/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "utils.h" #include #include #include #include #include #include #include "UniquePtr.h" #include "class_loader.h" #include "file.h" #include "object.h" #include "object_utils.h" #include "os.h" #if !defined(HAVE_POSIX_CLOCKS) #include #endif #if defined(HAVE_PRCTL) #include #endif #if defined(__linux__) #include #endif namespace art { pid_t GetTid() { #if defined(__APPLE__) // Mac OS doesn't have gettid(2). return getpid(); #else // Neither bionic nor glibc exposes gettid(2). return syscall(__NR_gettid); #endif } bool ReadFileToString(const std::string& file_name, std::string* result) { UniquePtr file(OS::OpenFile(file_name.c_str(), false)); if (file.get() == NULL) { return false; } std::vector buf(8 * KB); while (true) { int64_t n = file->Read(&buf[0], buf.size()); if (n == -1) { return false; } if (n == 0) { return true; } result->append(&buf[0], n); } } std::string GetIsoDate() { time_t now = time(NULL); struct tm tmbuf; struct tm* ptm = localtime_r(&now, &tmbuf); return StringPrintf("%04d-%02d-%02d %02d:%02d:%02d", ptm->tm_year + 1900, ptm->tm_mon+1, ptm->tm_mday, ptm->tm_hour, ptm->tm_min, ptm->tm_sec); } uint64_t MilliTime() { #if defined(HAVE_POSIX_CLOCKS) struct timespec now; clock_gettime(CLOCK_MONOTONIC, &now); return static_cast(now.tv_sec) * 1000LL + now.tv_nsec / 1000000LL; #else struct timeval now; gettimeofday(&now, NULL); return static_cast(now.tv_sec) * 1000LL + now.tv_usec / 1000LL; #endif } uint64_t MicroTime() { #if defined(HAVE_POSIX_CLOCKS) struct timespec now; clock_gettime(CLOCK_MONOTONIC, &now); return static_cast(now.tv_sec) * 1000000LL + now.tv_nsec / 1000LL; #else struct timeval now; gettimeofday(&now, NULL); return static_cast(now.tv_sec) * 1000000LL + now.tv_usec * 1000LL; #endif } uint64_t NanoTime() { #if defined(HAVE_POSIX_CLOCKS) struct timespec now; clock_gettime(CLOCK_MONOTONIC, &now); return static_cast(now.tv_sec) * 1000000000LL + now.tv_nsec; #else struct timeval now; gettimeofday(&now, NULL); return static_cast(now.tv_sec) * 1000000000LL + now.tv_usec * 1000LL; #endif } uint64_t ThreadCpuMicroTime() { #if defined(HAVE_POSIX_CLOCKS) struct timespec now; clock_gettime(CLOCK_THREAD_CPUTIME_ID, &now); return static_cast(now.tv_sec) * 1000000LL + now.tv_nsec / 1000LL; #else UNIMPLEMENTED(WARNING); return -1; #endif } std::string PrettyDescriptor(const String* java_descriptor) { if (java_descriptor == NULL) { return "null"; } return PrettyDescriptor(java_descriptor->ToModifiedUtf8()); } std::string PrettyDescriptor(const Class* klass) { if (klass == NULL) { return "null"; } return PrettyDescriptor(ClassHelper(klass).GetDescriptor()); } std::string PrettyDescriptor(const std::string& descriptor) { // Count the number of '['s to get the dimensionality. const char* c = descriptor.c_str(); size_t dim = 0; while (*c == '[') { dim++; c++; } // Reference or primitive? if (*c == 'L') { // "[[La/b/C;" -> "a.b.C[][]". c++; // Skip the 'L'. } else { // "[[B" -> "byte[][]". // To make life easier, we make primitives look like unqualified // reference types. switch (*c) { case 'B': c = "byte;"; break; case 'C': c = "char;"; break; case 'D': c = "double;"; break; case 'F': c = "float;"; break; case 'I': c = "int;"; break; case 'J': c = "long;"; break; case 'S': c = "short;"; break; case 'Z': c = "boolean;"; break; default: return descriptor; } } // At this point, 'c' is a string of the form "fully/qualified/Type;" // or "primitive;". Rewrite the type with '.' instead of '/': std::string result; const char* p = c; while (*p != ';') { char ch = *p++; if (ch == '/') { ch = '.'; } result.push_back(ch); } // ...and replace the semicolon with 'dim' "[]" pairs: while (dim--) { result += "[]"; } return result; } std::string PrettyDescriptor(Primitive::Type type) { std::string descriptor_string(Primitive::Descriptor(type)); return PrettyDescriptor(descriptor_string); } std::string PrettyField(const