/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "thread.h" #include #include #include #include #include #include #include #include #include #include #include "class_linker.h" #include "class_loader.h" #include "debugger.h" #include "heap.h" #include "jni_internal.h" #include "monitor.h" #include "oat/runtime/context.h" #include "object.h" #include "object_utils.h" #include "reflection.h" #include "runtime.h" #include "runtime_support.h" #include "scoped_jni_thread_state.h" #include "ScopedLocalRef.h" #include "space.h" #include "stack.h" #include "stack_indirect_reference_table.h" #include "thread_list.h" #include "utils.h" #include "verifier/gc_map.h" #include "well_known_classes.h" namespace art { pthread_key_t Thread::pthread_key_self_; static const char* kThreadNameDuringStartup = ""; void Thread::InitCardTable() { card_table_ = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin(); } #if !defined(__APPLE__) static void UnimplementedEntryPoint() { UNIMPLEMENTED(FATAL); } #endif void Thread::InitFunctionPointers() { #if !defined(__APPLE__) // The Mac GCC is too old to accept this code. // Insert a placeholder so we can easily tell if we call an unimplemented entry point. uintptr_t* begin = reinterpret_cast(&entrypoints_); uintptr_t* end = reinterpret_cast(reinterpret_cast(begin) + sizeof(entrypoints_)); for (uintptr_t* it = begin; it != end; ++it) { *it = reinterpret_cast(UnimplementedEntryPoint); } #endif InitEntryPoints(&entrypoints_); } void Thread::SetDebuggerUpdatesEnabled(bool enabled) { LOG(INFO) << "Turning debugger updates " << (enabled ? "on" : "off") << " for " << *this; #if !defined(ART_USE_LLVM_COMPILER) ChangeDebuggerEntryPoint(&entrypoints_, enabled); #else UNIMPLEMENTED(FATAL); #endif } void Thread::InitTid() { tid_ = ::art::GetTid(); } void Thread::InitAfterFork() { // One thread (us) survived the fork, but we have a new tid so we need to // update the value stashed in this Thread*. InitTid(); } void* Thread::CreateCallback(void* arg) { Thread* self = reinterpret_cast(arg); self->Init(); // Wait until it's safe to start running code. (There may have been a suspend-all // in progress while we were starting up.) Runtime* runtime = Runtime::Current(); runtime->GetThreadList()->WaitForGo(); { ScopedJniThreadState ts(self); { SirtRef thread_name(self->GetThreadName(ts)); self->SetThreadName(thread_name->ToModifiedUtf8().c_str()); } Dbg::PostThreadStart(self); // Invoke the 'run' method of our java.lang.Thread. CHECK(self->peer_ != NULL); Object* receiver = self->peer_; jmethodID mid = WellKnownClasses::java_lang_Thread_run; Method* m = receiver->GetClass()->FindVirtualMethodForVirtualOrInterface(ts.DecodeMethod(mid)); m->Invoke(self, receiver, NULL, NULL); } // Detach. runtime->GetThreadList()->Unregister(); return NULL; } static void SetVmData(const ScopedJniThreadState& ts, Object* managed_thread, Thread* native_thread) { Field* f = ts.DecodeField(WellKnownClasses::java_lang_Thread_vmData); f->SetInt(managed_thread, reinterpret_cast(native_thread)); } Thread* Thread::FromManagedThread(const ScopedJniThreadState& ts, Object* thread_peer) { Field* f = ts.DecodeField(WellKnownClasses::java_lang_Thread_vmData); return reinterpret_cast(static_cast(f->GetInt(thread_peer))); } Thread* Thread::FromManagedThread(const ScopedJniThreadState& ts, jobject java_thread) { return FromManagedThread(ts, ts.Decode(java_thread)); } static size_t FixStackSize(size_t stack_size) { // A stack size of zero means "use the default". if (stack_size == 0) { stack_size = Runtime::Current()->GetDefaultStackSize(); } // Dalvik used the bionic pthread default stack size for native threads, // so include that here to support apps that expect large native stacks. stack_size += 1 * MB; // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN. if (stack_size < PTHREAD_STACK_MIN) { stack_size = PTHREAD_STACK_MIN; } // It's likely that callers are trying to ensure they have at least a certain amount of // stack space, so we should add our reserved space on top of what they requested, rather // than implicitly take it away from them. stack_size += Thread::kStackOverflowReservedBytes; // Some systems require the stack size to be a multiple of the system page size, so round up. stack_size = RoundUp(stack_size, kPageSize); return stack_size; } static void SigAltStack(stack_t* new_stack, stack_t* old_stack) { if (sigaltstack(new_stack, old_stack) == -1) { PLOG(FATAL) << "sigaltstack failed"; } } static void SetUpAlternateSignalStack() { // Create and set an alternate signal stack. stack_t ss; ss.ss_sp = new uint8_t[SIGSTKSZ]; ss.ss_size = SIGSTKSZ; ss.ss_flags = 0; CHECK(ss.ss_sp != NULL); SigAltStack(&ss, NULL); // Double-check that it worked. ss.ss_sp = NULL; SigAltStack(NULL, &ss); VLOG(threads) << "Alternate signal stack is " << PrettySize(ss.ss_size) << " at " << ss.ss_sp; } static void TearDownAlternateSignalStack() { // Get the pointer so we can free the memory. stack_t ss; SigAltStack(NULL, &ss); uint8_t* allocated_signal_stack = reinterpret_cast(ss.ss_sp); // Tell the kernel to stop using it. ss.ss_sp = NULL; ss.ss_flags = SS_DISABLE; ss.ss_size = SIGSTKSZ; // Avoid ENOMEM failure with Mac OS' buggy libc. SigAltStack(&ss, NULL); // Free it. delete[] allocated_signal_stack; } void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool daemon) { Thread* native_thread = new Thread(daemon); { ScopedJniThreadState ts(env); Object* peer = ts.Decode(java_peer); CHECK(peer != NULL); native_thread->peer_ = peer; stack_size = FixStackSize(stack_size); // Thread.start is synchronized, so we know that vmData is 0, // and know that we're not racing to assign it. SetVmData(ts, peer, native_thread); int pthread_create_result = 0; { ScopedThreadStateChange tsc(Thread::Current(), kVmWait); pthread_t new_pthread; pthread_attr_t attr; CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread"); CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED), "PTHREAD_CREATE_DETACHED"); CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size); pthread_create_result = pthread_create(&new_pthread, &attr, Thread::CreateCallback, native_thread); CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread"); } if (pthread_create_result != 0) { // pthread_create(3) failed, so clean up. SetVmData(ts, peer, 0); delete native_thread; std::string msg(StringPrintf("pthread_create (%s stack) failed: %s", PrettySize(stack_size).c_str(), strerror(pthread_create_result))); Thread::Current()->ThrowOutOfMemoryError(msg.c_str()); return; } } // Let the child know when it's safe to start running. Runtime::Current()->GetThreadList()->SignalGo(native_thread); } void Thread::Init() { // This function does all the initialization that must be run by the native thread it applies to. // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so // we can handshake with the corresponding native thread when it's ready.) Check this native // thread hasn't been through here already... CHECK(Thread::Current() == NULL); SetUpAlternateSignalStack(); InitCpu(); InitFunctionPointers(); InitCardTable(); Runtime* runtime = Runtime::Current(); CHECK(runtime != NULL); thin_lock_id_ = runtime->GetThreadList()->AllocThreadId(); pthread_self_ = pthread_self(); InitTid(); InitStackHwm(); CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach"); jni_env_ = new JNIEnvExt(this, runtime->GetJavaVM()); runtime->GetThreadList()->Register(); } Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_group) { Thread* self = new Thread(as_daemon); self->Init(); self->SetState(kNative); // If we're the main thread, ClassLinker won't be created until after we're attached, // so that thread needs a two-stage attach. Regular threads don't need this hack. // In the compiler, all threads need this hack, because no-one's going to be getting // a native peer! if (self->thin_lock_id_ != ThreadList::kMainId && !Runtime::Current()->IsCompiler()) { self->CreatePeer(thread_name, as_daemon, thread_group); } else { // These aren't necessary, but they improve diagnostics for unit tests & command-line tools. if (thread_name != NULL) { self->name_->assign(thread_name); ::art::SetThreadName(thread_name); } } self->GetJniEnv()->locals.AssertEmpty(); return self; } void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) { Runtime* runtime = Runtime::Current(); CHECK(runtime->IsStarted()); JNIEnv* env = jni_env_; if (thread_group == NULL) { thread_group = runtime->GetMainThreadGroup(); } ScopedLocalRef thread_name(env, env->NewStringUTF(name)); jint thread_priority = GetNativePriority(); jboolean thread_is_daemon = as_daemon; ScopedLocalRef peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread)); peer_ = DecodeJObject(peer.get()); if (peer_ == NULL) { CHECK(IsExceptionPending()); return; } env->CallNonvirtualVoidMethod(peer.get(), WellKnownClasses::java_lang_Thread, WellKnownClasses::java_lang_Thread_init, thread_group, thread_name.get(), thread_priority, thread_is_daemon); CHECK(!IsExceptionPending()) << " " << PrettyTypeOf(GetException()); ScopedJniThreadState ts(this); SetVmData(ts, peer_, Thread::Current()); SirtRef peer_thread_name(GetThreadName(ts)); if (peer_thread_name.get() == NULL) { // The Thread constructor should have set the Thread.name to a // non-null value. However, because we can run without code // available (in the compiler, in tests), we manually assign the // fields the constructor should have set. ts.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->SetBoolean(peer_, thread_is_daemon); ts.DecodeField(WellKnownClasses::java_lang_Thread_group)->SetObject(peer_, ts.Decode(thread_group)); ts.DecodeField(WellKnownClasses::java_lang_Thread_name)->SetObject(peer_, ts.Decode(thread_name.get())); ts.DecodeField(WellKnownClasses::java_lang_Thread_priority)->SetInt(peer_, thread_priority); peer_thread_name.reset(GetThreadName(ts)); } // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null. if (peer_thread_name.get() != NULL) { SetThreadName(peer_thread_name->ToModifiedUtf8().c_str()); } } void Thread::SetThreadName(const char* name) { name_->assign(name); ::art::SetThreadName(name); Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM")); } void Thread::InitStackHwm() { void* stack_base; size_t stack_size; GetThreadStack(stack_base, stack_size); // TODO: include this in the thread dumps; potentially useful in SIGQUIT output? VLOG(threads) << StringPrintf("Native stack is at %p (%s)", stack_base, PrettySize(stack_size).c_str()); stack_begin_ = reinterpret_cast(stack_base); stack_size_ = stack_size; if (stack_size_ <= kStackOverflowReservedBytes) { LOG(FATAL) << "Attempt to attach a thread with a too-small stack (" << stack_size_ << " bytes)"; } // TODO: move this into the Linux GetThreadStack implementation. #if !defined(__APPLE__) // If we're the main thread, check whether we were run with an unlimited stack. In that case, // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection // will be broken because we'll die long before we get close to 2GB. if (thin_lock_id_ == 1) { rlimit stack_limit; if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) { PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed"; } if (stack_limit.rlim_cur == RLIM_INFINITY) { // Find the default stack size for new threads... pthread_attr_t default_attributes; size_t default_stack_size; CHECK_PTHREAD_CALL(pthread_attr_init, (&default_attributes), "default stack size query"); CHECK_PTHREAD_CALL(pthread_attr_getstacksize, (&default_attributes, &default_stack_size), "default stack size query"); CHECK_PTHREAD_CALL(pthread_attr_destroy, (&default_attributes), "default stack size query"); // ...and use that as our limit. size_t old_stack_size = stack_size_; stack_size_ = default_stack_size; stack_begin_ += (old_stack_size - stack_size_); VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")" << " to " << PrettySize(stack_size_) << " with base " << reinterpret_cast(stack_begin_); } } #endif // Set stack_end_ to the bottom of the stack saving space of stack overflows ResetDefaultStackEnd(); // Sanity check. int stack_variable; CHECK_GT(&stack_variable, reinterpret_cast(stack_end_)); } void Thread::Dump(std::ostream& os, bool full) const { if (full) { DumpState(os); DumpStack(os); } else { os << "Thread["; if (GetThinLockId() != 0) { // If we're in kStarting, we won't have a thin lock id or tid yet. os << GetThinLockId() << ",tid=" << GetTid() << ','; } os << GetState() << ",Thread*=" << this << ",peer=" << peer_ << ",\"" << *name_ << "\"" << "]"; } } String* Thread::GetThreadName(const ScopedJniThreadState& ts) const { Field* f = ts.DecodeField(WellKnownClasses::java_lang_Thread_name); return (peer_ != NULL) ? reinterpret_cast(f->GetObject(peer_)) : NULL; } void Thread::GetThreadName(std::string& name) const { name.assign(*name_); } void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) { std::string group_name; int priority; bool is_daemon = false; if (thread != NULL && thread->peer_ != NULL) { ScopedJniThreadState ts(Thread::Current()); priority = ts.DecodeField(WellKnownClasses::java_lang_Thread_priority)->GetInt(thread->peer_); is_daemon = ts.DecodeField(WellKnownClasses::java_lang_Thread_daemon)->GetBoolean(thread->peer_); Object* thread_group = thread->GetThreadGroup(ts); if (thread_group != NULL) { Field* group_name_field = ts.DecodeField(WellKnownClasses::java_lang_ThreadGroup_name); String* group_name_string = reinterpret_cast(group_name_field->GetObject(thread_group)); group_name = (group_name_string != NULL) ? group_name_string->ToModifiedUtf8() : ""; } } else { priority = GetNativePriority(); } std::string scheduler_group_name(GetSchedulerGroupName(tid)); if (scheduler_group_name.empty()) { scheduler_group_name = "default"; } if (thread != NULL) { os << '"' << *thread->name_ << '"'; if (is_daemon) { os << " daemon"; } os << " prio=" << priority << " tid=" << thread->GetThinLockId() << " " << thread->GetState() << "\n"; } else { os << '"' << ::art::GetThreadName(tid) << '"' << " prio=" << priority << " (not attached)\n"; } if (thread != NULL) { os << " | group=\"" << group_name << "\"" << " sCount=" << thread->suspend_count_ << " dsCount=" << thread->debug_suspend_count_ << " obj=" << reinterpret_cast(thread->peer_) << " self=" << reinterpret_cast(thread) << "\n"; } os << " | sysTid=" << tid << " nice=" << getpriority(PRIO_PROCESS, tid) << " cgrp=" << scheduler_group_name; if (thread != NULL) { int policy; sched_param sp; CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->pthread_self_, &policy, &sp), __FUNCTION__); os << " sched=" << policy << "/" << sp.sched_priority << " handle=" << reinterpret_cast(thread->pthread_self_); } os << "\n"; // Grab the scheduler stats for this thread. std::string scheduler_stats; if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) { scheduler_stats.resize(scheduler_stats.size() - 1); // Lose the trailing '\n'. } else { scheduler_stats = "0 0 0"; } int utime = 0; int stime = 0; int task_cpu = 0; GetTaskStats(tid, utime, stime, task_cpu); os << " | schedstat=( " << scheduler_stats << " )" << " utm=" << utime << " stm=" << stime << " core=" << task_cpu << " HZ=" << sysconf(_SC_CLK_TCK) << "\n"; if (thread != NULL) { os << " | stack=" << reinterpret_cast(thread->stack_begin_) << "-" << reinterpret_cast(thread->stack_end_) << " stackSize=" << PrettySize(thread->stack_size_) << "\n"; } } void Thread::DumpState(std::ostream& os) const { Thread::DumpState(os, this, GetTid()); } struct StackDumpVisitor : public StackVisitor { StackDumpVisitor(std::ostream& os, const Thread* thread, Context* context, bool can_allocate) : StackVisitor(thread->GetManagedStack(), thread->GetTraceStack(), context), os(os), thread(thread), can_allocate(can_allocate), last_method(NULL), last_line_number(0), repetition_count(0), frame_count(0) { } virtual ~StackDumpVisitor() { if (frame_count == 0) { os << " (no managed stack frames)\n"; } } bool VisitFrame() { Method* m = GetMethod(); if (m->IsRuntimeMethod()) { return true; } const int kMaxRepetition = 3; Class* c = m->GetDeclaringClass(); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); const DexCache* dex_cache = c->GetDexCache(); int line_number = -1; if (dex_cache != NULL) { // be tolerant of bad input const DexFile& dex_file = class_linker->FindDexFile(dex_cache); line_number = dex_file.GetLineNumFromPC(m, GetDexPc()); } if (line_number == last_line_number && last_method == m) { repetition_count++; } else { if (repetition_count >= kMaxRepetition) { os << " ... repeated " << (repetition_count - kMaxRepetition) << " times\n"; } repetition_count = 0; last_line_number = line_number; last_method = m; } if (repetition_count < kMaxRepetition) { os << " at " << PrettyMethod(m, false); if (m->IsNative()) { os << "(Native method)"; } else { mh.ChangeMethod(m); const char* source_file(mh.GetDeclaringClassSourceFile()); os << "(" << (source_file != NULL ? source_file : "unavailable") << ":" << line_number << ")"; } os << "\n"; if (frame_count == 0) { Monitor::DescribeWait(os, thread); } if (can_allocate) { Monitor::DescribeLocks(os, this); } } ++frame_count; return true; } std::ostream& os; const Thread* thread; bool can_allocate; MethodHelper mh; Method* last_method; int last_line_number; int repetition_count; int frame_count; }; void Thread::DumpStack(std::ostream& os) const { // If we're currently in native code, dump that stack before dumping the managed stack. if (GetState() == kNative || GetState() == kVmWait) { DumpKernelStack(os, GetTid(), " kernel: ", false); DumpNativeStack(os, GetTid(), " native: ", false); } UniquePtr context(Context::Create()); StackDumpVisitor dumper(os, this, context.get(), !throwing_OutOfMemoryError_); dumper.WalkStack(); } void Thread::SetStateWithoutSuspendCheck(ThreadState new_state) { DCHECK_EQ(this, Thread::Current()); volatile void* raw = reinterpret_cast(&state_); volatile int32_t* addr = reinterpret_cast(raw); android_atomic_release_store(new_state, addr); } ThreadState Thread::SetState(ThreadState new_state) { if (new_state != kVmWait && new_state != kTerminated) { // TODO: kVmWait is set by the parent thread to a child thread to indicate it can go. Similarly // kTerminated may be set by a parent thread to its child if pthread creation fails. This // overloaded use of the state variable means we cannot fully assert that only threads // themselves modify their state. DCHECK_EQ(this, Thread::Current()); } ThreadState old_state = state_; if (old_state == kRunnable) { // Non-runnable states are points where we expect thread suspension can occur. AssertThreadSuspensionIsAllowable(); } if (old_state == new_state) { return old_state; } volatile void* raw = reinterpret_cast(&state_); volatile int32_t* addr = reinterpret_cast(raw); if (new_state == kRunnable) { /* * Change our status to kRunnable. The transition requires * that we check for pending suspension, because the runtime considers * us to be "asleep" in all other states, and another thread could * be performing a GC now. * * The order of operations is very significant here. One way to * do this wrong is: * * GCing thread Our thread (in kNative) * ------------ ---------------------- * check suspend count (== 0) * SuspendAllThreads() * grab suspend-count lock * increment all suspend counts * release suspend-count lock * check thread state (== kNative) * all are suspended, begin GC * set state to kRunnable * (continue executing) * * We can correct this by grabbing the suspend-count lock and * performing both of our operations (check suspend count, set * state) while holding it, now we need to grab a mutex on every * transition to kRunnable. * * What we do instead is change the order of operations so that * the transition to kRunnable happens first. If we then detect * that the suspend count is nonzero, we switch to kSuspended. * * Appropriate compiler and memory barriers are required to ensure * that the operations are observed in the expected order. * * This does create a small window of opportunity where a GC in * progress could observe what appears to be a running thread (if * it happens to look between when we set to kRunnable and when we * switch to kSuspended). At worst this only affects assertions * and thread logging. (We could work around it with some sort * of intermediate "pre-running" state that is generally treated * as equivalent to running, but that doesn't seem worthwhile.) * * We can also solve this by combining the "status" and "suspend * count" fields into a single 32-bit value. This trades the * store/load barrier on transition to kRunnable for an atomic RMW * op on all transitions and all suspend count updates (also, all * accesses to status or the thread count require bit-fiddling). * It also eliminates the brief transition through kRunnable when * the thread is supposed to be suspended. This is possibly faster * on SMP and slightly more correct, but less convenient. */ AssertThreadSuspensionIsAllowable(); android_atomic_acquire_store(new_state, addr); ANNOTATE_IGNORE_READS_BEGIN(); int suspend_count = suspend_count_; ANNOTATE_IGNORE_READS_END(); if (suspend_count != 0) { Runtime::Current()->GetThreadList()->FullSuspendCheck(this); } } else { /* * Not changing to kRunnable. No additional work required. * * We use a releasing store to ensure that, if we were runnable, * any updates we previously made to objects on the managed heap * will be observed before the state change. */ android_atomic_release_store(new_state, addr); } return old_state; } bool Thread::IsSuspended() { ANNOTATE_IGNORE_READS_BEGIN(); int suspend_count = suspend_count_; ANNOTATE_IGNORE_READS_END(); return suspend_count != 0 && GetState() != kRunnable; } static void ReportThreadSuspendTimeout(Thread* waiting_thread) { Runtime* runtime = Runtime::Current(); std::ostringstream ss; ss << "Thread suspend timeout waiting for thread " << *waiting_thread << "\n"; runtime->DumpLockHolders(ss); ss << "\n"; runtime->GetThreadList()->DumpLocked(ss); LOG(FATAL) << ss.str(); } void Thread::WaitUntilSuspended() { static const useconds_t kTimeoutUs = 30 * 1000000; // 30s. useconds_t total_delay = 0; useconds_t delay = 0; while (GetState() == kRunnable) { if (total_delay >= kTimeoutUs) { ReportThreadSuspendTimeout(this); } useconds_t new_delay = delay * 2; CHECK_GE(new_delay, delay); delay = new_delay; if (delay == 0) { sched_yield(); // Default to 1 milliseconds (note that this gets multiplied by 2 before // the first sleep) delay = 500; } else { usleep(delay); total_delay += delay; } } } void Thread::ThreadExitCallback(void* arg) { Thread* self = reinterpret_cast(arg); LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self; } void Thread::Startup() { // Allocate a TLS slot. CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback), "self key"); // Double-check the TLS slot allocation. if (pthread_getspecific(pthread_key_self_) != NULL) { LOG(FATAL) << "Newly-created pthread TLS slot is not NULL"; } } void Thread::FinishStartup() { Runtime* runtime = Runtime::Current(); CHECK(runtime->IsStarted()); Thread* self = Thread::Current(); // Finish attaching the main thread. ScopedThreadStateChange tsc(self, kRunnable); Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup()); InitBoxingMethods(); Runtime::Current()->GetClassLinker()->RunRootClinits(); } void Thread::Shutdown() { CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key"); } Thread::Thread(bool daemon) : suspend_count_(0), card_table_(NULL), exception_(NULL), stack_end_(NULL), managed_stack_(), jni_env_(NULL), self_(NULL), state_(kNative), peer_(NULL), stack_begin_(NULL), stack_size_(0), thin_lock_id_(0), tid_(0), wait_mutex_(new Mutex("a thread wait mutex")), wait_cond_(new ConditionVariable("a thread wait condition variable")), wait_monitor_(NULL), interrupted_(false), wait_next_(NULL), monitor_enter_object_(NULL), top_sirt_(NULL), runtime_(NULL), class_loader_override_(NULL), long_jump_context_(NULL), throwing_OutOfMemoryError_(false), debug_suspend_count_(0), debug_invoke_req_(new DebugInvokeReq), trace_stack_(new std::vector), name_(new std::string(kThreadNameDuringStartup)), daemon_(daemon), no_thread_suspension_(0), last_no_thread_suspension_cause_(NULL) { CHECK_EQ((sizeof(Thread) % 4), 0U) << sizeof(Thread); memset(&held_mutexes_[0], 0, sizeof(held_mutexes_)); } bool Thread::IsStillStarting() const { // You might think you can check whether the state is kStarting, but for much of thread startup, // the thread might also be in kVmWait. // You might think you can check whether the peer is NULL, but the peer is actually created and // assigned fairly early on, and needs to be. // It turns out that the last thing to change is the thread name; that's a good proxy for "has // this thread _ever_ entered kRunnable". return (*name_ == kThreadNameDuringStartup); } static void MonitorExitVisitor(const Object* object, void*) { Object* entered_monitor = const_cast(object); LOG(WARNING) << "Calling MonitorExit on object " << object << " (" << PrettyTypeOf(object) << ")" << " left locked by native thread " << *Thread::Current() << " which is detaching"; entered_monitor->MonitorExit(Thread::Current()); } void Thread::Destroy() { // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited. if (jni_env_ != NULL) { jni_env_->monitors.VisitRoots(MonitorExitVisitor, NULL); } if (peer_ != NULL) { Thread* self = this; // We may need to call user-supplied managed code. ScopedJniThreadState ts(this); HandleUncaughtExceptions(ts); RemoveFromThreadGroup(ts); // this.vmData = 0; SetVmData(ts, peer_, NULL); Dbg::PostThreadDeath(self); // Thread.join() is implemented as an Object.wait() on the Thread.lock // object. Signal anyone who is waiting. Object* lock = ts.DecodeField(WellKnownClasses::java_lang_Thread_lock)->GetObject(peer_); // (This conditional is only needed for tests, where Thread.lock won't have been set.) if (lock != NULL) { lock->MonitorEnter(self); lock->NotifyAll(); lock->MonitorExit(self); } } } Thread::~Thread() { delete jni_env_; jni_env_ = NULL; SetState(kTerminated); delete wait_cond_; delete wait_mutex_; #if !defined(ART_USE_LLVM_COMPILER) delete long_jump_context_; #endif delete debug_invoke_req_; delete trace_stack_; delete name_; TearDownAlternateSignalStack(); } void Thread::HandleUncaughtExceptions(const ScopedJniThreadState& ts) { if (!IsExceptionPending()) { return; } // Get and clear the exception. Object* exception = GetException(); ClearException(); // If the thread has its own handler, use that. Object* handler = ts.DecodeField(WellKnownClasses::java_lang_Thread_uncaughtHandler)->GetObject(peer_); if (handler == NULL) { // Otherwise use the thread group's default handler. handler = GetThreadGroup(ts); } // Call the handler. jmethodID mid = WellKnownClasses::java_lang_Thread$UncaughtExceptionHandler_uncaughtException; Method* m = handler->GetClass()->FindVirtualMethodForVirtualOrInterface(ts.DecodeMethod(mid)); JValue args[2]; args[0].SetL(peer_); args[1].SetL(exception); m->Invoke(this, handler, args, NULL); // If the handler threw, clear that exception too. ClearException(); } Object* Thread::GetThreadGroup(const ScopedJniThreadState& ts) const { return ts.DecodeField(WellKnownClasses::java_lang_Thread_group)->GetObject(peer_); } void Thread::RemoveFromThreadGroup(const