/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "object.h" #include #include #include #include #include #include "class_linker.h" #include "class_loader.h" #include "dex_cache.h" #include "dex_file.h" #include "globals.h" #include "heap.h" #include "intern_table.h" #include "interpreter/interpreter.h" #include "logging.h" #include "monitor.h" #include "object_utils.h" #include "runtime.h" #include "runtime_support.h" #include "sirt_ref.h" #include "stack.h" #include "utils.h" #include "well_known_classes.h" namespace art { BooleanArray* Object::AsBooleanArray() { DCHECK(GetClass()->IsArrayClass()); DCHECK(GetClass()->GetComponentType()->IsPrimitiveBoolean()); return down_cast(this); } ByteArray* Object::AsByteArray() { DCHECK(GetClass()->IsArrayClass()); DCHECK(GetClass()->GetComponentType()->IsPrimitiveByte()); return down_cast(this); } CharArray* Object::AsCharArray() { DCHECK(GetClass()->IsArrayClass()); DCHECK(GetClass()->GetComponentType()->IsPrimitiveChar()); return down_cast(this); } ShortArray* Object::AsShortArray() { DCHECK(GetClass()->IsArrayClass()); DCHECK(GetClass()->GetComponentType()->IsPrimitiveShort()); return down_cast(this); } IntArray* Object::AsIntArray() { DCHECK(GetClass()->IsArrayClass()); DCHECK(GetClass()->GetComponentType()->IsPrimitiveInt() || GetClass()->GetComponentType()->IsPrimitiveFloat()); return down_cast(this); } LongArray* Object::AsLongArray() { DCHECK(GetClass()->IsArrayClass()); DCHECK(GetClass()->GetComponentType()->IsPrimitiveLong() || GetClass()->GetComponentType()->IsPrimitiveDouble()); return down_cast(this); } String* Object::AsString() { DCHECK(GetClass()->IsStringClass()); return down_cast(this); } Throwable* Object::AsThrowable() { DCHECK(GetClass()->IsThrowableClass()); return down_cast(this); } Object* Object::Clone(Thread* self) { Class* c = GetClass(); DCHECK(!c->IsClassClass()); // Object::SizeOf gets the right size even if we're an array. // Using c->AllocObject() here would be wrong. size_t num_bytes = SizeOf(); Heap* heap = Runtime::Current()->GetHeap(); SirtRef copy(self, heap->AllocObject(self, c, num_bytes)); if (copy.get() == NULL) { return NULL; } // Copy instance data. We assume memcpy copies by words. // TODO: expose and use move32. byte* src_bytes = reinterpret_cast(this); byte* dst_bytes = reinterpret_cast(copy.get()); size_t offset = sizeof(Object); memcpy(dst_bytes + offset, src_bytes + offset, num_bytes - offset); // Perform write barriers on copied object references. if (c->IsArrayClass()) { if (!c->GetComponentType()->IsPrimitive()) { const ObjectArray* array = copy->AsObjectArray(); heap->WriteBarrierArray(copy.get(), 0, array->GetLength()); } } else { for (const Class* klass = c; klass != NULL; klass = klass->GetSuperClass()) { size_t num_reference_fields = klass->NumReferenceInstanceFields(); for (size_t i = 0; i < num_reference_fields; ++i) { Field* field = klass->GetInstanceField(i); MemberOffset field_offset = field->GetOffset(); const Object* ref = copy->GetFieldObject(field_offset, false); heap->WriteBarrierField(copy.get(), field_offset, ref); } } } if (c->IsFinalizable()) { heap->AddFinalizerReference(Thread::Current(), copy.get()); } return copy.get(); } uint32_t Object::GetThinLockId() { return Monitor::GetThinLockId(monitor_); } void Object::MonitorEnter(Thread* thread) { Monitor::MonitorEnter(thread, this); } bool Object::MonitorExit(Thread* thread) { return Monitor::MonitorExit(thread, this); } void Object::Notify() { Monitor::Notify(Thread::Current(), this); } void Object::NotifyAll() { Monitor::NotifyAll(Thread::Current(), this); } void Object::Wait(int64_t ms, int32_t ns) { Monitor::Wait(Thread::Current(), this, ms, ns, true); } #if VERIFY_OBJECT_ENABLED void Object::CheckFieldAssignment(MemberOffset field_offset, const Object* new_value) { const Class* c = GetClass(); if (Runtime::Current()->GetClassLinker() == NULL || !Runtime::Current()->GetHeap()->IsObjectValidationEnabled() || !c->IsResolved()) { return; } for (const Class* cur = c; cur != NULL; cur = cur->GetSuperClass()) { ObjectArray* fields = cur->GetIFields(); if (fields != NULL) { size_t num_ref_ifields = cur->NumReferenceInstanceFields(); for (size_t i = 0; i < num_ref_ifields; ++i) { Field* field = fields->Get(i); if (field->GetOffset().Int32Value() == field_offset.Int32Value()) { FieldHelper fh(field); CHECK(fh.GetType()->IsAssignableFrom(new_value->GetClass())); return; } } } } if (c->IsArrayClass()) { // Bounds and assign-ability done in the array setter. return; } if (IsClass()) { ObjectArray* fields = AsClass()->GetSFields(); if (fields != NULL) { size_t num_ref_sfields = AsClass()->NumReferenceStaticFields(); for (size_t i = 0; i < num_ref_sfields; ++i) { Field* field = fields->Get(i); if (field->GetOffset().Int32Value() == field_offset.Int32Value()) { FieldHelper fh(field); CHECK(fh.GetType()->IsAssignableFrom(new_value->GetClass())); return; } } } } LOG(FATAL) << "Failed to find field for assignment to " << reinterpret_cast(this) << " of type " << PrettyDescriptor(c) << " at offset " << field_offset; } #endif // TODO: get global references for these Class* Field::java_lang_reflect_Field_ = NULL; void Field::SetClass(Class* java_lang_reflect_Field) { CHECK(java_lang_reflect_Field_ == NULL); CHECK(java_lang_reflect_Field != NULL); java_lang_reflect_Field_ = java_lang_reflect_Field; } void Field::ResetClass() { CHECK(java_lang_reflect_Field_ != NULL); java_lang_reflect_Field_ = NULL; } void Field::SetOffset(MemberOffset num_bytes) { DCHECK(GetDeclaringClass()->IsLoaded() || GetDeclaringClass()->IsErroneous()); #if 0 // TODO enable later in boot and under !NDEBUG FieldHelper fh(this); Primitive::Type type = fh.GetTypeAsPrimitiveType(); if (type == Primitive::kPrimDouble || type == Primitive::kPrimLong) { DCHECK_ALIGNED(num_bytes.Uint32Value(), 8); } #endif SetField32(OFFSET_OF_OBJECT_MEMBER(Field, offset_), num_bytes.Uint32Value(), false); } uint32_t Field::Get32(const Object* object) const { DCHECK(object != NULL) << PrettyField(this); DCHECK(IsStatic() == (object == GetDeclaringClass()) || !Runtime::Current()->IsStarted()); return object->GetField32(GetOffset(), IsVolatile()); } void Field::Set32(Object* object, uint32_t new_value) const { DCHECK(object != NULL) << PrettyField(this); DCHECK(IsStatic() == (object == GetDeclaringClass()) || !Runtime::Current()->IsStarted()); object->SetField32(GetOffset(), new_value, IsVolatile()); } uint64_t Field::Get64(const Object* object) const { DCHECK(object != NULL) << PrettyField(this); DCHECK(IsStatic() == (object == GetDeclaringClass()) || !Runtime::Current()->IsStarted()); return object->GetField64(GetOffset(), IsVolatile()); } void Field::Set64(Object* object, uint64_t new_value) const { DCHECK(object != NULL) << PrettyField(this); DCHECK(IsStatic() == (object == GetDeclaringClass()) || !Runtime::Current()->IsStarted()); object->SetField64(GetOffset(), new_value, IsVolatile()); } Object* Field::GetObj(const Object* object) const { DCHECK(object != NULL) << PrettyField(this); DCHECK(IsStatic() == (object == GetDeclaringClass()) || !Runtime::Current()->IsStarted()); return