Field* f, bool with_type) { if (f == NULL) { return "null"; } FieldHelper fh(f); std::string result; if (with_type) { result += PrettyDescriptor(fh.GetTypeDescriptor()); result += ' '; } result += PrettyDescriptor(fh.GetDeclaringClassDescriptor()); result += '.'; result += fh.GetName(); return result; } std::string PrettyMethod(const Method* m, bool with_signature) { if (m == NULL) { return "null"; } MethodHelper mh(m); std::string result(PrettyDescriptor(mh.GetDeclaringClassDescriptor())); result += '.'; result += mh.GetName(); if (with_signature) { // TODO: iterate over the signature's elements and pass them all to // PrettyDescriptor? We'd need to pull out the return type specially, too. result += mh.GetSignature(); } return result; } std::string PrettyMethod(uint32_t method_idx, const DexFile& dex_file, bool with_signature) { const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx); std::string result(PrettyDescriptor(dex_file.GetMethodDeclaringClassDescriptor(method_id))); result += '.'; result += dex_file.GetMethodName(method_id); if (with_signature) { // TODO: iterate over the signature's elements and pass them all to // PrettyDescriptor? We'd need to pull out the return type specially, too. result += dex_file.GetMethodSignature(method_id); } return result; } std::string PrettyTypeOf(const Object* obj) { if (obj == NULL) { return "null"; } if (obj->GetClass() == NULL) { return "(raw)"; } ClassHelper kh(obj->GetClass()); std::string result(PrettyDescriptor(kh.GetDescriptor())); if (obj->IsClass()) { kh.ChangeClass(obj->AsClass()); result += "<" + PrettyDescriptor(kh.GetDescriptor()) + ">"; } return result; } std::string PrettyClass(const Class* c) { if (c == NULL) { return "null"; } std::string result; result += "java.lang.Class<"; result += PrettyDescriptor(c); result += ">"; return result; } std::string PrettyClassAndClassLoader(const Class* c) { if (c == NULL) { return "null"; } std::string result; result += "java.lang.Class<"; result += PrettyDescriptor(c); result += ","; result += PrettyTypeOf(c->GetClassLoader()); // TODO: add an identifying hash value for the loader result += ">"; return result; } std::string PrettySize(size_t size_in_bytes) { if ((size_in_bytes / GB) * GB == size_in_bytes) { return StringPrintf("%zdGB", size_in_bytes / GB); } else if ((size_in_bytes / MB) * MB == size_in_bytes) { return StringPrintf("%zdMB", size_in_bytes / MB); } else if ((size_in_bytes / KB) * KB == size_in_bytes) { return StringPrintf("%zdKiB", size_in_bytes / KB); } else { return StringPrintf("%zdB", size_in_bytes); } } std::string PrettyDuration(uint64_t nano_duration) { if (nano_duration == 0) { return "0"; } else { const uint64_t one_sec = 1000 * 1000 * 1000; const uint64_t one_ms = 1000 * 1000; const uint64_t one_us = 1000; const char* unit; uint64_t divisor; uint32_t zero_fill; if (nano_duration >= one_sec) { unit = "s"; divisor = one_sec; zero_fill = 9; } else if(nano_duration >= one_ms) { unit = "ms"; divisor = one_ms; zero_fill = 6; } else if(nano_duration >= one_us) { unit = "us"; divisor = one_us; zero_fill = 3; } else { unit = "ns"; divisor = 1; zero_fill = 0; } uint64_t whole_part = nano_duration / divisor; uint64_t fractional_part = nano_duration % divisor; if (fractional_part == 0) { return StringPrintf("%llu%s", whole_part, unit); } else { while ((fractional_part % 1000) == 0) { zero_fill -= 3; fractional_part /= 1000; } if (zero_fill == 3) { return StringPrintf("%llu.%03llu%s", whole_part, fractional_part, unit); } else if (zero_fill == 6) { return StringPrintf("%llu.%06llu%s", whole_part, fractional_part, unit); } else { return StringPrintf("%llu.