ScopedJniThreadState& ts) { // this.group.removeThread(this); // group can be null if we're in the compiler or a test. Object* group = GetThreadGroup(ts); if (group != NULL) { jmethodID mid = WellKnownClasses::java_lang_ThreadGroup_removeThread; Method* m = group->GetClass()->FindVirtualMethodForVirtualOrInterface(ts.DecodeMethod(mid)); JValue args[1]; args[0].SetL(peer_); m->Invoke(this, group, args, NULL); } } size_t Thread::NumSirtReferences() { size_t count = 0; for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) { count += cur->NumberOfReferences(); } return count; } bool Thread::SirtContains(jobject obj) { Object** sirt_entry = reinterpret_cast(obj); for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) { if (cur->Contains(sirt_entry)) { return true; } } // JNI code invoked from portable code uses shadow frames rather than the SIRT. return managed_stack_.ShadowFramesContain(sirt_entry); } void Thread::SirtVisitRoots(Heap::RootVisitor* visitor, void* arg) { for (StackIndirectReferenceTable* cur = top_sirt_; cur; cur = cur->GetLink()) { size_t num_refs = cur->NumberOfReferences(); for (size_t j = 0; j < num_refs; j++) { Object* object = cur->GetReference(j); if (object != NULL) { visitor(object, arg); } } } } Object* Thread::DecodeJObject(jobject obj) { DCHECK(CanAccessDirectReferences()); if (obj == NULL) { return NULL; } IndirectRef ref = reinterpret_cast(obj); IndirectRefKind kind = GetIndirectRefKind(ref); Object* result; switch (kind) { case kLocal: { IndirectReferenceTable& locals = jni_env_->locals; result = const_cast(locals.Get(ref)); break; } case kGlobal: { JavaVMExt* vm = Runtime::Current()->GetJavaVM(); IndirectReferenceTable& globals = vm->globals; MutexLock mu(vm->globals_lock); result = const_cast(globals.Get(ref)); break; } case kWeakGlobal: { JavaVMExt* vm = Runtime::Current()->GetJavaVM(); IndirectReferenceTable& weak_globals = vm->weak_globals; MutexLock mu(vm->weak_globals_lock); result = const_cast(weak_globals.Get(ref)); if (result == kClearedJniWeakGlobal) { // This is a special case where it's okay to return NULL. return NULL; } break; } case kSirtOrInvalid: default: // TODO: make stack indirect reference table lookup more efficient // Check if this is a local reference in the SIRT if (SirtContains(obj)) { result = *reinterpret_cast(obj); // Read from SIRT } else if (Runtime::Current()->GetJavaVM()->work_around_app_jni_bugs) { // Assume an invalid local reference is actually a direct pointer. result = reinterpret_cast(obj); } else { result = kInvalidIndirectRefObject; } } if (result == NULL) { JniAbortF(NULL, "use of deleted %s %p", ToStr(kind).c_str(), obj); } else { if (result != kInvalidIndirectRefObject) { Runtime::Current()->GetHeap()->VerifyObject(result); } } return result; } class CountStackDepthVisitor : public StackVisitor { public: CountStackDepthVisitor(const ManagedStack* stack, const std::vector* trace_stack) : StackVisitor(stack, trace_stack, NULL), depth_(0), skip_depth_(0), skipping_(true) {} bool VisitFrame() { // We want to skip frames up to and including the exception's constructor. // Note we also skip the frame if it doesn't have a method (namely the callee // save frame) Method* m = GetMethod(); if (skipping_ && !m->IsRuntimeMethod() && !Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) { skipping_ = false; } if (!skipping_) { if (!m->IsRuntimeMethod()) { // Ignore runtime frames (in particular callee save). ++depth_; } } else { ++skip_depth_; } return true; } int GetDepth() const { return depth_; } int GetSkipDepth() const { return skip_depth_; } private: uint32_t depth_; uint32_t skip_depth_; bool skipping_; }; class BuildInternalStackTraceVisitor : public StackVisitor { public: explicit BuildInternalStackTraceVisitor(const ManagedStack* stack, const std::vector* trace_stack, int skip_depth) : StackVisitor(stack, trace_stack, NULL), skip_depth_(skip_depth), count_(0), dex_pc_trace_(NULL), method_trace_(NULL) {} bool Init(int depth, const ScopedJniThreadState& ts) { // Allocate method trace with an extra slot that will hold the PC trace SirtRef > method_trace(Runtime::Current()->GetClassLinker()->AllocObjectArray(depth + 1)); if (method_trace.get() == NULL) { return false; } IntArray* dex_pc_trace = IntArray::Alloc(depth); if (dex_pc_trace == NULL) { return false; } // Save PC trace in last element of method trace, also places it into the // object graph. method_trace->Set(depth, dex_pc_trace); // Set the Object*s and assert that no thread suspension is now possible. const char* last_no_suspend_cause = ts.Self()->StartAssertNoThreadSuspension("Building internal stack trace"); CHECK(last_no_suspend_cause == NULL) << last_no_suspend_cause; method_trace_ = method_trace.get(); dex_pc_trace_ = dex_pc_trace; return true; } virtual ~BuildInternalStackTraceVisitor() { if (method_trace_ != NULL) { Thread::Current()->EndAssertNoThreadSuspension(NULL); } } bool VisitFrame() { if (method_trace_ == NULL || dex_pc_trace_ == NULL) { return true; // We're probably trying to fillInStackTrace for an OutOfMemoryError. } if (skip_depth_ > 0) { skip_depth_--; return true; } Method* m = GetMethod(); if (m->IsRuntimeMethod()) { return true; // Ignore runtime frames (in particular callee save). } method_trace_->Set(count_, m); dex_pc_trace_->Set(count_, GetDexPc()); ++count_; return true; } ObjectArray* GetInternalStackTrace() const { return method_trace_; } private: // How many more frames to skip. int32_t skip_depth_; // Current position down stack trace. uint32_t count_; // Array of dex PC values. IntArray* dex_pc_trace_; // An array of the methods on the stack, the last entry is a reference to the PC trace. ObjectArray* method_trace_; }; void Thread::PushSirt(StackIndirectReferenceTable* sirt) { sirt->SetLink(top_sirt_); top_sirt_ = sirt; } StackIndirectReferenceTable* Thread::PopSirt() { CHECK(top_sirt_ != NULL); StackIndirectReferenceTable* sirt = top_sirt_; top_sirt_ = top_sirt_->GetLink(); return sirt; } jobject Thread::CreateInternalStackTrace(const ScopedJniThreadState& ts) const { // Compute depth of stack CountStackDepthVisitor count_visitor(GetManagedStack(), GetTraceStack()); count_visitor.WalkStack(); int32_t depth = count_visitor.GetDepth(); int32_t skip_depth = count_visitor.GetSkipDepth(); // Build internal stack trace BuildInternalStackTraceVisitor build_trace_visitor(GetManagedStack(), GetTraceStack(), skip_depth); if (!build_trace_visitor.Init(depth, ts)) { return NULL; // Allocation failed } build_trace_visitor.WalkStack(); return ts.AddLocalReference(build_trace_visitor.GetInternalStackTrace()); } jobjectArray Thread::InternalStackTraceToStackTraceElementArray(JNIEnv* env, jobject internal, jobjectArray output_array, int* stack_depth) { // Transition into runnable state to work on Object*/Array* ScopedJniThreadState