object->GetFieldObject(GetOffset(), IsVolatile()); } void Field::SetObj(Object* object, const Object* new_value) const { DCHECK(object != NULL) << PrettyField(this); DCHECK(IsStatic() == (object == GetDeclaringClass()) || !Runtime::Current()->IsStarted()); object->SetFieldObject(GetOffset(), new_value, IsVolatile()); } bool Field::GetBoolean(const Object* object) const { DCHECK_EQ(Primitive::kPrimBoolean, FieldHelper(this).GetTypeAsPrimitiveType()) << PrettyField(this); return Get32(object); } void Field::SetBoolean(Object* object, bool z) const { DCHECK_EQ(Primitive::kPrimBoolean, FieldHelper(this).GetTypeAsPrimitiveType()) << PrettyField(this); Set32(object, z); } int8_t Field::GetByte(const Object* object) const { DCHECK_EQ(Primitive::kPrimByte, FieldHelper(this).GetTypeAsPrimitiveType()) << PrettyField(this); return Get32(object); } void Field::SetByte(Object* object, int8_t b) const { DCHECK_EQ(Primitive::kPrimByte, FieldHelper(this).GetTypeAsPrimitiveType()) << PrettyField(this); Set32(object, b); } uint16_t Field::GetChar(const Object* object) const { DCHECK_EQ(Primitive::kPrimChar, FieldHelper(this).GetTypeAsPrimitiveType()) << PrettyField(this); return Get32(object); } void Field::SetChar(Object* object, uint16_t c) const { DCHECK_EQ(Primitive::kPrimChar, FieldHelper(this).GetTypeAsPrimitiveType()) << PrettyField(this); Set32(object, c); } int16_t Field::GetShort(const Object* object) const { DCHECK_EQ(Primitive::kPrimShort, FieldHelper(this).GetTypeAsPrimitiveType()) << PrettyField(this); return Get32(object); } void Field::SetShort(Object* object, int16_t s) const { DCHECK_EQ(Primitive::kPrimShort, FieldHelper(this).GetTypeAsPrimitiveType()) << PrettyField(this); Set32(object, s); } int32_t Field::GetInt(const Object* object) const { #ifndef NDEBUG Primitive::Type type = FieldHelper(this).GetTypeAsPrimitiveType(); CHECK(type == Primitive::kPrimInt || type == Primitive::kPrimFloat) << PrettyField(this); #endif return Get32(object); } void Field::SetInt(Object* object, int32_t i) const { #ifndef NDEBUG Primitive::Type type = FieldHelper(this).GetTypeAsPrimitiveType(); CHECK(type == Primitive::kPrimInt || type == Primitive::kPrimFloat) << PrettyField(this); #endif Set32(object, i); } int64_t Field::GetLong(const Object* object) const { #ifndef NDEBUG Primitive::Type type = FieldHelper(this).GetTypeAsPrimitiveType(); CHECK(type == Primitive::kPrimLong || type == Primitive::kPrimDouble) << PrettyField(this); #endif return Get64(object); } void Field::SetLong(Object* object, int64_t j) const { #ifndef NDEBUG Primitive::Type type = FieldHelper(this).GetTypeAsPrimitiveType(); CHECK(type == Primitive::kPrimLong || type == Primitive::kPrimDouble) << PrettyField(this); #endif Set64(object, j); } union Bits { jdouble d; jfloat f; jint i; jlong j; }; float Field::GetFloat(const Object* object) const { DCHECK_EQ(Primitive::kPrimFloat, FieldHelper(this).GetTypeAsPrimitiveType()) << PrettyField(this); Bits bits; bits.i = Get32(object); return bits.f; } void Field::SetFloat(Object* object, float f) const { DCHECK_EQ(Primitive::kPrimFloat, FieldHelper(this).GetTypeAsPrimitiveType()) << PrettyField(this); Bits bits; bits.f = f; Set32(object, bits.i); } double Field::GetDouble(const Object* object) const { DCHECK_EQ(Primitive::kPrimDouble, FieldHelper(this).GetTypeAsPrimitiveType()) << PrettyField(this); Bits bits; bits.j = Get64(object); return bits.d; } void Field::SetDouble(Object* object, double d) const { DCHECK_EQ(Primitive::kPrimDouble, FieldHelper(this).GetTypeAsPrimitiveType()) << PrettyField(this); Bits bits; bits.d = d; Set64(object, bits.j); } Object* Field::GetObject(const Object* object) const { DCHECK_EQ(Primitive::kPrimNot, FieldHelper(this).GetTypeAsPrimitiveType()) << PrettyField(this); return GetObj(object); } void Field::SetObject(Object* object, const Object* l) const { DCHECK_EQ(Primitive::kPrimNot, FieldHelper(this).GetTypeAsPrimitiveType()) << PrettyField(this); SetObj(object, l); } // TODO: get global references for these Class* AbstractMethod::java_lang_reflect_Constructor_ = NULL; Class* AbstractMethod::java_lang_reflect_Method_ = NULL; InvokeType AbstractMethod::GetInvokeType() const { // TODO: kSuper? if (GetDeclaringClass()->IsInterface()) { return kInterface; } else if (IsStatic()) { return kStatic; } else if (IsDirect()) { return kDirect; } else { return kVirtual; } } void AbstractMethod::SetClasses(Class* java_lang_reflect_Constructor, Class* java_lang_reflect_Method) { CHECK(java_lang_reflect_Constructor_ == NULL); CHECK(java_lang_reflect_Constructor != NULL); java_lang_reflect_Constructor_ = java_lang_reflect_Constructor; CHECK(java_lang_reflect_Method_ == NULL); CHECK(java_lang_reflect_Method != NULL); java_lang_reflect_Method_ = java_lang_reflect_Method; } void AbstractMethod::ResetClasses() { CHECK(java_lang_reflect_Constructor_ != NULL); java_lang_reflect_Constructor_ = NULL; CHECK(java_lang_reflect_Method_ != NULL); java_lang_reflect_Method_ = NULL; } ObjectArray* AbstractMethod::GetDexCacheStrings() const { return GetFieldObject*>( OFFSET_OF_OBJECT_MEMBER(AbstractMethod, dex_cache_strings_), false); } void AbstractMethod::SetDexCacheStrings(ObjectArray* new_dex_cache_strings) { SetFieldObject(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, dex_cache_strings_), new_dex_cache_strings, false); } ObjectArray* AbstractMethod::GetDexCacheResolvedMethods() const { return GetFieldObject*>( OFFSET_OF_OBJECT_MEMBER(AbstractMethod, dex_cache_resolved_methods_), false); } void AbstractMethod::SetDexCacheResolvedMethods(ObjectArray* new_dex_cache_methods) { SetFieldObject(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, dex_cache_resolved_methods_), new_dex_cache_methods, false); } ObjectArray* AbstractMethod::GetDexCacheResolvedTypes() const { return GetFieldObject*>( OFFSET_OF_OBJECT_MEMBER(AbstractMethod, dex_cache_resolved_types_), false); } void AbstractMethod::SetDexCacheResolvedTypes(ObjectArray* new_dex_cache_classes) { SetFieldObject(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, dex_cache_resolved_types_), new_dex_cache_classes, false); } ObjectArray* AbstractMethod::GetDexCacheInitializedStaticStorage() const { return GetFieldObject*>( OFFSET_OF_OBJECT_MEMBER(AbstractMethod, dex_cache_initialized_static_storage_), false); } void AbstractMethod::SetDexCacheInitializedStaticStorage(ObjectArray* new_value) { SetFieldObject(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, dex_cache_initialized_static_storage_), new_value, false); } size_t AbstractMethod::NumArgRegisters(const StringPiece& shorty) { CHECK_LE(1, shorty.length()); uint32_t num_registers = 0; for (int i = 1; i < shorty.length(); ++i) { char ch = shorty[i]; if (ch == 'D' || ch == 'J') { num_registers += 2; } else { num_registers += 1; } } return num_registers; } bool AbstractMethod::IsProxyMethod() const { return GetDeclaringClass()->IsProxyClass(); } AbstractMethod* AbstractMethod::FindOverriddenMethod() const { if (IsStatic()) { return NULL; } Class* declaring_class = GetDeclaringClass(); Class* super_class = declaring_class->GetSuperClass(); uint16_t method_index = GetMethodIndex(); ObjectArray* super_class_vtable = super_class->GetVTable(); AbstractMethod* result = NULL; // Did this method override a super class method? If so load the result from the super class' // vtable if (super_class_vtable != NULL && method_index < super_class_vtable->GetLength()) { result = super_class_vtable->Get(method_index); } else { // Method didn't override superclass method so search interfaces if (IsProxyMethod()) { result = GetDexCacheResolvedMethods()->Get(GetDexMethodIndex()); CHECK_EQ(result, Runtime::Current()->GetClassLinker()->FindMethodForProxy(GetDeclaringClass(), this)); } else { MethodHelper mh(this); MethodHelper interface_mh; IfTable* iftable = GetDeclaringClass()->GetIfTable(); for (size_t i = 0; i < iftable->Count() && result == NULL; i++) { Class* interface = iftable->GetInterface(i); for (size_t j = 0; j < interface->NumVirtualMethods(); ++j) { AbstractMethod* interface_method = interface->GetVirtualMethod(j); interface_mh.ChangeMethod(interface_method); if (mh.HasSameNameAndSignature(&interface_mh)) { result = interface_method; break; } } } } } #ifndef NDEBUG MethodHelper result_mh(result); DCHECK(result == NULL || MethodHelper(this).HasSameNameAndSignature(&result_mh)); #endif return result; } static const void* GetOatCode(const AbstractMethod* m) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { Runtime* runtime = Runtime::Current(); const void* code = m->GetCode(); // Peel off any method tracing trampoline. if (runtime->IsMethodTracingActive() && runtime->GetTracer()->GetSavedCodeFromMap(m) != NULL) { code = runtime->GetTracer()->GetSavedCodeFromMap(m); } // Peel off any resolution stub. if (code == runtime->GetResolutionStubArray(Runtime::kStaticMethod)->GetData()) { code = runtime->GetClassLinker()->GetOatCodeFor(m); } return code; } uintptr_t AbstractMethod::NativePcOffset(const uintptr_t pc) const { return pc - reinterpret_cast(GetOatCode(this)); } // Find the lowest-address native safepoint pc for a given dex pc uintptr_t AbstractMethod::ToFirstNativeSafepointPc(const uint32_t dex_pc) const { #if !defined(ART_USE_LLVM_COMPILER) const uint32_t* mapping_table = GetPcToDexMappingTable(); if (mapping_table == NULL) { DCHECK(IsNative() || IsCalleeSaveMethod() || IsProxyMethod()) << PrettyMethod(this); return DexFile::kDexNoIndex; // Special no mapping case } size_t mapping_table_length = GetPcToDexMappingTableLength(); for (size_t i = 0; i < mapping_table_length; i += 2) { if (mapping_table[i + 1] == dex_pc) { return mapping_table[i] + reinterpret_cast(GetOatCode(this)); } } LOG(FATAL) << "Failed to find native offset for dex pc 0x" << std::hex << dex_pc << " in " << PrettyMethod(this); return 0; #else // Compiler LLVM doesn't use the machine pc, we just use dex pc instead. return static_cast(dex_pc); #endif } uint32_t AbstractMethod::ToDexPc(const uintptr_t pc) const { #if !defined(ART_USE_LLVM_COMPILER) const uint32_t* mapping_table = GetPcToDexMappingTable(); if (mapping_table == NULL) { DCHECK(IsNative() || IsCalleeSaveMethod() || IsProxyMethod()) << PrettyMethod(this); return DexFile::kDexNoIndex; // Special no mapping case } size_t mapping_table_length = GetPcToDexMappingTableLength(); uint32_t sought_offset = pc - reinterpret_cast(GetOatCode(this)); for (size_t i = 0; i < mapping_table_length; i += 2) { if (mapping_table[i] == sought_offset) { return mapping_table[i + 1]; } } LOG(FATAL) << "Failed to find Dex offset for PC offset 0x" << std::hex << sought_offset << " in " << PrettyMethod(this); return DexFile::kDexNoIndex; #else // Compiler LLVM doesn't use the machine pc, we just use dex pc instead. return static_cast(pc); #endif } uintptr_t AbstractMethod::ToNativePc(const uint32_t dex_pc) const { const uint32_t* mapping_table = GetDexToPcMappingTable(); if (mapping_table == NULL) { DCHECK_EQ(dex_pc, 0U); return 0; // Special no mapping/pc == 0 case } size_t mapping_table_length = GetDexToPcMappingTableLength(); for (size_t i = 0; i < mapping_table_length; i += 2) { uint32_t map_offset = mapping_table[i]; uint32_t map_dex_offset = mapping_table[i + 1]; if (map_dex_offset == dex_pc) { return reinterpret_cast(GetOatCode(this)) + map_offset; } } LOG(FATAL) << "Looking up Dex PC not contained in method, 0x" << std::hex << dex_pc << " in " << PrettyMethod(this); return 0; } uint32_t AbstractMethod::FindCatchBlock(Class* exception_type, uint32_t dex_pc) const { MethodHelper mh(this); const DexFile::CodeItem* code_item = mh.GetCodeItem(); // Iterate over the catch handlers associated with dex_pc for (CatchHandlerIterator it(*code_item, dex_pc); it.HasNext(); it.Next()) { uint16_t iter_type_idx = it.GetHandlerTypeIndex(); // Catch all case if (iter_type_idx == DexFile::kDexNoIndex16) { return it.GetHandlerAddress(); } // Does this catch exception type apply? Class* iter_exception_type = mh.GetDexCacheResolvedType(iter_type_idx); if (iter_exception_type == NULL) { // The verifier should take care of resolving all exception classes early LOG(WARNING) << "Unresolved exception class when finding catch block: " << mh.GetTypeDescriptorFromTypeIdx(iter_type_idx); } else if (iter_exception_type->IsAssignableFrom(exception_type)) { return it.GetHandlerAddress(); } } // Handler not found return DexFile::kDexNoIndex; } void AbstractMethod::Invoke(Thread* self, Object* receiver, JValue* args, JValue* result) { if (kIsDebugBuild) { self->AssertThreadSuspensionIsAllowable(); CHECK_EQ(kRunnable, self->GetState()); } // Push a transition back into managed code onto the linked list in thread. ManagedStack fragment; self->PushManagedStackFragment(&fragment); // Call the invoke stub associated with the method. // Pass everything as arguments. AbstractMethod::InvokeStub* stub = GetInvokeStub(); if (UNLIKELY(!Runtime::Current()->IsStarted())){ LOG(INFO) << "Not invoking " << PrettyMethod(this) << " for a runtime that isn't started."; if (result != NULL) { result->SetJ(0); } } else { if (GetCode() != NULL && stub != NULL) { bool log = false; if (log) { LOG(INFO) << StringPrintf("invoking %s code=%p stub=%p", PrettyMethod(this).c_str(), GetCode(), stub); } (*stub)(this, receiver, self, args, result); if (log) { LOG(INFO) << StringPrintf("returned %s code=%p stub=%p", PrettyMethod(this).c_str(), GetCode(), stub); } } else { LOG(INFO) << "Not invoking " << PrettyMethod(this) << " code=" << reinterpret_cast(GetCode()) << " stub=" << reinterpret_cast(stub); const bool kInterpretMethodsWithNoCode = false; if (kInterpretMethodsWithNoCode) { art::interpreter::EnterInterpreterFromInvoke(self, this, receiver, args, result); } else if (result != NULL) { result->SetJ(0); } } } // Pop transition. self->PopManagedStackFragment(fragment); } bool AbstractMethod::IsRegistered() const { void* native_method = GetFieldPtr(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, native_method_), false); CHECK(native_method != NULL); void* jni_stub = Runtime::Current()->GetJniDlsymLookupStub()->GetData(); return native_method != jni_stub; } void AbstractMethod::RegisterNative(Thread* self, const