%09llu%s", whole_part, fractional_part, unit); } } } } // See http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/design.html#wp615 for the full rules. std::string MangleForJni(const std::string& s) { std::string result; size_t char_count = CountModifiedUtf8Chars(s.c_str()); const char* cp = &s[0]; for (size_t i = 0; i < char_count; ++i) { uint16_t ch = GetUtf16FromUtf8(&cp); if ((ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z') || (ch >= '0' && ch <= '9')) { result.push_back(ch); } else if (ch == '.' || ch == '/') { result += "_"; } else if (ch == '_') { result += "_1"; } else if (ch == ';') { result += "_2"; } else if (ch == '[') { result += "_3"; } else { StringAppendF(&result, "_0%04x", ch); } } return result; } std::string DotToDescriptor(const char* class_name) { std::string descriptor(class_name); std::replace(descriptor.begin(), descriptor.end(), '.', '/'); if (descriptor.length() > 0 && descriptor[0] != '[') { descriptor = "L" + descriptor + ";"; } return descriptor; } std::string DescriptorToDot(const char* descriptor) { size_t length = strlen(descriptor); if (descriptor[0] == 'L' && descriptor[length - 1] == ';') { std::string result(descriptor + 1, length - 2); std::replace(result.begin(), result.end(), '/', '.'); return result; } return descriptor; } std::string DescriptorToName(const char* descriptor) { size_t length = strlen(descriptor); if (descriptor[0] == 'L' && descriptor[length - 1] == ';') { std::string result(descriptor + 1, length - 2); return result; } return descriptor; } std::string JniShortName(const Method* m) { MethodHelper mh(m); std::string class_name(mh.GetDeclaringClassDescriptor()); // Remove the leading 'L' and trailing ';'... CHECK_EQ(class_name[0], 'L') << class_name; CHECK_EQ(class_name[class_name.size() - 1], ';') << class_name; class_name.erase(0, 1); class_name.erase(class_name.size() - 1, 1); std::string method_name(mh.GetName()); std::string short_name; short_name += "Java_"; short_name += MangleForJni(class_name); short_name += "_"; short_name += MangleForJni(method_name); return short_name; } std::string JniLongName(const Method* m) { std::string long_name; long_name += JniShortName(m); long_name += "__"; std::string signature(MethodHelper(m).GetSignature()); signature.erase(0, 1); signature.erase(signature.begin() + signature.find(')'), signature.end()); long_name += MangleForJni(signature); return long_name; } // Helper for IsValidPartOfMemberNameUtf8(), a bit vector indicating valid low ascii. uint32_t DEX_MEMBER_VALID_LOW_ASCII[4] = { 0x00000000, // 00..1f low control characters; nothing valid 0x03ff2010, // 20..3f digits and symbols; valid: '0'..'9', '$', '-' 0x87fffffe, // 40..5f uppercase etc.; valid: 'A'..'Z', '_' 0x07fffffe // 60..7f lowercase etc.; valid: 'a'..'z' }; // Helper for IsValidPartOfMemberNameUtf8(); do not call directly. bool IsValidPartOfMemberNameUtf8Slow(const char** pUtf8Ptr) { /* * It's a multibyte encoded character. Decode it and analyze. We * accept anything that isn't (a) an improperly encoded low value, * (b) an improper surrogate pair, (c) an encoded '\0', (d) a high * control character, or (e) a high space, layout, or special * character (U+00a0, U+2000..U+200f, U+2028..U+202f, * U+fff0..U+ffff). This is all specified in the dex format * document. */ uint16_t utf16 = GetUtf16FromUtf8(pUtf8Ptr); // Perform follow-up tests based on the high 8 bits. switch (utf16 >> 8) { case 0x00: // It's only valid if it's above the ISO-8859-1 high space (0xa0). return (utf16 > 0x00a0); case 0xd8: case 0xd9: case 0xda: case 0xdb: // It's a leading surrogate. Check to see that a trailing // surrogate follows. utf16 = GetUtf16FromUtf8(pUtf8Ptr); return (utf16 >= 0xdc00) && (utf16 <= 0xdfff); case 0xdc: case 0xdd: case 0xde: case 0xdf: // It's a trailing surrogate, which is not valid at this point. return false; case 0x20: case 0xff: // It's in the range that has spaces, controls, and specials. switch (utf16 & 0xfff8) { case 0x2000: case 0x2008: case 0x2028: case 0xfff0: case 0xfff8: return false; } break; } return true; } /* Return whether the pointed-at modified-UTF-8 encoded character is * valid as part of a member name, updating the pointer to point past * the consumed character. This will