ts(env); // Decode the internal stack trace into the depth, method trace and PC trace ObjectArray* method_trace = ts.Decode*>(internal); int32_t depth = method_trace->GetLength() - 1; IntArray* pc_trace = down_cast(method_trace->Get(depth)); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); jobjectArray result; ObjectArray* java_traces; if (output_array != NULL) { // Reuse the array we were given. result = output_array; java_traces = ts.Decode*>(output_array); // ...adjusting the number of frames we'll write to not exceed the array length. depth = std::min(depth, java_traces->GetLength()); } else { // Create java_trace array and place in local reference table java_traces = class_linker->AllocStackTraceElementArray(depth); if (java_traces == NULL) { return NULL; } result = ts.AddLocalReference(java_traces); } if (stack_depth != NULL) { *stack_depth = depth; } MethodHelper mh; for (int32_t i = 0; i < depth; ++i) { // Prepare parameters for StackTraceElement(String cls, String method, String file, int line) Method* method = down_cast(method_trace->Get(i)); mh.ChangeMethod(method); uint32_t dex_pc = pc_trace->Get(i); int32_t line_number = mh.GetLineNumFromDexPC(dex_pc); // Allocate element, potentially triggering GC // TODO: reuse class_name_object via Class::name_? const char* descriptor = mh.GetDeclaringClassDescriptor(); CHECK(descriptor != NULL); std::string class_name(PrettyDescriptor(descriptor)); SirtRef class_name_object(String::AllocFromModifiedUtf8(class_name.c_str())); if (class_name_object.get() == NULL) { return NULL; } const char* method_name = mh.GetName(); CHECK(method_name != NULL); SirtRef method_name_object(String::AllocFromModifiedUtf8(method_name)); if (method_name_object.get() == NULL) { return NULL; } const char* source_file = mh.GetDeclaringClassSourceFile(); SirtRef source_name_object(String::AllocFromModifiedUtf8(source_file)); StackTraceElement* obj = StackTraceElement::Alloc(class_name_object.get(), method_name_object.get(), source_name_object.get(), line_number); if (obj == NULL) { return NULL; } #ifdef MOVING_GARBAGE_COLLECTOR // Re-read after potential GC java_traces = Decode*>(ts.Env(), result); method_trace = down_cast*>(Decode(ts.Env(), internal)); pc_trace = down_cast(method_trace->Get(depth)); #endif java_traces->Set(i, obj); } return result; } void Thread::ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) { va_list args; va_start(args, fmt); ThrowNewExceptionV(exception_class_descriptor, fmt, args); va_end(args); } void Thread::ThrowNewExceptionV(const char* exception_class_descriptor, const char* fmt, va_list ap) { std::string msg; StringAppendV(&msg, fmt, ap); ThrowNewException(exception_class_descriptor, msg.c_str()); } void Thread::ThrowNewException(const char* exception_class_descriptor, const char* msg) { CHECK(!IsExceptionPending()); // Callers should either clear or call ThrowNewWrappedException. ThrowNewWrappedException(exception_class_descriptor, msg); } void Thread::ThrowNewWrappedException(const char* exception_class_descriptor, const char* msg) { // Convert "Ljava/lang/Exception;" into JNI-style "java/lang/Exception". CHECK_EQ('L', exception_class_descriptor[0]); std::string descriptor(exception_class_descriptor + 1); CHECK_EQ(';', descriptor[descriptor.length() - 1]); descriptor.erase(descriptor.length() - 1); JNIEnv* env = GetJniEnv(); jobject cause = env->ExceptionOccurred(); env->ExceptionClear(); ScopedLocalRef exception_class(env, env->FindClass(descriptor.c_str())); if (exception_class.get() == NULL) { LOG(ERROR) << "Couldn't throw new " << descriptor << " because JNI FindClass failed: " << PrettyTypeOf(GetException()); CHECK(IsExceptionPending()); return; } if (!Runtime::Current()->IsStarted()) { // Something is trying to throw an exception without a started // runtime, which is the common case in the compiler. We won't be // able to invoke the constructor of the exception, so use // AllocObject which will not invoke a constructor. ScopedLocalRef exception( env, reinterpret_cast(env->AllocObject(exception_class.get()))); if (exception.get() != NULL) { ScopedJniThreadState ts(env); Throwable* t = reinterpret_cast(ts.Self()->DecodeJObject(exception.get())); t->SetDetailMessage(String::AllocFromModifiedUtf8(msg)); ts.Self()->SetException(t); } else { LOG(ERROR) << "Couldn't throw new " << descriptor << " because JNI AllocObject failed: " << PrettyTypeOf(GetException()); CHECK(IsExceptionPending()); } return; } int rc = ::art::ThrowNewException(env, exception_class.get(), msg, cause); if (rc != JNI_OK) { LOG(ERROR) << "Couldn't throw new " << descriptor << " because JNI ThrowNew failed: " << PrettyTypeOf(GetException()); CHECK(IsExceptionPending()); } } void Thread::ThrowOutOfMemoryError(const char* msg) { LOG(ERROR) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s", msg, (throwing_OutOfMemoryError_ ? " (recursive case)" : "")); if (!throwing_OutOfMemoryError_) { throwing_OutOfMemoryError_ = true; ThrowNewException("Ljava/lang/OutOfMemoryError;", msg); } else { Dump(LOG(ERROR)); // The pre-allocated OOME has no stack, so help out and log one. SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError()); } throwing_OutOfMemoryError_ = false; } Thread* Thread::CurrentFromGdb() { return Thread::Current(); } void Thread::DumpFromGdb() const { std::ostringstream ss; Dump(ss); std::string str(ss.str()); // log to stderr for debugging command line processes std::cerr << str; #ifdef HAVE_ANDROID_OS // log to logcat for debugging frameworks processes LOG(INFO) << str; #endif } struct EntryPointInfo { uint32_t offset; const char* name; }; #define ENTRY_POINT_INFO(x) { ENTRYPOINT_OFFSET(x), #x } static const EntryPointInfo gThreadEntryPointInfo[] = { ENTRY_POINT_INFO(pAllocArrayFromCode), ENTRY_POINT_INFO(pAllocArrayFromCodeWithAccessCheck), ENTRY_POINT_INFO(pAllocObjectFromCode), ENTRY_POINT_INFO(pAllocObjectFromCodeWithAccessCheck), ENTRY_POINT_INFO(pCheckAndAllocArrayFromCode), ENTRY_POINT_INFO(pCheckAndAllocArrayFromCodeWithAccessCheck), ENTRY_POINT_INFO(pInstanceofNonTrivialFromCode), ENTRY_POINT_INFO(pCanPutArrayElementFromCode), ENTRY_POINT_INFO(pCheckCastFromCode), ENTRY_POINT_INFO(pDebugMe), ENTRY_POINT_INFO(pUpdateDebuggerFromCode), ENTRY_POINT_INFO(pInitializeStaticStorage), ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccessFromCode), ENTRY_POINT_INFO(pInitializeTypeFromCode), ENTRY_POINT_INFO(pResolveStringFromCode), ENTRY_POINT_INFO(pSet32Instance), ENTRY_POINT_INFO(pSet32Static), ENTRY_POINT_INFO(pSet64Instance), ENTRY_POINT_INFO(pSet64Static), ENTRY_POINT_INFO(pSetObjInstance), ENTRY_POINT_INFO(pSetObjStatic), ENTRY_POINT_INFO(pGet32Instance), ENTRY_POINT_INFO(pGet32Static), ENTRY_POINT_INFO(pGet64Instance), ENTRY_POINT_INFO(pGet64Static), ENTRY_POINT_INFO(pGetObjInstance), ENTRY_POINT_INFO(pGetObjStatic), ENTRY_POINT_INFO(pHandleFillArrayDataFromCode), ENTRY_POINT_INFO(pDecodeJObjectInThread), ENTRY_POINT_INFO(pFindNativeMethod), ENTRY_POINT_INFO(pLockObjectFromCode), ENTRY_POINT_INFO(pUnlockObjectFromCode), ENTRY_POINT_INFO(pCmpgDouble), ENTRY_POINT_INFO(pCmpgFloat), ENTRY_POINT_INFO(pCmplDouble), ENTRY_POINT_INFO(pCmplFloat), ENTRY_POINT_INFO(pDadd), ENTRY_POINT_INFO(pDdiv), ENTRY_POINT_INFO(pDmul), ENTRY_POINT_INFO(pDsub), ENTRY_POINT_INFO(pF2d), ENTRY_POINT_INFO(pFmod), ENTRY_POINT_INFO(pI2d), ENTRY_POINT_INFO(pL2d), ENTRY_POINT_INFO(pD2f), ENTRY_POINT_INFO(pFadd), ENTRY_POINT_INFO(pFdiv), ENTRY_POINT_INFO(pFmodf), ENTRY_POINT_INFO(pFmul), ENTRY_POINT_INFO(pFsub), ENTRY_POINT_INFO(pI2f), ENTRY_POINT_INFO(pL2f), ENTRY_POINT_INFO(pD2iz), ENTRY_POINT_INFO(pF2iz), ENTRY_POINT_INFO(pIdivmod), ENTRY_POINT_INFO(pD2l), ENTRY_POINT_INFO(pF2l), ENTRY_POINT_INFO(pLdiv), ENTRY_POINT_INFO(pLdivmod), ENTRY_POINT_INFO(pLmul), ENTRY_POINT_INFO(pShlLong), ENTRY_POINT_INFO(pShrLong), ENTRY_POINT_INFO(pUshrLong), ENTRY_POINT_INFO(pIndexOf), ENTRY_POINT_INFO(pMemcmp16), ENTRY_POINT_INFO(pStringCompareTo), ENTRY_POINT_INFO(pMemcpy), ENTRY_POINT_INFO(pUnresolvedDirectMethodTrampolineFromCode), ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck), ENTRY_POINT_INFO(pInvokeInterfaceTrampoline), ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck), ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck), ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck), ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck), ENTRY_POINT_INFO(pCheckSuspendFromCode), ENTRY_POINT_INFO(pTestSuspendFromCode), ENTRY_POINT_INFO(pDeliverException), ENTRY_POINT_INFO(pThrowAbstractMethodErrorFromCode), ENTRY_POINT_INFO(pThrowArrayBoundsFromCode), ENTRY_POINT_INFO(pThrowDivZeroFromCode), ENTRY_POINT_INFO(pThrowNoSuchMethodFromCode), ENTRY_POINT_INFO(pThrowNullPointerFromCode), ENTRY_POINT_INFO(pThrowStackOverflowFromCode), ENTRY_POINT_INFO(pThrowVerificationErrorFromCode), }; #undef ENTRY_POINT_INFO void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset, size_t size_of_pointers) { CHECK_EQ(size_of_pointers, 4U); // TODO: support 64-bit targets. #define DO_THREAD_OFFSET(x) if (offset == static_cast(OFFSETOF_VOLATILE_MEMBER(Thread, x))) { os << # x; return; } DO_THREAD_OFFSET(card_table_); DO_THREAD_OFFSET(exception_); DO_THREAD_OFFSET(jni_env_); DO_THREAD_OFFSET(self_); DO_THREAD_OFFSET(stack_end_); DO_THREAD_OFFSET(state_); DO_THREAD_OFFSET(suspend_count_); DO_THREAD_OFFSET(thin_lock_id_); //DO_THREAD_OFFSET(top_of_managed_stack_); //DO_THREAD_OFFSET(top_of_managed_stack_pc_); DO_THREAD_OFFSET(top_sirt_); #undef DO_THREAD_OFFSET size_t entry_point_count = arraysize(gThreadEntryPointInfo); CHECK_EQ(entry_point_count * size_of_pointers, sizeof(EntryPoints)); uint32_t expected_offset = OFFSETOF_MEMBER(Thread, entrypoints_); for (size_t i = 0; i < entry_point_count; ++i) { CHECK_EQ(gThreadEntryPointInfo[i].offset, expected_offset); expected_offset += size_of_pointers; if (gThreadEntryPointInfo[i].offset == offset) { os << gThreadEntryPointInfo[i].name; return; } } os << offset; } static const bool kDebugExceptionDelivery = false; class CatchBlockStackVisitor : public StackVisitor { public: CatchBlockStackVisitor(Thread* self, Throwable* exception) : StackVisitor(self->GetManagedStack(), self->GetTraceStack(), self->GetLongJumpContext()), self_(self), exception_(exception), to_find_(exception->GetClass()), throw_method_(NULL), throw_frame_id_(0), throw_dex_pc_(0), handler_quick_frame_(NULL), handler_quick_frame_pc_(0), handler_dex_pc_(0), native_method_count_(0), method_tracing_active_(Runtime::Current()->IsMethodTracingActive()) { // Exception not in root sets, can't allow GC. last_no_assert_suspension_cause_ = self->StartAssertNoThreadSuspension("Finding catch block"); } ~CatchBlockStackVisitor() { LOG(FATAL) << "UNREACHABLE"; // Expected to take long jump. } bool VisitFrame() { Method* method = GetMethod(); if (method == NULL) { // This is the upcall, we remember the frame and last pc so that we may long jump to them. handler_quick_frame_pc_ = GetCurrentQuickFramePc(); handler_quick_frame_ = GetCurrentQuickFrame(); return false; // End stack walk. } uint32_t dex_pc = DexFile::kDexNoIndex; if (method->IsRuntimeMethod()) { // ignore callee save method DCHECK(method->IsCalleeSaveMethod()); } else { if (throw_method_ == NULL) { throw_method_ = method; throw_frame_id_ = GetFrameId(); throw_dex_pc_ = GetDexPc(); } if (method->IsNative()) { native_method_count_++; } else { // Unwind stack when an exception occurs during method tracing if (UNLIKELY(method_tracing_active_ && IsTraceExitPc(GetCurrentQuickFramePc()))) { uintptr_t pc = AdjustQuickFramePcForDexPcComputation(TraceMethodUnwindFromCode(Thread::Current())); dex_pc = method->ToDexPC(pc); } else { dex_pc = GetDexPc(); } } } if (dex_pc != DexFile::kDexNoIndex) { uint32_t found_dex_pc = method->FindCatchBlock(to_find_, dex_pc); if (found_dex_pc != DexFile::kDexNoIndex) { handler_dex_pc_ = found_dex_pc; handler_quick_frame_pc_ = method->ToNativePC(found_dex_pc); handler_quick_frame_ = GetCurrentQuickFrame(); return false; // End stack walk. } } return true; // Continue stack walk. } void DoLongJump() { Method* catch_method = *handler_quick_frame_; Dbg::PostException(self_, throw_frame_id_, throw_method_, throw_dex_pc_, catch_method, handler_dex_pc_, exception_); if (kDebugExceptionDelivery) { if (catch_method == NULL) { LOG(INFO) << "Handler is upcall"; } else { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); const DexFile& dex_file = class_linker->FindDexFile(catch_method->GetDeclaringClass()->GetDexCache()); int line_number = dex_file.GetLineNumFromPC(catch_method, handler_dex_pc_); LOG(INFO) << "Handler: " << PrettyMethod(catch_method) << " (line: " << line_number << ")"; } } self_->SetException(exception_); // Exception back in root set. self_->EndAssertNoThreadSuspension(last_no_assert_suspension_cause_); // Place context back on thread so it will be available when we continue. self_->ReleaseLongJumpContext(context_); context_->SetSP(reinterpret_cast(handler_quick_frame_)); CHECK_NE(handler_quick_frame_pc_, 0u); context_->SetPC(handler_quick_frame_pc_); context_->SmashCallerSaves(); context_->DoLongJump(); } private: Thread* self_; Throwable* exception_; // The type of the exception catch block to find. Class* to_find_; Method* throw_method_; JDWP::FrameId throw_frame_id_; uint32_t throw_dex_pc_; // Quick frame with found handler or last frame if no handler found. Method** handler_quick_frame_; // PC to branch to for the handler. uintptr_t handler_quick_frame_pc_; // Associated dex PC. uint32_t handler_dex_pc_; // Number of native methods passed in crawl (equates to number of SIRTs to pop) uint32_t native_method_count_; // Is method tracing