// Copyright 2011 Google Inc. All Rights Reserved. #include "object.h" #include #include #include #include #include #include "class_linker.h" #include "class_loader.h" #include "dex_cache.h" #include "dex_file.h" #include "globals.h" #include "heap.h" #include "intern_table.h" #include "logging.h" #include "monitor.h" #include "runtime.h" #include "stack.h" namespace art { Object* Object::Clone() { Class* c = GetClass(); DCHECK(!c->IsClassClass()); // Object::SizeOf gets the right size even if we're an array. // Using c->AllocObject() here would be wrong. size_t num_bytes = SizeOf(); Object* copy = Heap::AllocObject(c, num_bytes); if (copy == NULL) { return NULL; } // Copy instance data. We assume memcpy copies by words. // TODO: expose and use move32. byte* src_bytes = reinterpret_cast(this); byte* dst_bytes = reinterpret_cast(copy); size_t offset = sizeof(Object); memcpy(dst_bytes + offset, src_bytes + offset, num_bytes - offset); if (c->IsFinalizable()) { Heap::AddFinalizerReference(copy); } return copy; } uint32_t Object::GetLockOwner() { return Monitor::GetLockOwner(monitor_); } bool Object::IsString() const { // TODO use "klass_ == String::GetJavaLangString()" instead? return GetClass() == GetClass()->GetDescriptor()->GetClass(); } void Object::MonitorEnter(Thread* thread) { Monitor::MonitorEnter(thread, this); } bool Object::MonitorExit(Thread* thread) { return Monitor::MonitorExit(thread, this); } void Object::Notify() { Monitor::Notify(Thread::Current(), this); } void Object::NotifyAll() { Monitor::NotifyAll(Thread::Current(), this); } void Object::Wait(int64_t ms, int32_t ns) { Monitor::Wait(Thread::Current(), this, ms, ns, true); } // TODO: get global references for these Class* Field::java_lang_reflect_Field_ = NULL; void Field::SetClass(Class* java_lang_reflect_Field) { CHECK(java_lang_reflect_Field_ == NULL); CHECK(java_lang_reflect_Field != NULL); java_lang_reflect_Field_ = java_lang_reflect_Field; } void Field::ResetClass() { CHECK(java_lang_reflect_Field_ != NULL); java_lang_reflect_Field_ = NULL; } void Field::SetTypeIdx(uint32_t type_idx) { SetField32(OFFSET_OF_OBJECT_MEMBER(Field, type_idx_), type_idx, false); } Class* Field::GetTypeDuringLinking() const { // We are assured that the necessary primitive types are in the dex cache // early during class linking return GetDeclaringClass()->GetDexCache()->GetResolvedType(GetTypeIdx()); } Class* Field::GetType() const { if (type_ == NULL) { type_ = Runtime::Current()->GetClassLinker()->ResolveType(GetTypeIdx(), this); } return type_; } void Field::InitJavaFields() { Thread* self = Thread::Current(); ScopedThreadStateChange tsc(self, Thread::kRunnable); MonitorEnter(self); if (type_ == NULL) { InitJavaFieldsLocked(); } MonitorExit(self); } void Field::InitJavaFieldsLocked() { GetType(); // Sets type_ as a side-effect. May throw. } Field* Field::FindInstanceFieldFromCode(uint32_t field_idx, const Method* referrer) { return FindFieldFromCode(field_idx, referrer, false); } Field* Field::FindStaticFieldFromCode(uint32_t field_idx, const Method* referrer) { return FindFieldFromCode(field_idx, referrer, true); } Field* Field::FindFieldFromCode(uint32_t field_idx, const Method* referrer, bool is_static) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); Field* f = class_linker->ResolveField(field_idx, referrer, is_static); if (f != NULL) { Class* c = f->GetDeclaringClass(); // If the class is already initializing, we must be inside , or // we'd still be waiting for the