void* native_method) { DCHECK(Thread::Current() == self); CHECK(IsNative()) << PrettyMethod(this); CHECK(native_method != NULL) << PrettyMethod(this); #if defined(ART_USE_LLVM_COMPILER) SetFieldPtr(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, native_method_), native_method, false); #else if (!self->GetJniEnv()->vm->work_around_app_jni_bugs) { SetFieldPtr(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, native_method_), native_method, false); } else { // We've been asked to associate this method with the given native method but are working // around JNI bugs, that include not giving Object** SIRT references to native methods. Direct // the native method to runtime support and store the target somewhere runtime support will // find it. #if defined(__arm__) SetFieldPtr(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, native_method_), reinterpret_cast(art_work_around_app_jni_bugs), false); #else UNIMPLEMENTED(FATAL); #endif SetFieldPtr(OFFSET_OF_OBJECT_MEMBER(AbstractMethod, native_gc_map_), reinterpret_cast(native_method), false); } #endif } void AbstractMethod::UnregisterNative(Thread* self) { CHECK(IsNative()) << PrettyMethod(this); // restore stub to lookup native pointer via dlsym RegisterNative(self, Runtime::Current()->GetJniDlsymLookupStub()->GetData()); } Class* Class::java_lang_Class_ = NULL; void Class::SetClassClass(Class* java_lang_Class) { CHECK(java_lang_Class_ == NULL) << java_lang_Class_ << " " << java_lang_Class; CHECK(java_lang_Class != NULL); java_lang_Class_ = java_lang_Class; } void Class::ResetClass() { CHECK(java_lang_Class_ != NULL); java_lang_Class_ = NULL; } void Class::SetStatus(Status new_status) { CHECK(new_status > GetStatus() || new_status == kStatusError || !Runtime::Current()->IsStarted()) << PrettyClass(this) << " " << GetStatus() << " -> " << new_status; CHECK(sizeof(Status) == sizeof(uint32_t)) << PrettyClass(this); if (new_status > kStatusResolved) { CHECK_EQ(GetThinLockId(), Thread::Current()->GetThinLockId()) << PrettyClass(this); } if (new_status == kStatusError) { CHECK_NE(GetStatus(), kStatusError) << PrettyClass(this); // stash current exception Thread* self = Thread::Current(); SirtRef exception(self, self->GetException()); CHECK(exception.get() != NULL); // clear exception to call FindSystemClass self->ClearException(); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); Class* eiie_class = class_linker->FindSystemClass("Ljava/lang/ExceptionInInitializerError;"); CHECK(!self->IsExceptionPending()); // only verification errors, not initialization problems, should set a verify error. // this is to ensure that ThrowEarlierClassFailure will throw NoClassDefFoundError in that case. Class* exception_class = exception->GetClass(); if (!eiie_class->IsAssignableFrom(exception_class)) { SetVerifyErrorClass(exception_class); } // restore exception self->SetException(exception.get()); } return SetField32(OFFSET_OF_OBJECT_MEMBER(Class, status_), new_status, false); } DexCache* Class::GetDexCache() const { return GetFieldObject(OFFSET_OF_OBJECT_MEMBER(Class, dex_cache_), false); } void Class::SetDexCache(DexCache* new_dex_cache) { SetFieldObject(OFFSET_OF_OBJECT_MEMBER(Class, dex_cache_), new_dex_cache, false); } Object* Class::AllocObject(Thread* self) { DCHECK(!IsArrayClass()) << PrettyClass(this); DCHECK(IsInstantiable()) << PrettyClass(this); // TODO: decide whether we want this check. It currently fails during bootstrap. // DCHECK(!Runtime::Current()->IsStarted() || IsInitializing()) << PrettyClass(this); DCHECK_GE(this->object_size_, sizeof(Object)); return Runtime::Current()->GetHeap()->AllocObject(self, this, this->object_size_); } void Class::SetClassSize(size_t new_class_size) { DCHECK_GE(new_class_size, GetClassSize()) << " class=" << PrettyTypeOf(this); SetField32(OFFSET_OF_OBJECT_MEMBER(Class, class_size_), new_class_size, false); } // Return the class' name. The exact format is bizarre, but it's the specified behavior for // Class.getName: keywords for primitive types, regular "[I" form for primitive arrays (so "int" // but "[I"), and arrays of reference types written between "L" and ";" but with dots rather than // slashes (so "java.lang.String" but "[Ljava.lang.String;"). Madness. String* Class::ComputeName() { String* name = GetName(); if (name != NULL) { return name; } std::string descriptor(ClassHelper(this).GetDescriptor()); if ((descriptor[0] != 'L') && (descriptor[0] != '[')) { // The descriptor indicates that this is the class for // a primitive type; special-case the return value. const char* c_name = NULL; switch (descriptor[0]) { case 'Z': c_name = "boolean"; break; case 'B': c_name = "byte"; break; case 'C': c_name = "char"; break; case 'S': c_name = "short"; break; case 'I': c_name = "int"; break; case 'J': c_name = "long"; break; case 'F': c_name = "float"; break; case 'D': c_name = "double"; break; case 'V': c_name = "void"; break; default: LOG(FATAL) << "Unknown primitive type: " << PrintableChar(descriptor[0]); } name = String::AllocFromModifiedUtf8(Thread::Current(), c_name); } else { // Convert the UTF-8 name to a java.lang.String. The name must use '.' to separate package // components. if (descriptor.size() > 2 && descriptor[0] == 'L' && descriptor[descriptor.size() - 1] == ';') { descriptor.erase(0, 1); descriptor.erase(descriptor.size() - 1); } std::replace(descriptor.begin(), descriptor.end(), '/', '.'); name = String::AllocFromModifiedUtf8(Thread::Current(), descriptor.c_str()); } SetName(name); return name; } void Class::DumpClass(std::ostream& os, int flags) const { if ((flags & kDumpClassFullDetail) == 0) { os << PrettyClass(this); if ((flags & kDumpClassClassLoader) != 0) { os << ' ' << GetClassLoader(); } if ((flags & kDumpClassInitialized) != 0) { os << ' ' << GetStatus(); } os << "\n"; return; } Class* super = GetSuperClass(); ClassHelper kh(this); os << "----- " << (IsInterface() ? "interface" : "class") << " " << "'" << kh.GetDescriptor() << "' cl=" << GetClassLoader() << " -----\n", os << " objectSize=" << SizeOf() << " " << "(" << (super != NULL ? super->SizeOf() : -1) << " from super)\n", os << StringPrintf(" access=0x%04x.