active? const bool method_tracing_active_; // Support for nesting no thread suspension checks. const char* last_no_assert_suspension_cause_; }; void Thread::DeliverException() { Throwable* exception = GetException(); // Get exception from thread CHECK(exception != NULL); // Don't leave exception visible while we try to find the handler, which may cause class // resolution. ClearException(); if (kDebugExceptionDelivery) { String* msg = exception->GetDetailMessage(); std::string str_msg(msg != NULL ? msg->ToModifiedUtf8() : ""); DumpStack(LOG(INFO) << "Delivering exception: " << PrettyTypeOf(exception) << ": " << str_msg << "\n"); } CatchBlockStackVisitor catch_finder(this, exception); catch_finder.WalkStack(true); catch_finder.DoLongJump(); LOG(FATAL) << "UNREACHABLE"; } Context* Thread::GetLongJumpContext() { Context* result = long_jump_context_; if (result == NULL) { result = Context::Create(); } else { long_jump_context_ = NULL; // Avoid context being shared. } return result; } Method* Thread::GetCurrentMethod(uint32_t* dex_pc, size_t* frame_id) const { struct CurrentMethodVisitor : public StackVisitor { CurrentMethodVisitor(const ManagedStack* stack, const std::vector* trace_stack) : StackVisitor(stack, trace_stack, NULL), method_(NULL), dex_pc_(0), frame_id_(0) {} virtual bool VisitFrame() { Method* m = GetMethod(); if (m->IsRuntimeMethod()) { // Continue if this is a runtime method. return true; } method_ = m; dex_pc_ = GetDexPc(); frame_id_ = GetFrameId(); return false; } Method* method_; uint32_t dex_pc_; size_t frame_id_; }; CurrentMethodVisitor visitor(GetManagedStack(), GetTraceStack()); visitor.WalkStack(false); if (dex_pc != NULL) { *dex_pc = visitor.dex_pc_; } if (frame_id != NULL) { *frame_id = visitor.frame_id_; } return visitor.method_; } bool Thread::HoldsLock(Object* object) { if (object == NULL) { return false; } return object->GetThinLockId() == thin_lock_id_; } class ReferenceMapVisitor : public StackVisitor { public: ReferenceMapVisitor(const ManagedStack* stack, const std::vector* trace_stack, Context* context, Heap::RootVisitor* root_visitor, void* arg) : StackVisitor(stack, trace_stack, context), root_visitor_(root_visitor), arg_(arg) {} bool VisitFrame() { if (false) { LOG(INFO) << "Visiting stack roots in " << PrettyMethod(GetMethod()) << StringPrintf("@ PC:%04x", GetDexPc()); } ShadowFrame* shadow_frame = GetCurrentShadowFrame(); if (shadow_frame != NULL) { shadow_frame->VisitRoots(root_visitor_, arg_); } else { Method* m = GetMethod(); // Process register map (which native and runtime methods don't have) if (!m->IsNative() && !m->IsRuntimeMethod() && !m->IsProxyMethod()) { const uint8_t* gc_map = m->GetGcMap(); CHECK(gc_map != NULL) << PrettyMethod(m); uint32_t gc_map_length = m->GetGcMapLength(); CHECK_NE(0U, gc_map_length) << PrettyMethod(m); verifier::PcToReferenceMap map(gc_map, gc_map_length); const uint8_t* reg_bitmap = map.FindBitMap(GetDexPc()); CHECK(reg_bitmap != NULL); const VmapTable vmap_table(m->GetVmapTableRaw()); const DexFile::CodeItem* code_item = MethodHelper(m).GetCodeItem(); DCHECK(code_item != NULL) << PrettyMethod(m); // Can't be NULL or how would we compile its instructions? uint32_t core_spills = m->GetCoreSpillMask(); uint32_t fp_spills = m->GetFpSpillMask(); size_t frame_size = m->GetFrameSizeInBytes(); // For all dex registers in the bitmap size_t num_regs = std::min(map.RegWidth() * 8, static_cast(code_item->registers_size_)); Method** cur_quick_frame = GetCurrentQuickFrame(); DCHECK(cur_quick_frame != NULL); for (size_t reg = 0; reg < num_regs; ++reg) { // Does this register hold a reference? if (TestBitmap(reg, reg_bitmap)) { uint32_t vmap_offset; Object* ref; if (vmap_table.IsInContext(reg, vmap_offset)) { // Compute the register we need to load from the context uint32_t spill_mask = core_spills; CHECK_LT(vmap_offset, static_cast(__builtin_popcount(spill_mask))); uint32_t matches = 0; uint32_t spill_shifts = 0; while (matches != (vmap_offset + 1)) { DCHECK_NE(spill_mask, 0u); matches += spill_mask & 1; // Add 1 if the low bit is set spill_mask >>= 1; spill_shifts++; } spill_shifts--; // wind back one as we want the last match ref = reinterpret_cast(GetGPR(spill_shifts)); } else { ref = reinterpret_cast(GetVReg(cur_quick_frame, code_item, core_spills, fp_spills, frame_size, reg)); } if (ref != NULL) { root_visitor_(ref, arg_); } } } } } return true; } private: bool TestBitmap(int reg, const uint8_t* reg_vector) { return ((reg_vector[reg / 8] >> (reg % 8)) & 0x01) != 0; } // Call-back when we visit a root Heap::RootVisitor* root_visitor_; // Argument to call-back void* arg_; }; void Thread::VisitRoots(Heap::RootVisitor* visitor, void* arg) { if (exception_ != NULL) { visitor(exception_, arg); } if (peer_ != NULL) { visitor(peer_, arg); } if (class_loader_override_ != NULL) { visitor(class_loader_override_, arg); } jni_env_->locals.VisitRoots(visitor, arg); jni_env_->monitors.VisitRoots(visitor, arg); SirtVisitRoots(visitor, arg); // Visit roots on this thread's stack Context* context = GetLongJumpContext(); ReferenceMapVisitor mapper(GetManagedStack(), GetTraceStack(), context, visitor, arg); mapper.WalkStack(); ReleaseLongJumpContext(context); } #if VERIFY_OBJECT_ENABLED static void VerifyObject(const Object* obj, void* arg) { Heap* heap = reinterpret_cast(arg); heap->VerifyObject(obj); } void Thread::VerifyStack() { UniquePtr context(Context::Create()); ReferenceMapVisitor mapper(GetManagedStack(), GetTraceStack(), context.get(), VerifyObject, Runtime::Current()->GetHeap()); mapper.WalkStack(); } #endif std::ostream& operator<<(std::ostream& os, const Thread& thread) { thread.Dump(os, false); return os; } void Thread::CheckSafeToLockOrUnlock(MutexRank rank, bool is_locking) { if (this == NULL) { CHECK(Runtime::Current()->IsShuttingDown()); return; } if (is_locking) { if (held_mutexes_[rank] == 0) { bool bad_mutexes_held = false; for (int i = kMaxMutexRank; i > rank; --i) { if (held_mutexes_[i] != 0) { LOG(ERROR) << "holding " << static_cast(i) << " while " << (is_locking ? "locking" : "unlocking") << " " << rank; bad_mutexes_held = true; } } CHECK(!bad_mutexes_held) << rank; } ++held_mutexes_[rank]; } else { CHECK_GT(held_mutexes_[rank], 0U) << rank; --held_mutexes_[rank]; } } void Thread::CheckSafeToWait(MutexRank rank) { if (this == NULL) { CHECK(Runtime::Current()->IsShuttingDown()); return; } bool bad_mutexes_held = false; for (int i = kMaxMutexRank; i >= 0; --i) { if (i != rank && held_mutexes_[i] != 0) { LOG(ERROR) << "holding " << static_cast(i) << " while doing condition variable wait on " << rank; bad_mutexes_held = true; } } if (held_mutexes_[rank] == 0) { LOG(ERROR) << "*not* holding " << rank << " while doing condition variable wait on it"; bad_mutexes_held = true; } CHECK(!bad_mutexes_held); } } // namespace art