/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_SRC_STACK_H_ #define ART_SRC_STACK_H_ #include "dex_file.h" #include "heap.h" #include "jni.h" #include "macros.h" #include "oat/runtime/context.h" #include "trace.h" #include namespace art { class AbstractMethod; class Object; class ShadowFrame; class StackIndirectReferenceTable; class ScopedObjectAccess; class Thread; class ShadowFrame { public: static ShadowFrame* Create(uint16_t num_refs, uint16_t num_vregs, ShadowFrame* link, AbstractMethod* method, uint32_t dex_pc) { size_t sz = sizeof(ShadowFrame) + (sizeof(Object*) * num_refs) + (sizeof(uint32_t) * num_vregs); uint8_t* memory = new uint8_t[sz]; return new (memory) ShadowFrame(num_refs, num_vregs, link, method, dex_pc); } ~ShadowFrame() {} uint32_t NumberOfReferences() const { return number_of_references_; } void SetNumberOfReferences(uint16_t number_of_references) { number_of_references_ = number_of_references; } void SetNumberOfVRegs(uint16_t number_of_vregs) { number_of_vregs_ = number_of_vregs; } uint32_t GetDexPC() const { return dex_pc_; } void SetDexPC(uint32_t dex_pc) { dex_pc_ = dex_pc; } ShadowFrame* GetLink() const { return link_; } void SetLink(ShadowFrame* frame) { DCHECK_NE(this, frame); link_ = frame; } Object* GetReference(size_t i) const { DCHECK_LT(i, number_of_references_); return references_[i]; } void SetReference(size_t i, Object* object) { DCHECK_LT(i, number_of_references_); references_[i] = object; } int32_t GetVReg(size_t i) const { DCHECK_LT(i, number_of_vregs_); const int8_t* vregs = reinterpret_cast(this) + VRegsOffset(); return reinterpret_cast(vregs)[i]; } float GetVRegFloat(size_t i) const { DCHECK_LT(i, number_of_vregs_); const int8_t* vregs = reinterpret_cast(this) + VRegsOffset(); return reinterpret_cast(vregs)[i]; } int64_t GetVRegLong(size_t i) const { const int8_t* vregs = reinterpret_cast(this) + VRegsOffset(); const int32_t* low_half = &reinterpret_cast(vregs)[i]; return *reinterpret_cast(low_half); } double GetVRegDouble(size_t i) const { const int8_t* vregs = reinterpret_cast(this) + VRegsOffset(); const int32_t* low_half = &reinterpret_cast(vregs)[i]; return *reinterpret_cast(low_half); } void SetVReg(size_t i, int32_t val) { DCHECK_LT(i, number_of_vregs_); int8_t* vregs = reinterpret_cast(this) + VRegsOffset(); reinterpret_cast(vregs)[i] = val; } void SetVRegFloat(size_t i, float val) { DCHECK_LT(i, number_of_vregs_); int8_t* vregs = reinterpret_cast(this) + VRegsOffset(); reinterpret_cast(vregs)[i] = val; } void SetVRegLong(size_t i, int64_t val) { int8_t* vregs = reinterpret_cast(this) + VRegsOffset(); int32_t* low_half = &reinterpret_cast(vregs)[i]; *reinterpret_cast(low_half) = val; } void SetVRegDouble(size_t i, double val) { int8_t* vregs = reinterpret_cast(this) + VRegsOffset(); int32_t* low_half = &reinterpret_cast(vregs)[i]; *reinterpret_cast(low_half) = val; } void SetReferenceAndVReg(size_t i, Object* val) { SetReference(i, val); SetVReg(i, reinterpret_cast(val)); } AbstractMethod* GetMethod() const { DCHECK_NE(method_, static_cast(NULL)); return method_; } void SetMethod(AbstractMethod* method) { DCHECK_NE(method, static_cast(NULL)); method_ = method; } bool Contains(Object** shadow_frame_entry) const { return ((&references_[0] <= shadow_frame_entry) && (shadow_frame_entry <= (&references_[number_of_references_ - 1]))); } template void VisitRoots(const Visitor& visitor) { size_t num_refs = NumberOfReferences(); for (size_t j = 0; j < num_refs; j++) { Object* object = GetReference(j); if (object != NULL) { visitor(object, j); } } } static size_t LinkOffset() { return OFFSETOF_MEMBER(ShadowFrame, link_); } static size_t MethodOffset() { return OFFSETOF_MEMBER(ShadowFrame, method_); } static size_t DexPCOffset() { return OFFSETOF_MEMBER(ShadowFrame, dex_pc_); } static size_t NumberOfReferencesOffset() { return OFFSETOF_MEMBER(ShadowFrame, number_of_references_); } static size_t NumberOfVRegsOffset() { return OFFSETOF_MEMBER(ShadowFrame, number_of_vregs_); } static size_t ReferencesOffset() { return OFFSETOF_MEMBER(ShadowFrame, references_); } size_t VRegsOffset() const { return ReferencesOffset() + (sizeof(Object*) * NumberOfReferences()); } private: ShadowFrame(uint16_t num_refs, uint16_t