lock. if (c->GetStatus() == Class::kStatusInitializing || class_linker->EnsureInitialized(c, true)) { return f; } } UNIMPLEMENTED(FATAL) << "throw an error and unwind"; return NULL; } uint32_t Field::Get32StaticFromCode(uint32_t field_idx, const Method* referrer) { Field* field = FindStaticFieldFromCode(field_idx, referrer); DCHECK(field->GetType()->PrimitiveSize() == sizeof(int32_t)); return field->Get32(NULL); } void Field::Set32StaticFromCode(uint32_t field_idx, const Method* referrer, uint32_t new_value) { Field* field = FindStaticFieldFromCode(field_idx, referrer); DCHECK(field->GetType()->PrimitiveSize() == sizeof(int32_t)); field->Set32(NULL, new_value); } uint64_t Field::Get64StaticFromCode(uint32_t field_idx, const Method* referrer) { Field* field = FindStaticFieldFromCode(field_idx, referrer); DCHECK(field->GetType()->PrimitiveSize() == sizeof(int64_t)); return field->Get64(NULL); } void Field::Set64StaticFromCode(uint32_t field_idx, const Method* referrer, uint64_t new_value) { Field* field = FindStaticFieldFromCode(field_idx, referrer); DCHECK(field->GetType()->PrimitiveSize() == sizeof(int64_t)); field->Set64(NULL, new_value); } Object* Field::GetObjStaticFromCode(uint32_t field_idx, const Method* referrer) { Field* field = FindStaticFieldFromCode(field_idx, referrer); DCHECK(!field->GetType()->IsPrimitive()); return field->GetObj(NULL); } void Field::SetObjStaticFromCode(uint32_t field_idx, const Method* referrer, Object* new_value) { Field* field = FindStaticFieldFromCode(field_idx, referrer); DCHECK(!field->GetType()->IsPrimitive()); field->SetObj(NULL, new_value); } uint32_t Field::Get32(const Object* object) const { CHECK((object == NULL) == IsStatic()); if (IsStatic()) { object = declaring_class_; } return object->GetField32(GetOffset(), IsVolatile()); } void Field::Set32(Object* object, uint32_t new_value) const { CHECK((object == NULL) == IsStatic()); if (IsStatic()) { object = declaring_class_; } object->SetField32(GetOffset(), new_value, IsVolatile()); } uint64_t Field::Get64(const Object* object) const { CHECK((object == NULL) == IsStatic()); if (IsStatic()) { object = declaring_class_; } return object->GetField64(GetOffset(), IsVolatile()); } void Field::Set64(Object* object, uint64_t new_value) const { CHECK((object == NULL) == IsStatic()); if (IsStatic()) { object = declaring_class_; } object->SetField64(GetOffset(), new_value, IsVolatile()); } Object* Field::GetObj(const Object* object) const { CHECK((object == NULL) == IsStatic()); if (IsStatic()) { object = declaring_class_; } return object->GetFieldObject(GetOffset(), IsVolatile()); } void Field::SetObj(Object* object, const Object* new_value) const { CHECK((object == NULL) == IsStatic()); if (IsStatic()) { object = declaring_class_; } object->SetFieldObject(GetOffset(), new_value, IsVolatile()); } bool Field::GetBoolean(const Object* object) const { DCHECK(GetType()->IsPrimitiveBoolean()); return Get32(object); } void Field::SetBoolean(Object* object, bool z) const { DCHECK(GetType()->IsPrimitiveBoolean()); Set32(object, z); } int8_t Field::GetByte(const Object* object) const { DCHECK(GetType()->IsPrimitiveByte()); return Get32(object); } void Field::SetByte(Object* object, int8_t b) const { DCHECK(GetType()->IsPrimitiveByte()); Set32(object, b); } uint16_t Field::GetChar(const Object* object) const { DCHECK(GetType()->IsPrimitiveChar()); return Get32(object); } void Field::SetChar(Object* object, uint16_t c) const { DCHECK(GetType()->IsPrimitiveChar()); Set32(object, c); } uint16_t