%04x\n", GetAccessFlags() >> 16, GetAccessFlags() & kAccJavaFlagsMask); if (super != NULL) { os << " super='" << PrettyClass(super) << "' (cl=" << super->GetClassLoader() << ")\n"; } if (IsArrayClass()) { os << " componentType=" << PrettyClass(GetComponentType()) << "\n"; } if (kh.NumDirectInterfaces() > 0) { os << " interfaces (" << kh.NumDirectInterfaces() << "):\n"; for (size_t i = 0; i < kh.NumDirectInterfaces(); ++i) { Class* interface = kh.GetDirectInterface(i); const ClassLoader* cl = interface->GetClassLoader(); os << StringPrintf(" %2zd: %s (cl=%p)\n", i, PrettyClass(interface).c_str(), cl); } } os << " vtable (" << NumVirtualMethods() << " entries, " << (super != NULL ? super->NumVirtualMethods() : 0) << " in super):\n"; for (size_t i = 0; i < NumVirtualMethods(); ++i) { os << StringPrintf(" %2zd: %s\n", i, PrettyMethod(GetVirtualMethodDuringLinking(i)).c_str()); } os << " direct methods (" << NumDirectMethods() << " entries):\n"; for (size_t i = 0; i < NumDirectMethods(); ++i) { os << StringPrintf(" %2zd: %s\n", i, PrettyMethod(GetDirectMethod(i)).c_str()); } if (NumStaticFields() > 0) { os << " static fields (" << NumStaticFields() << " entries):\n"; if (IsResolved() || IsErroneous()) { for (size_t i = 0; i < NumStaticFields(); ++i) { os << StringPrintf(" %2zd: %s\n", i, PrettyField(GetStaticField(i)).c_str()); } } else { os << " "; } } if (NumInstanceFields() > 0) { os << " instance fields (" << NumInstanceFields() << " entries):\n"; if (IsResolved() || IsErroneous()) { for (size_t i = 0; i < NumInstanceFields(); ++i) { os << StringPrintf(" %2zd: %s\n", i, PrettyField(GetInstanceField(i)).c_str()); } } else { os << " "; } } } void Class::SetReferenceInstanceOffsets(uint32_t new_reference_offsets) { if (new_reference_offsets != CLASS_WALK_SUPER) { // Sanity check that the number of bits set in the reference offset bitmap // agrees with the number of references size_t count = 0; for (Class* c = this; c != NULL; c = c->GetSuperClass()) { count += c->NumReferenceInstanceFieldsDuringLinking(); } CHECK_EQ((size_t)__builtin_popcount(new_reference_offsets), count); } SetField32(OFFSET_OF_OBJECT_MEMBER(Class, reference_instance_offsets_), new_reference_offsets, false); } void Class::SetReferenceStaticOffsets(uint32_t new_reference_offsets) { if (new_reference_offsets != CLASS_WALK_SUPER) { // Sanity check that the number of bits set in the reference offset bitmap // agrees with the number of references CHECK_EQ((size_t)__builtin_popcount(new_reference_offsets), NumReferenceStaticFieldsDuringLinking()); } SetField32(OFFSET_OF_OBJECT_MEMBER(Class, reference_static_offsets_), new_reference_offsets, false); } bool Class::Implements(const Class* klass) const { DCHECK(klass != NULL); DCHECK(klass->IsInterface()) << PrettyClass(this); // All interfaces implemented directly and by our superclass, and // recursively all super-interfaces of those interfaces, are listed // in iftable_, so we can just do a linear scan through that. int32_t iftable_count = GetIfTableCount(); IfTable* iftable = GetIfTable(); for (int32_t i = 0; i < iftable_count; i++) { if (iftable->GetInterface(i) == klass) { return true; } } return false; } // Determine whether "this" is assignable from "src", where both of these // are array classes. // // Consider an array class, e.g. Y[][], where Y is a subclass of X. // Y[][] = Y[][] --> true (identity) // X[][] = Y[][] --> true (element superclass) // Y = Y[][] --> false // Y[] = Y[][] --> false // Object = Y[][] --> true (everything is an object) // Object[] = Y[][] --> true // Object[][] = Y[][] --> true // Object[][][] = Y[][] --> false (too many []s) // Serializable = Y[][] --> true (all arrays are Serializable) // Serializable[] = Y[][] --> true // Serializable[][] = Y[][] --> false (unless Y is Serializable) // // Don't forget about primitive types. // Object[] = int[] --> false // bool Class::IsArrayAssignableFromArray(const Class* src) const { DCHECK(IsArrayClass()) << PrettyClass(this); DCHECK(src->IsArrayClass()) << PrettyClass(src); return GetComponentType()->IsAssignableFrom(src->GetComponentType()); } bool Class::IsAssignableFromArray(const Class* src) const { DCHECK(!IsInterface()) << PrettyClass(this); // handled first in IsAssignableFrom DCHECK(src->IsArrayClass()) << PrettyClass(src); if (!IsArrayClass()) { // If "this" is not also an array, it must be Object. // src's super should be java_lang_Object, since it is an array. Class* java_lang_Object = src->GetSuperClass(); DCHECK(java_lang_Object != NULL) << PrettyClass(src); DCHECK(java_lang_Object->GetSuperClass() == NULL) << PrettyClass(src); return this == java_lang_Object; } return IsArrayAssignableFromArray(src); } bool Class::IsSubClass(const Class* klass) const { DCHECK(!IsInterface()) << PrettyClass(this); DCHECK(!IsArrayClass()) << PrettyClass(this); const Class* current = this; do { if (current == klass) { return true; } current = current->GetSuperClass(); } while (current != NULL); return false; } bool Class::IsInSamePackage(const StringPiece& descriptor1, const StringPiece& descriptor2) { size_t i = 0; while (descriptor1[i] != '\0' && descriptor1[i] == descriptor2[i]) { ++i; } if (descriptor1.find('/', i) != StringPiece::npos || descriptor2.find('/', i) != StringPiece::npos) { return false; } else { return true; } } bool Class::IsInSamePackage(const Class* that) const { const Class* klass1 = this; const Class* klass2 = that; if (klass1 == klass2) { return true; } // Class loaders must match. if (klass1->GetClassLoader() != klass2->GetClassLoader()) { return false; } // Arrays are in the same package when their element classes are. while (klass1->IsArrayClass()) { klass1 = klass1->GetComponentType(); } while (klass2->IsArrayClass()) { klass2 = klass2->GetComponentType(); } // Compare the package part of the descriptor string. ClassHelper kh(klass1); std::string descriptor1(kh.GetDescriptor()); kh.ChangeClass(klass2); std::string descriptor2(kh.GetDescriptor()); return IsInSamePackage(descriptor1, descriptor2); } bool Class::IsClassClass() const { Class* java_lang_Class = GetClass()->GetClass(); return this == java_lang_Class; } bool Class::IsStringClass() const { return this == String::GetJavaLangString(); } bool Class::IsThrowableClass() const { return WellKnownClasses::ToClass(WellKnownClasses::java_lang_Throwable)->IsAssignableFrom(this); } bool Class::IsFieldClass() const { Class* java_lang_Class = GetClass(); Class* java_lang_reflect_Field = java_lang_Class->GetInstanceField(0)->GetClass(); return this == java_lang_reflect_Field; } bool Class::IsMethodClass() const { return (this == AbstractMethod::GetMethodClass()) || (this == AbstractMethod::GetConstructorClass()); } ClassLoader* Class::GetClassLoader() const { return GetFieldObject(OFFSET_OF_OBJECT_MEMBER(Class, class_loader_), false); } void Class::SetClassLoader(ClassLoader* new_class_loader) { SetFieldObject(OFFSET_OF_OBJECT_MEMBER(Class, class_loader_), new_class_loader, false); } AbstractMethod* Class::FindVirtualMethodForInterface(AbstractMethod* method) { Class* declaring_class = method->GetDeclaringClass(); DCHECK(declaring_class != NULL) << PrettyClass(this); DCHECK(declaring_class->IsInterface()) << PrettyMethod(method); // TODO cache to improve lookup speed int32_t iftable_count = GetIfTableCount(); IfTable* iftable = GetIfTable(); for (int32_t i = 0; i < iftable_count; i++) { if (iftable->GetInterface(i) == declaring_class) { return iftable->GetMethodArray(i)->Get(method->GetMethodIndex()); } } return NULL; } AbstractMethod* Class::FindInterfaceMethod(const StringPiece& name, const StringPiece& signature) const { // Check the current class before checking the interfaces. AbstractMethod* method = FindDeclaredVirtualMethod(name, signature); if (method != NULL) { return method; } int32_t iftable_count = GetIfTableCount(); IfTable* iftable = GetIfTable(); for (int32_t i = 0; i < iftable_count; i++) { method = iftable->GetInterface(i)->FindVirtualMethod(name, signature); if (method != NULL) { return