num_vregs, ShadowFrame* link, AbstractMethod* method, uint32_t dex_pc) : number_of_references_ (num_refs), number_of_vregs_(num_vregs), link_(link), method_(method), dex_pc_(dex_pc) { for (size_t i = 0; i < num_refs; ++i) { SetReference(i, NULL); } for (size_t i = 0; i < num_vregs; ++i) { SetVReg(i, 0); } } // TODO: make the majority of these fields const. uint16_t number_of_references_; uint16_t number_of_vregs_; // Link to previous shadow frame or NULL. ShadowFrame* link_; AbstractMethod* method_; uint32_t dex_pc_; Object* references_[0]; DISALLOW_IMPLICIT_CONSTRUCTORS(ShadowFrame); }; // The managed stack is used to record fragments of managed code stacks. Managed code stacks // may either be shadow frames or lists of frames using fixed frame sizes. Transition records are // necessary for transitions between code using different frame layouts and transitions into native // code. class PACKED ManagedStack { public: ManagedStack() : link_(NULL), top_shadow_frame_(NULL), top_quick_frame_(NULL), top_quick_frame_pc_(0) {} void PushManagedStackFragment(ManagedStack* fragment) { // Copy this top fragment into given fragment. memcpy(fragment, this, sizeof(ManagedStack)); // Clear this fragment, which has become the top. memset(this, 0, sizeof(ManagedStack)); // Link our top fragment onto the given fragment. link_ = fragment; } void PopManagedStackFragment(const ManagedStack& fragment) { DCHECK(&fragment == link_); // Copy this given fragment back to the top. memcpy(this, &fragment, sizeof(ManagedStack)); } ManagedStack* GetLink() const { return link_; } AbstractMethod** GetTopQuickFrame() const { return top_quick_frame_; } void SetTopQuickFrame(AbstractMethod** top) { top_quick_frame_ = top; } uintptr_t GetTopQuickFramePc() const { return top_quick_frame_pc_; } void SetTopQuickFramePc(uintptr_t pc) { top_quick_frame_pc_ = pc; } static size_t TopQuickFrameOffset() { return OFFSETOF_MEMBER(ManagedStack, top_quick_frame_); } static size_t TopQuickFramePcOffset() { return OFFSETOF_MEMBER(ManagedStack, top_quick_frame_pc_); } ShadowFrame* PushShadowFrame(ShadowFrame* new_top_frame) { ShadowFrame* old_frame = top_shadow_frame_; top_shadow_frame_ = new_top_frame; new_top_frame->SetLink(old_frame); return old_frame; } ShadowFrame* PopShadowFrame() { CHECK(top_shadow_frame_ != NULL); ShadowFrame* frame = top_shadow_frame_; top_shadow_frame_ = frame->GetLink(); return frame; } ShadowFrame* GetTopShadowFrame() const { return top_shadow_frame_; } static size_t TopShadowFrameOffset() { return OFFSETOF_MEMBER(ManagedStack, top_shadow_frame_); } size_t NumShadowFrameReferences() const; bool ShadowFramesContain(Object** shadow_frame_entry) const; private: ManagedStack* link_; ShadowFrame* top_shadow_frame_; AbstractMethod** top_quick_frame_; uintptr_t top_quick_frame_pc_; }; class StackVisitor { protected: StackVisitor(const ManagedStack* stack, const std::vector* trace_stack, Context* context) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) : stack_start_(stack), trace_stack_(trace_stack), cur_shadow_frame_(NULL), cur_quick_frame_(NULL), cur_quick_frame_pc_(0), num_frames_(0), cur_depth_(0), context_(context) {} public: virtual ~StackVisitor() {} // Return 'true' if we should continue to visit more frames, 'false' to stop. virtual bool VisitFrame() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) = 0; void WalkStack(bool include_transitions = false) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); AbstractMethod* GetMethod() const { if (cur_shadow_frame_ != NULL) { return cur_shadow_frame_->GetMethod(); } else if (cur_quick_frame_ != NULL) { return *cur_quick_frame_; } else { return NULL; } } bool IsShadowFrame() const { return cur_shadow_frame_ != NULL; } uint32_t GetDexPc() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); size_t GetNativePcOffset() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); uintptr_t LoadCalleeSave(int num, size_t frame_size) const { // Callee saves are held at the top of the frame AbstractMethod* method = GetMethod(); DCHECK(method != NULL); byte* save_addr = reinterpret_cast(cur_quick_frame_) + frame_size - ((num + 1) * kPointerSize); #if defined(__i386__) save_addr -= kPointerSize; // account for return address #endif return *reinterpret_cast(save_addr); } // Returns the