consume two encoded UTF-16 code * points if the character is encoded as a surrogate pair. Also, if * this function returns false, then the given pointer may only have * been partially advanced. */ bool IsValidPartOfMemberNameUtf8(const char** pUtf8Ptr) { uint8_t c = (uint8_t) **pUtf8Ptr; if (c <= 0x7f) { // It's low-ascii, so check the table. uint32_t wordIdx = c >> 5; uint32_t bitIdx = c & 0x1f; (*pUtf8Ptr)++; return (DEX_MEMBER_VALID_LOW_ASCII[wordIdx] & (1 << bitIdx)) != 0; } // It's a multibyte encoded character. Call a non-inline function // for the heavy lifting. return IsValidPartOfMemberNameUtf8Slow(pUtf8Ptr); } bool IsValidMemberName(const char* s) { bool angle_name = false; switch(*s) { case '\0': // The empty string is not a valid name. return false; case '<': angle_name = true; s++; break; } while (true) { switch (*s) { case '\0': return !angle_name; case '>': return angle_name && s[1] == '\0'; } if (!IsValidPartOfMemberNameUtf8(&s)) { return false; } } } enum ClassNameType { kName, kDescriptor }; bool IsValidClassName(const char* s, ClassNameType type, char separator) { int arrayCount = 0; while (*s == '[') { arrayCount++; s++; } if (arrayCount > 255) { // Arrays may have no more than 255 dimensions. return false; } if (arrayCount != 0) { /* * If we're looking at an array of some sort, then it doesn't * matter if what is being asked for is a class name; the * format looks the same as a type descriptor in that case, so * treat it as such. */ type = kDescriptor; } if (type == kDescriptor) { /* * We are looking for a descriptor. Either validate it as a * single-character primitive type, or continue on to check the * embedded class name (bracketed by "L" and ";"). */ switch (*(s++)) { case 'B': case 'C': case 'D': case 'F': case 'I': case 'J': case 'S': case 'Z': // These are all single-character descriptors for primitive types. return (*s == '\0'); case 'V': // Non-array void is valid, but you can't have an array of void. return (arrayCount == 0) && (*s == '\0'); case 'L': // Class name: Break out and continue below. break; default: // Oddball descriptor character. return false; } } /* * We just consumed the 'L' that introduces a class name as part * of a type descriptor, or we are looking for an unadorned class * name. */ bool sepOrFirst = true; // first character or just encountered a separator. for (;;) { uint8_t c = (uint8_t) *s; switch (c) { case '\0': /* * Premature end for a type descriptor, but valid for * a class name as long as we haven't encountered an * empty component (including the degenerate case of * the empty string ""). */ return (type == kName) && !sepOrFirst; case ';': /* * Invalid character for a class name, but the * legitimate end of a type descriptor. In the latter * case, make sure that this is the end of the string * and that it doesn't end with an empty component * (including the degenerate case of "L;"). */ return (type == kDescriptor) && !sepOrFirst && (s[1] == '\0'); case '/': case '.': if (c != separator) { // The wrong separator character. return false; } if (sepOrFirst) { // Separator at start or two separators in a row. return false; } sepOrFirst = true; s++; break; default: if (!IsValidPartOfMemberNameUtf8(&s)) { return false; } sepOrFirst = false; break; } } } bool IsValidBinaryClassName(const char* s) { return IsValidClassName(s, kName, '.'); } bool IsValidJniClassName(const char* s) { return IsValidClassName(s, kName, '/'); } bool IsValidDescriptor(const char* s) { return IsValidClassName(s, kDescriptor, '/'); } void Split(const std::string& s, char separator, std::vector& result) { const char* p = s.data(); const char* end = p + s.size(); while (p != end) { if (*p == separator) { ++p; } else { const char* start = p; while (++p != end && *p != separator) { // Skip to the next occurrence of the separator. } result.push_back(std::string(start, p - start)); } } } template std::string Join(std::vector& strings, char