method; } } return NULL; } AbstractMethod* Class::FindInterfaceMethod(const DexCache* dex_cache, uint32_t dex_method_idx) const { // Check the current class before checking the interfaces. AbstractMethod* method = FindDeclaredVirtualMethod(dex_cache, dex_method_idx); if (method != NULL) { return method; } int32_t iftable_count = GetIfTableCount(); IfTable* iftable = GetIfTable(); for (int32_t i = 0; i < iftable_count; i++) { method = iftable->GetInterface(i)->FindVirtualMethod(dex_cache, dex_method_idx); if (method != NULL) { return method; } } return NULL; } AbstractMethod* Class::FindDeclaredDirectMethod(const StringPiece& name, const StringPiece& signature) const { MethodHelper mh; for (size_t i = 0; i < NumDirectMethods(); ++i) { AbstractMethod* method = GetDirectMethod(i); mh.ChangeMethod(method); if (name == mh.GetName() && signature == mh.GetSignature()) { return method; } } return NULL; } AbstractMethod* Class::FindDeclaredDirectMethod(const DexCache* dex_cache, uint32_t dex_method_idx) const { if (GetDexCache() == dex_cache) { for (size_t i = 0; i < NumDirectMethods(); ++i) { AbstractMethod* method = GetDirectMethod(i); if (method->GetDexMethodIndex() == dex_method_idx) { return method; } } } return NULL; } AbstractMethod* Class::FindDirectMethod(const StringPiece& name, const StringPiece& signature) const { for (const Class* klass = this; klass != NULL; klass = klass->GetSuperClass()) { AbstractMethod* method = klass->FindDeclaredDirectMethod(name, signature); if (method != NULL) { return method; } } return NULL; } AbstractMethod* Class::FindDirectMethod(const DexCache* dex_cache, uint32_t dex_method_idx) const { for (const Class* klass = this; klass != NULL; klass = klass->GetSuperClass()) { AbstractMethod* method = klass->FindDeclaredDirectMethod(dex_cache, dex_method_idx); if (method != NULL) { return method; } } return NULL; } AbstractMethod* Class::FindDeclaredVirtualMethod(const StringPiece& name, const StringPiece& signature) const { MethodHelper mh; for (size_t i = 0; i < NumVirtualMethods(); ++i) { AbstractMethod* method = GetVirtualMethod(i); mh.ChangeMethod(method); if (name == mh.GetName() && signature == mh.GetSignature()) { return method; } } return NULL; } AbstractMethod* Class::FindDeclaredVirtualMethod(const DexCache* dex_cache, uint32_t dex_method_idx) const { if (GetDexCache() == dex_cache) { for (size_t i = 0; i < NumVirtualMethods(); ++i) { AbstractMethod* method = GetVirtualMethod(i); if (method->GetDexMethodIndex() == dex_method_idx) { return method; } } } return NULL; } AbstractMethod* Class::FindVirtualMethod(const StringPiece& name, const StringPiece& signature) const { for (const Class* klass = this; klass != NULL; klass = klass->GetSuperClass()) { AbstractMethod* method = klass->FindDeclaredVirtualMethod(name, signature); if (method != NULL) { return method; } } return NULL; } AbstractMethod* Class::FindVirtualMethod(const DexCache* dex_cache, uint32_t dex_method_idx) const { for (const Class* klass = this; klass != NULL; klass = klass->GetSuperClass()) { AbstractMethod* method = klass->FindDeclaredVirtualMethod(dex_cache, dex_method_idx); if (method != NULL) { return method; } } return NULL; } Field* Class::FindDeclaredInstanceField(const StringPiece& name, const StringPiece& type) { // Is the field in this class? // Interfaces are not relevant because they can't contain instance fields. FieldHelper fh; for (size_t i = 0; i < NumInstanceFields(); ++i) { Field* f = GetInstanceField(i); fh.ChangeField(f); if (name == fh.GetName() && type == fh.GetTypeDescriptor()) { return f; } } return NULL; } Field* Class::FindDeclaredInstanceField(const DexCache* dex_cache, uint32_t dex_field_idx) { if (GetDexCache() == dex_cache) { for (size_t i = 0; i < NumInstanceFields(); ++i) { Field* f = GetInstanceField(i); if (f->GetDexFieldIndex() == dex_field_idx) { return f; } } } return NULL; } Field* Class::FindInstanceField(const StringPiece& name, const StringPiece& type) { // Is the field in this class, or any of its superclasses? // Interfaces are not relevant because they can't contain instance fields. for (Class* c = this; c != NULL; c = c->GetSuperClass()) { Field* f = c->FindDeclaredInstanceField(name, type); if (f != NULL) { return f; } } return NULL; } Field* Class::FindInstanceField(const DexCache* dex_cache, uint32_t dex_field_idx) { // Is the field in this class, or any of its superclasses? // Interfaces are not relevant because they can't contain instance fields. for (Class* c = this; c != NULL; c = c->GetSuperClass()) { Field* f = c->FindDeclaredInstanceField(dex_cache, dex_field_idx); if (f != NULL) { return f; } } return NULL; } Field* Class::FindDeclaredStaticField(const StringPiece& name, const StringPiece& type) { DCHECK(type != NULL); FieldHelper fh; for (size_t i = 0; i < NumStaticFields(); ++i) { Field* f = GetStaticField(i); fh.ChangeField(f); if (name == fh.GetName() && type == fh.GetTypeDescriptor()) { return f; } } return NULL; } Field* Class::FindDeclaredStaticField(const DexCache* dex_cache, uint32_t dex_field_idx) { if (dex_cache == GetDexCache()) { for (size_t i = 0; i < NumStaticFields(); ++i) { Field* f = GetStaticField(i); if (f->GetDexFieldIndex() == dex_field_idx) { return f; } } } return NULL; } Field* Class::FindStaticField(const StringPiece& name, const StringPiece& type) { // Is the field in this class (or its interfaces), or any of its // superclasses (or their interfaces)? ClassHelper kh; for (Class* k = this; k != NULL; k = k->GetSuperClass()) { // Is the field in this class? Field* f = k->FindDeclaredStaticField(name, type); if (f != NULL) { return f; } // Is this field in any of this class' interfaces? kh.ChangeClass(k); for (uint32_t i = 0; i < kh.NumDirectInterfaces(); ++i) { Class* interface = kh.GetDirectInterface(i); f = interface->FindStaticField(name, type); if (f != NULL) { return f; } } } return NULL; } Field* Class::FindStaticField(const DexCache* dex_cache, uint32_t dex_field_idx) { ClassHelper kh; for (Class* k = this; k != NULL; k = k->GetSuperClass()) { // Is the field in this class? Field* f = k->FindDeclaredStaticField(dex_cache, dex_field_idx); if (f != NULL) { return f; } // Is this field in any of this class' interfaces? kh.ChangeClass(k); for (uint32_t i = 0; i < kh.NumDirectInterfaces(); ++i) { Class* interface = kh.GetDirectInterface(i); f = interface->FindStaticField(dex_cache, dex_field_idx); if (f != NULL) { return f; } } } return NULL; } Field* Class::FindField(const StringPiece& name, const StringPiece& type) { // Find a field using the JLS field resolution order ClassHelper kh; for (Class* k = this; k != NULL; k = k->GetSuperClass()) { // Is the field in this class? Field* f = k->FindDeclaredInstanceField(name, type); if (f != NULL) { return f; } f = k->FindDeclaredStaticField(name, type); if (f != NULL) { return f; } // Is this field in any of this class' interfaces? kh.ChangeClass(k); for (uint32_t i = 0; i < kh.NumDirectInterfaces(); ++i) { Class* interface = kh.GetDirectInterface(i); f = interface->FindStaticField(name, type); if (f != NULL) { return f; } } } return NULL; } Array* Array::Alloc(Thread* self, Class* array_class, int32_t component_count, size_t component_size) { DCHECK(array_class != NULL); DCHECK_GE(component_count, 0); DCHECK(array_class->IsArrayClass()); size_t header_size = sizeof(Object) + (component_size == sizeof(int64_t) ? 