height of the stack in the managed stack frames, including transitions. size_t GetFrameHeight() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return GetNumFrames() - cur_depth_; } // Returns a frame ID for JDWP use, starting from 1. size_t GetFrameId() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { return GetFrameHeight() + 1; } size_t GetNumFrames() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { if (num_frames_ == 0) { num_frames_ = ComputeNumFrames(); } return num_frames_; } uint32_t GetVReg(AbstractMethod* m, int vreg) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); void SetVReg(AbstractMethod* m, int vreg, uint32_t new_value) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); uintptr_t GetGPR(uint32_t reg) const; uint32_t GetVReg(AbstractMethod** cur_quick_frame, const DexFile::CodeItem* code_item, uint32_t core_spills, uint32_t fp_spills, size_t frame_size, int vreg) const { int offset = GetVRegOffset(code_item, core_spills, fp_spills, frame_size, vreg); DCHECK_EQ(cur_quick_frame, GetCurrentQuickFrame()); byte* vreg_addr = reinterpret_cast(cur_quick_frame) + offset; return *reinterpret_cast(vreg_addr); } uintptr_t GetReturnPc() const; void SetReturnPc(uintptr_t new_ret_pc); /* * Return sp-relative offset for a Dalvik virtual register, compiler * spill or Method* in bytes using Method*. * Note that (reg >= 0) refers to a Dalvik register, (reg == -2) * denotes Method* and (reg <= -3) denotes a compiler temp. * * +------------------------+ * | IN[ins-1] | {Note: resides in caller's frame} * | . | * | IN[0] | * | caller's Method* | * +========================+ {Note: start of callee's frame} * | core callee-save spill | {variable sized} * +------------------------+ * | fp callee-save spill | * +------------------------+ * | filler word | {For compatibility, if V[locals-1] used as wide * +------------------------+ * | V[locals-1] | * | V[locals-2] | * | . | * | . | ... (reg == 2) * | V[1] | ... (reg == 1) * | V[0] | ... (reg == 0) <---- "locals_start" * +------------------------+ * | Compiler temps | ... (reg == -2) * | | ... (reg == -3) * | | ... (reg == -4) * +------------------------+ * | stack alignment padding| {0 to (kStackAlignWords-1) of padding} * +------------------------+ * | OUT[outs-1] | * | OUT[outs-2] | * | . | * | OUT[0] | * | curMethod* | ... (reg == -1) <<== sp, 16-byte aligned * +========================+ */ static int GetVRegOffset(const DexFile::CodeItem* code_item, uint32_t core_spills, uint32_t fp_spills, size_t frame_size, int reg) { DCHECK_EQ(frame_size & (kStackAlignment - 1), 0U); int num_spills = __builtin_popcount(core_spills) + __builtin_popcount(fp_spills) + 1; // Filler. int num_ins = code_item->ins_size_; int num_regs = code_item->registers_size_ - num_ins; int locals_start = frame_size - ((num_spills + num_regs) * sizeof(uint32_t)); if (reg == -2) { return 0; // Method* } else if (reg <= -3) { return locals_start - ((reg + 1) * sizeof(uint32_t)); // Compiler temp. } else if (reg < num_regs) { return locals_start + (reg * sizeof(uint32_t)); // Dalvik local reg. } else { return frame_size + ((reg - num_regs) * sizeof(uint32_t)) + sizeof(uint32_t); // Dalvik in. } } uintptr_t GetCurrentQuickFramePc() const { return cur_quick_frame_pc_; } AbstractMethod** GetCurrentQuickFrame() const { return cur_quick_frame_; } ShadowFrame* GetCurrentShadowFrame() const { return cur_shadow_frame_; } StackIndirectReferenceTable* GetCurrentSirt() const { AbstractMethod** sp = GetCurrentQuickFrame(); ++sp; // Skip Method*; SIRT comes next; return reinterpret_cast(sp); } private: size_t ComputeNumFrames() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); TraceStackFrame GetTraceStackFrame(uint32_t depth) const { return trace_stack_->at(trace_stack_->size() - depth - 1); } void SanityCheckFrame() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); const ManagedStack* const stack_start_; const std::vector* const trace_stack_; ShadowFrame* cur_shadow_frame_; AbstractMethod** cur_quick_frame_; uintptr_t cur_quick_frame_pc_; // Lazily computed, number of frames in the stack. size_t num_frames_; // Depth of the frame we're currently at. size_t cur_depth_; protected: Context* const context_; }; } // namespace art #endif // ART_SRC_STACK_H_