(MaxInt<unsigned_type>(bits - 1)))
: static_cast<T>(UINT64_C(1) << bits) - static_cast<T>(1);
}
template <typename T>
constexpr T MinInt(size_t bits) {
DCHECK(std::is_unsigned<T>::value || bits > 0) << "bits cannot be zero for signed.";
DCHECK_LE(bits, BitSizeOf<T>());
return bits == BitSizeOf<T>()
? std::numeric_limits<T>::min()
: std::is_signed<T>::value
? ((bits == 1u) ? -1 : static_cast<T>(-1) - MaxInt<T>(bits))
: static_cast<T>(0);
}
// Using the Curiously Recurring Template Pattern to implement everything shared
// by LowToHighBitIterator and HighToLowBitIterator, i.e. everything but operator*().
template <typename T, typename Iter>
class BitIteratorBase
: public std::iterator<std::forward_iterator_tag, uint32_t, ptrdiff_t, void, void> {
static_assert(std::is_integral<T>::value, "T must be integral");
static_assert(std::is_unsigned<T>::value, "T must be unsigned");
static_assert(sizeof(T) == sizeof(uint32_t) || sizeof(T) == sizeof(uint64_t), "Unsupported size");
public:
BitIteratorBase() : bits_(0u) { }
explicit BitIteratorBase(T bits) : bits_(bits) { }
Iter& operator++() {
DCHECK_NE(bits_, 0u);
uint32_t bit = *static_cast<Iter&>(*this);
bits_ &= ~(static_cast<T>(1u) << bit);
return static_cast<Iter&>(*this);
}
Iter& operator++(int) {
Iter tmp(static_cast<Iter&>(*this));
++*this;
return tmp;
}
protected:
T bits_;
template <typename U, typename I>
friend bool operator==(const BitIteratorBase<U, I>& lhs, const BitIteratorBase<U, I>& rhs);
};
template <typename T, typename Iter>
bool operator==(const BitIteratorBase<T, Iter>& lhs, const BitIteratorBase<T, Iter>& rhs) {
return lhs.bits_ == rhs.bits_;
}
template <typename T, typename Iter>
bool operator!=(const BitIteratorBase<T, Iter>& lhs, const BitIteratorBase<T, Iter>& rhs) {
return !(lhs == rhs);
}
template <typename T>
class LowToHighBitIterator : public BitIteratorBase<T, LowToHighBitIterator<T>> {
public:
using BitIteratorBase<T, LowToHighBitIterator<T>>::BitIteratorBase;
uint32_t operator*() const {
DCHECK_NE(this->bits_, 0u);
return CTZ(this->bits_);
}
};
template <typename T>
class HighToLowBitIterator : public BitIteratorBase<T, HighToLowBitIterator<T>> {
public:
using BitIteratorBase<T, HighToLowBitIterator<T>>::BitIteratorBase;
uint32_t operator*() const {
DCHECK_NE(this->bits_, 0u);
static_assert(std::numeric_limits<T>::radix == 2, "Unexpected radix!");
return std::numeric_limits<T>::digits - 1u - CLZ(this->bits_);
}
};
template <typename T>
IterationRange<LowToHighBitIterator<T>> LowToHighBits(T bits) {
return IterationRange<LowToHighBitIterator<T>>(
LowToHighBitIterator<T>(bits), LowToHighBitIterator<T>());
}
template <typename T>
IterationRange<HighToLowBitIterator<T>> HighToLowBits(T bits) {
return IterationRange<HighToLowBitIterator<T>>(
HighToLowBitIterator<T>(bits), HighToLowBitIterator<T>());
}
} // namespace art
#endif // ART_RUNTIME_BASE_BIT_UTILS_H_
|