8 : 4); size_t data_size = component_count * component_size; size_t size = header_size + data_size; // Check for overflow and throw OutOfMemoryError if this was an unreasonable request. size_t component_shift = sizeof(size_t) * 8 - 1 - CLZ(component_size); if (data_size >> component_shift != size_t(component_count) || size < data_size) { self->ThrowNewExceptionF("Ljava/lang/OutOfMemoryError;", "%s of length %d would overflow", PrettyDescriptor(array_class).c_str(), component_count); return NULL; } Heap* heap = Runtime::Current()->GetHeap(); Array* array = down_cast(heap->AllocObject(self, array_class, size)); if (array != NULL) { DCHECK(array->IsArrayInstance()); array->SetLength(component_count); } return array; } Array* Array::Alloc(Thread* self, Class* array_class, int32_t component_count) { DCHECK(array_class->IsArrayClass()); return Alloc(self, array_class, component_count, array_class->GetComponentSize()); } // Create a multi-dimensional array of Objects or primitive types. // // We have to generate the names for X[], X[][], X[][][], and so on. The // easiest way to deal with that is to create the full name once and then // subtract pieces off. Besides, we want to start with the outermost // piece and work our way in. // Recursively create an array with multiple dimensions. Elements may be // Objects or primitive types. static Array* RecursiveCreateMultiArray(Thread* self, Class* array_class, int current_dimension, IntArray* dimensions) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { int32_t array_length = dimensions->Get(current_dimension); SirtRef new_array(self, Array::Alloc(self, array_class, array_length)); if (UNLIKELY(new_array.get() == NULL)) { CHECK(self->IsExceptionPending()); return NULL; } if ((current_dimension + 1) < dimensions->GetLength()) { // Create a new sub-array in every element of the array. for (int32_t i = 0; i < array_length; i++) { Array* sub_array = RecursiveCreateMultiArray(self, array_class->GetComponentType(), current_dimension + 1, dimensions); if (UNLIKELY(sub_array == NULL)) { CHECK(self->IsExceptionPending()); return NULL; } new_array->AsObjectArray()->Set(i, sub_array); } } return new_array.get(); } Array* Array::CreateMultiArray(Thread* self, Class* element_class, IntArray* dimensions) { // Verify dimensions. // // The caller is responsible for verifying that "dimArray" is non-null // and has a length > 0 and <= 255. int num_dimensions = dimensions->GetLength(); DCHECK_GT(num_dimensions, 0); DCHECK_LE(num_dimensions, 255); for (int i = 0; i < num_dimensions; i++) { int dimension = dimensions->Get(i); if (UNLIKELY(dimension < 0)) { self->ThrowNewExceptionF("Ljava/lang/NegativeArraySizeException;", "Dimension %d: %d", i, dimension); return NULL; } } // Generate the full name of the array class. std::string descriptor(num_dimensions, '['); descriptor += ClassHelper(element_class).GetDescriptor(); // Find/generate the array class. ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); Class* array_class = class_linker->FindClass(descriptor.c_str(), element_class->GetClassLoader()); if (UNLIKELY(array_class == NULL)) { CHECK(self->IsExceptionPending()); return NULL; } // create the array Array* new_array = RecursiveCreateMultiArray(self, array_class, 0, dimensions); if (UNLIKELY(new_array == NULL)) { CHECK(self->IsExceptionPending()); return NULL; } return new_array; } bool Array::ThrowArrayIndexOutOfBoundsException(int32_t index) const { Thread::Current()->ThrowNewExceptionF("Ljava/lang/ArrayIndexOutOfBoundsException;", "length=%i; index=%i", length_, index); return false; } bool Array::ThrowArrayStoreException(Object* object) const { Thread::Current()->ThrowNewExceptionF("Ljava/lang/ArrayStoreException;", "Can't store an element of type %s into an array of type %s", PrettyTypeOf(object).c_str(), PrettyTypeOf(this).c_str()); return false; } template PrimitiveArray* PrimitiveArray::Alloc(Thread* self, size_t length) { DCHECK(array_class_ != NULL); Array* raw_array = Array::Alloc(self, array_class_, length, sizeof(T)); return down_cast*>(raw_array); } template Class* PrimitiveArray::array_class_ = NULL; // Explicitly instantiate all the primitive array types. template class PrimitiveArray; // BooleanArray template class PrimitiveArray; // ByteArray template class PrimitiveArray; // CharArray template class PrimitiveArray; // DoubleArray template class PrimitiveArray; // FloatArray template class PrimitiveArray; // IntArray template class PrimitiveArray; // LongArray template class PrimitiveArray; // ShortArray // Explicitly instantiate Class[][] template class ObjectArray >; // TODO: get global references for these Class* String::java_lang_String_ = NULL; void String::SetClass(Class* java_lang_String) { CHECK(java_lang_String_ == NULL); CHECK(java_lang_String != NULL); java_lang_String_ = java_lang_String; } void String::ResetClass() { CHECK(java_lang_String_ != NULL); java_lang_String_ = NULL; } String* String::Intern() { return Runtime::Current()->GetInternTable()->InternWeak(this); } int32_t String::GetHashCode() { int32_t result = GetField32(OFFSET_OF_OBJECT_MEMBER(String, hash_code_), false); if (result == 0) { ComputeHashCode(); } result = GetField32(OFFSET_OF_OBJECT_MEMBER(String, hash_code_), false); DCHECK(result != 0 || ComputeUtf16Hash(GetCharArray(), GetOffset(), GetLength()) == 0) << ToModifiedUtf8() << " " << result; return result; } int32_t String::GetLength() const { int32_t result = GetField32(OFFSET_OF_OBJECT_MEMBER(String, count_), false); DCHECK(result >= 0 && result <= GetCharArray()->GetLength()); return result; } uint16_t String::CharAt(int32_t index) const { // TODO: do we need this? Equals is the only caller, and could // bounds check itself. if (index < 0 || index >= count_) { Thread* self = Thread::Current(); self->ThrowNewExceptionF("Ljava/lang/StringIndexOutOfBoundsException;", "length=%i; index=%i", count_, index); return 0; } return GetCharArray()->Get(index + GetOffset()); } String* String::AllocFromUtf16(Thread* self, int32_t utf16_length, const uint16_t* utf16_data_in, int32_t hash_code) { CHECK(utf16_data_in != NULL || utf16_length == 0); String* string = Alloc(self, GetJavaLangString(), utf16_length); if (string == NULL) { return NULL; } // TODO: use 16-bit wide memset variant CharArray* array = const_cast(string->GetCharArray()); if (array == NULL) { return NULL; } for (int i = 0; i < utf16_length; i++) { array->Set(i, utf16_data_in[i]); } if (hash_code != 0) { string->SetHashCode(hash_code); } else { string->ComputeHashCode(); } return string; } String* String::AllocFromModifiedUtf8(Thread* self, const char* utf) { if (utf == NULL) { return NULL; } size_t char_count = CountModifiedUtf8Chars(utf); return AllocFromModifiedUtf8(self, char_count, utf); } String* String::AllocFromModifiedUtf8(Thread* self, int32_t