separator) { if (strings.empty()) { return ""; } std::string result(strings[0]); for (size_t i = 1; i < strings.size(); ++i) { result += separator; result += strings[i]; } return result; } // Explicit instantiations. template std::string Join(std::vector& strings, char separator); template std::string Join(std::vector& strings, char separator); template std::string Join(std::vector& strings, char separator); bool StartsWith(const std::string& s, const char* prefix) { return s.compare(0, strlen(prefix), prefix) == 0; } void SetThreadName(const char* threadName) { ANNOTATE_THREAD_NAME(threadName); // For tsan. int hasAt = 0; int hasDot = 0; const char* s = threadName; while (*s) { if (*s == '.') { hasDot = 1; } else if (*s == '@') { hasAt = 1; } s++; } int len = s - threadName; if (len < 15 || hasAt || !hasDot) { s = threadName; } else { s = threadName + len - 15; } #if defined(HAVE_ANDROID_PTHREAD_SETNAME_NP) /* pthread_setname_np fails rather than truncating long strings */ char buf[16]; // MAX_TASK_COMM_LEN=16 is hard-coded into bionic strncpy(buf, s, sizeof(buf)-1); buf[sizeof(buf)-1] = '\0'; errno = pthread_setname_np(pthread_self(), buf); if (errno != 0) { PLOG(WARNING) << "Unable to set the name of current thread to '" << buf << "'"; } #elif defined(HAVE_PRCTL) prctl(PR_SET_NAME, (unsigned long) s, 0, 0, 0); #else UNIMPLEMENTED(WARNING) << threadName; #endif } void GetTaskStats(pid_t tid, int& utime, int& stime, int& task_cpu) { utime = stime = task_cpu = 0; std::string stats; if (!ReadFileToString(StringPrintf("/proc/self/task/%d/stat", GetTid()).c_str(), &stats)) { return; } // Skip the command, which may contain spaces. stats = stats.substr(stats.find(')') + 2); // Extract the three fields we care about. std::vector fields; Split(stats, ' ', fields); utime = strtoull(fields[11].c_str(), NULL, 10); stime = strtoull(fields[12].c_str(), NULL, 10); task_cpu = strtoull(fields[36].c_str(), NULL, 10); } const char* GetAndroidRoot() { const char* android_root = getenv("ANDROID_ROOT"); if (android_root == NULL) { if (OS::DirectoryExists("/system")) { android_root = "/system"; } else { LOG(FATAL) << "ANDROID_ROOT not set and /system does not exist"; return ""; } } if (!OS::DirectoryExists(android_root)) { LOG(FATAL) << "Failed to find ANDROID_ROOT directory " << android_root; return ""; } return android_root; } const char* GetAndroidData() { const char* android_data = getenv("ANDROID_DATA"); if (android_data == NULL) { if (OS::DirectoryExists("/data")) { android_data = "/data"; } else { LOG(FATAL) << "ANDROID_DATA not set and /data does not exist"; return ""; } } if (!OS::DirectoryExists(android_data)) { LOG(FATAL) << "Failed to find ANDROID_DATA directory " << android_data; return ""; } return android_data; } std::string GetArtCacheOrDie() { std::string art_cache(StringPrintf("%s/art-cache", GetAndroidData())); if (!OS::DirectoryExists(art_cache.c_str())) { if (StartsWith(art_cache, "/tmp/")) { int result = mkdir(art_cache.c_str(), 0700); if (result != 0) { LOG(FATAL) << "Failed to create art-cache directory " << art_cache; return ""; } } else { LOG(FATAL) << "Failed to find art-cache directory " << art_cache; return ""; } } return art_cache; } std::string GetArtCacheFilenameOrDie(const std::string& location) { std::string art_cache(GetArtCacheOrDie()); CHECK_EQ(location[0], '/') << location; std::string cache_file(location, 1); // skip leading slash std::replace(cache_file.begin(), cache_file.end(), '/', '@'); return art_cache + "/" + cache_file; } bool IsValidZipFilename(const std::string& filename) { if (filename.size() < 4) { return false; } std::string suffix(filename.substr(filename.size() - 4)); return (suffix == ".zip" || suffix == ".jar" || suffix == ".apk"); } bool IsValidDexFilename(const std::string& filename) { if (filename.size() < 4) { return false; } std::string suffix(filename.substr(filename.size() - 4)); return (suffix == ".dex"); } } // namespace art