utf16_length, const char* utf8_data_in) { String* string = Alloc(self, GetJavaLangString(), utf16_length); if (string == NULL) { return NULL; } uint16_t* utf16_data_out = const_cast(string->GetCharArray()->GetData()); ConvertModifiedUtf8ToUtf16(utf16_data_out, utf8_data_in); string->ComputeHashCode(); return string; } String* String::Alloc(Thread* self, Class* java_lang_String, int32_t utf16_length) { SirtRef array(self, CharArray::Alloc(self, utf16_length)); if (array.get() == NULL) { return NULL; } return Alloc(self, java_lang_String, array.get()); } String* String::Alloc(Thread* self, Class* java_lang_String, CharArray* array) { // Hold reference in case AllocObject causes GC. SirtRef array_ref(self, array); String* string = down_cast(java_lang_String->AllocObject(self)); if (string == NULL) { return NULL; } string->SetArray(array); string->SetCount(array->GetLength()); return string; } bool String::Equals(const String* that) const { if (this == that) { // Quick reference equality test return true; } else if (that == NULL) { // Null isn't an instanceof anything return false; } else if (this->GetLength() != that->GetLength()) { // Quick length inequality test return false; } else { // Note: don't short circuit on hash code as we're presumably here as the // hash code was already equal for (int32_t i = 0; i < that->GetLength(); ++i) { if (this->CharAt(i) != that->CharAt(i)) { return false; } } return true; } } bool String::Equals(const uint16_t* that_chars, int32_t that_offset, int32_t that_length) const { if (this->GetLength() != that_length) { return false; } else { for (int32_t i = 0; i < that_length; ++i) { if (this->CharAt(i) != that_chars[that_offset + i]) { return false; } } return true; } } bool String::Equals(const char* modified_utf8) const { for (int32_t i = 0; i < GetLength(); ++i) { uint16_t ch = GetUtf16FromUtf8(&modified_utf8); if (ch == '\0' || ch != CharAt(i)) { return false; } } return *modified_utf8 == '\0'; } bool String::Equals(const StringPiece& modified_utf8) const { if (modified_utf8.size() != GetLength()) { return false; } const char* p = modified_utf8.data(); for (int32_t i = 0; i < GetLength(); ++i) { uint16_t ch = GetUtf16FromUtf8(&p); if (ch != CharAt(i)) { return false; } } return true; } // Create a modified UTF-8 encoded std::string from a java/lang/String object. std::string String::ToModifiedUtf8() const { const uint16_t* chars = GetCharArray()->GetData() + GetOffset(); size_t byte_count = GetUtfLength(); std::string result(byte_count, static_cast(0)); ConvertUtf16ToModifiedUtf8(&result[0], chars, GetLength()); return result; } #ifdef HAVE__MEMCMP16 // "count" is in 16-bit units. extern "C" uint32_t __memcmp16(const uint16_t* s0, const uint16_t* s1, size_t count); #define MemCmp16 __memcmp16 #else static uint32_t MemCmp16(const uint16_t* s0, const uint16_t* s1, size_t count) { for (size_t i = 0; i < count; i++) { if (s0[i] != s1[i]) { return static_cast(s0[i]) - static_cast(s1[i]); } } return 0; } #endif int32_t String::CompareTo(String* rhs) const { // Quick test for comparison of a string with itself. const String* lhs = this; if (lhs == rhs) { return 0; } // TODO: is this still true? // The annoying part here is that 0x00e9 - 0xffff != 0x00ea, // because the interpreter converts the characters to 32-bit integers // *without* sign extension before it subtracts them (which makes some // sense since "char" is unsigned). So what we get is the result of // 0x000000e9 - 0x0000ffff, which is 0xffff00ea. int lhsCount = lhs->GetLength(); int rhsCount = rhs->GetLength(); int countDiff = lhsCount - rhsCount; int minCount = (countDiff < 0) ? lhsCount : rhsCount; const uint16_t* lhsChars = lhs->GetCharArray()->GetData() + lhs->GetOffset(); const uint16_t* rhsChars = rhs->GetCharArray()->GetData() + rhs->GetOffset(); int otherRes = MemCmp16(lhsChars, rhsChars, minCount); if (otherRes != 0) { return otherRes; } return countDiff; } void Throwable::SetCause(Throwable* cause) { CHECK(cause != NULL); CHECK(cause != this); CHECK(GetFieldObject(OFFSET_OF_OBJECT_MEMBER(Throwable, cause_), false) == NULL); SetFieldObject(OFFSET_OF_OBJECT_MEMBER(Throwable, cause_), cause, false); } bool Throwable::IsCheckedException() const { if (InstanceOf(WellKnownClasses::ToClass(WellKnownClasses::java_lang_Error))) { return false; } return !InstanceOf(WellKnownClasses::ToClass(WellKnownClasses::java_lang_RuntimeException)); } std::string Throwable::Dump() const { std::string result(PrettyTypeOf(this)); result += ": "; String* msg = GetDetailMessage(); if (msg != NULL) { result += msg->ToModifiedUtf8(); } result += "\n"; Object* stack_state = GetStackState(); // check stack state isn't missing or corrupt if (stack_state != NULL && stack_state->IsObjectArray()) { // Decode the internal stack trace into the depth and method trace ObjectArray* method_trace = down_cast*>(stack_state); int32_t depth = method_trace->GetLength() - 1; IntArray* pc_trace = down_cast(method_trace->Get(depth)); MethodHelper mh; for (int32_t i = 0; i < depth; ++i) { AbstractMethod* method = down_cast(method_trace->Get(i)); mh.ChangeMethod(method); uint32_t dex_pc = pc_trace->Get(i); int32_t line_number = mh.GetLineNumFromDexPC(dex_pc); const char* source_file = mh.GetDeclaringClassSourceFile(); result += StringPrintf(" at %s (%s:%d)\n", PrettyMethod(method, true).c_str(), source_file, line_number); } } Throwable* cause = GetFieldObject(OFFSET_OF_OBJECT_MEMBER(Throwable, cause_), false); if (cause != NULL && cause != this) { // Constructor makes cause == this by default. result += "Caused by: "; result += cause->Dump(); } return result; } Class* Throwable::java_lang_Throwable_ = NULL; void Throwable::SetClass(Class* java_lang_Throwable) { CHECK(java_lang_Throwable_ == NULL); CHECK(java_lang_Throwable != NULL); java_lang_Throwable_ = java_lang_Throwable; } void Throwable::ResetClass() { CHECK(java_lang_Throwable_ != NULL); java_lang_Throwable_ = NULL; } Class* StackTraceElement::java_lang_StackTraceElement_ = NULL; void StackTraceElement::SetClass(Class* java_lang_StackTraceElement) { CHECK(java_lang_StackTraceElement_ == NULL); CHECK(java_lang_StackTraceElement != NULL); java_lang_StackTraceElement_ = java_lang_StackTraceElement; } void StackTraceElement::ResetClass() { CHECK(java_lang_StackTraceElement_ != NULL); java_lang_StackTraceElement_ = NULL; } StackTraceElement* StackTraceElement::Alloc(Thread* self, String* declaring_class, String* method_name, String* file_name, int32_t line_number) { StackTraceElement* trace = down_cast(GetStackTraceElement()->AllocObject(self)); trace->SetFieldObject(OFFSET_OF_OBJECT_MEMBER(StackTraceElement, declaring_class_), const_cast(declaring_class), false); trace->SetFieldObject(OFFSET_OF_OBJECT_MEMBER(StackTraceElement, method_name_), const_cast(method_name), false); trace->SetFieldObject(OFFSET_OF_OBJECT_MEMBER(StackTraceElement, file_name_), const_cast(file_name), false); trace->SetField32(OFFSET_OF_OBJECT_MEMBER(StackTraceElement, line_number_), line_number, false); return trace; } } // namespace art