Field::GetShort(const Object* object) const { DCHECK(GetType()->IsPrimitiveShort()); return Get32(object); } void Field::SetShort(Object* object, uint16_t s) const { DCHECK(GetType()->IsPrimitiveShort()); Set32(object, s); } int32_t Field::GetInt(const Object* object) const { DCHECK(GetType()->IsPrimitiveInt()); return Get32(object); } void Field::SetInt(Object* object, int32_t i) const { DCHECK(GetType()->IsPrimitiveInt()) << PrettyField(this); Set32(object, i); } int64_t Field::GetLong(const Object* object) const { DCHECK(GetType()->IsPrimitiveLong()); return Get64(object); } void Field::SetLong(Object* object, int64_t j) const { DCHECK(GetType()->IsPrimitiveLong()); Set64(object, j); } float Field::GetFloat(const Object* object) const { DCHECK(GetType()->IsPrimitiveFloat()); JValue float_bits; float_bits.i = Get32(object); return float_bits.f; } void Field::SetFloat(Object* object, float f) const { DCHECK(GetType()->IsPrimitiveFloat()); JValue float_bits; float_bits.f = f; Set32(object, float_bits.i); } double Field::GetDouble(const Object* object) const { DCHECK(GetType()->IsPrimitiveDouble()); JValue double_bits; double_bits.j = Get64(object); return double_bits.d; } void Field::SetDouble(Object* object, double d) const { DCHECK(GetType()->IsPrimitiveDouble()); JValue double_bits; double_bits.d = d; Set64(object, double_bits.j); } Object* Field::GetObject(const Object* object) const { CHECK(!GetType()->IsPrimitive()); return GetObj(object); } void Field::SetObject(Object* object, const Object* l) const { CHECK(!GetType()->IsPrimitive()); SetObj(object, l); } bool Method::IsClassInitializer() const { return IsStatic() && GetName()->Equals(""); } // TODO: get global references for these Class* Method::java_lang_reflect_Constructor_ = NULL; Class* Method::java_lang_reflect_Method_ = NULL; void Method::SetClasses(Class* java_lang_reflect_Constructor, Class* java_lang_reflect_Method) { CHECK(java_lang_reflect_Constructor_ == NULL); CHECK(java_lang_reflect_Constructor != NULL); java_lang_reflect_Constructor_ = java_lang_reflect_Constructor; CHECK(java_lang_reflect_Method_ == NULL); CHECK(java_lang_reflect_Method != NULL); java_lang_reflect_Method_ = java_lang_reflect_Method; } void Method::ResetClasses() { CHECK(java_lang_reflect_Constructor_ != NULL); java_lang_reflect_Constructor_ = NULL; CHECK(java_lang_reflect_Method_ != NULL); java_lang_reflect_Method_ = NULL; } Class* ExtractNextClassFromSignature(ClassLinker* class_linker, const ClassLoader* cl, const char*& p) { if (*p == '[') { // Something like "[[[Ljava/lang/String;". const char* start = p; while (*p == '[') { ++p; } if (*p == 'L') { while (*p != ';') { ++p; } } ++p; // Either the ';' or the primitive type. StringPiece descriptor(start, (p - start)); return class_linker->FindClass(descriptor, cl); } else if (*p == 'L') { const char* start = p; while (*p != ';') { ++p; } ++p; StringPiece descriptor(start, (p - start)); return class_linker->FindClass(descriptor, cl); } else { return class_linker->FindPrimitiveClass(*p++); } } void Method::InitJavaFieldsLocked() { // Create the array. ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); size_t arg_count = GetShorty()->GetLength() - 1; Class* array_class = class_linker->FindSystemClass("[Ljava/lang/Class;"); ObjectArray* parameters = ObjectArray::Alloc(array_class, arg_count); if (parameters == NULL) { return; } // Parse the signature, filling the array. const ClassLoader* cl = GetDeclaringClass()->GetClassLoader(); std::string signature(GetSignature()->ToModifiedUtf8()); const char* p = signature.c_str(); DCHECK_EQ(*p, '('); ++p; for (size_t i = 0; i < arg_count; ++i) { Class* c = ExtractNextClassFromSignature(class_linker, cl, p); if (c == NULL) { return; } parameters->Set(i, c); } DCHECK_EQ(*p, ')'); ++p; java_parameter_types_ = parameters; java_return_type_ = ExtractNextClassFromSignature(class_linker, cl, p); } void Method::InitJavaFields() { Thread* self = Thread::Current(); ScopedThreadStateChange tsc(self, Thread::kRunnable); MonitorEnter(self); if (java_parameter_types_ == NULL || java_return_type_ == NULL) { InitJavaFieldsLocked(); } MonitorExit(self); } ObjectArray* Method::GetDexCacheStrings() const { return GetFieldObject*>( OFFSET_OF_OBJECT_MEMBER(Method, dex_cache_strings_), false); } void Method::SetReturnTypeIdx(uint32_t new_return_type_idx) { SetField32(OFFSET_OF_OBJECT_MEMBER(Method, java_return_type_idx_), new_return_type_idx, false); } Class* Method::GetReturnType() const { DCHECK(GetDeclaringClass()->IsResolved() || GetDeclaringClass()->IsErroneous()); // Short-cut Class* result = GetDexCacheResolvedTypes()->Get(GetReturnTypeIdx()); if (result == NULL) { // Do full linkage and set cache value for next call result = Runtime::Current()->GetClassLinker()->ResolveType(GetReturnTypeIdx(), this); } CHECK(result != NULL) << PrettyMethod(this); return result; } void Method::SetDexCacheStrings(ObjectArray* new_dex_cache_strings) { SetFieldObject(OFFSET_OF_OBJECT_MEMBER(Method, dex_cache_strings_), new_dex_cache_strings, false); } ObjectArray* Method::GetDexCacheResolvedTypes() const { return GetFieldObject*>( OFFSET_OF_OBJECT_MEMBER(Method, dex_cache_resolved_types_), false); } void Method::SetDexCacheResolvedTypes(ObjectArray* new_dex_cache_classes) { SetFieldObject(OFFSET_OF_OBJECT_MEMBER(Method, dex_cache_resolved_types_), new_dex_cache_classes, false); } ObjectArray* Method::GetDexCacheResolvedMethods() const { return GetFieldObject*>( OFFSET_OF_OBJECT_MEMBER(Method, dex_cache_resolved_methods_), false); } void Method::SetDexCacheResolvedMethods(ObjectArray* new_dex_cache_methods) { SetFieldObject(OFFSET_OF_OBJECT_MEMBER(Method, dex_cache_resolved_methods_), new_dex_cache_methods, false); } ObjectArray* Method::GetDexCacheResolvedFields() const { return GetFieldObject*>( OFFSET_OF_OBJECT_MEMBER(Method, dex_cache_resolved_fields_), false); } void Method::SetDexCacheResolvedFields(ObjectArray* new_dex_cache_fields) { SetFieldObject(OFFSET_OF_OBJECT_MEMBER(Method, dex_cache_resolved_fields_), new_dex_cache_fields, false); } CodeAndDirectMethods* Method::GetDexCacheCodeAndDirectMethods() const { return GetFieldPtr( OFFSET_OF_OBJECT_MEMBER(Method, dex_cache_code_and_direct_methods_), false); } void Method::SetDexCacheCodeAndDirectMethods(CodeAndDirectMethods* new_value) { SetFieldPtr( OFFSET_OF_OBJECT_MEMBER(Method, dex_cache_code_and_direct_methods_), new_value, false); } ObjectArray* Method::GetDexCacheInitializedStaticStorage() const { return GetFieldObject*>( OFFSET_OF_OBJECT_MEMBER(Method, dex_cache_initialized_static_storage_), false); } void Method::SetDexCacheInitializedStaticStorage(ObjectArray* new_value) { SetFieldObject( OFFSET_OF_OBJECT_MEMBER(Method, dex_cache_initialized_static_storage_), new_value, false); } size_t Method::NumArgRegisters(const StringPiece& shorty) { CHECK_LE(1, shorty.length()); uint32_t num_registers = 0; for (int i = 1; i < shorty.length(); ++i) { char ch = shorty[i]; if (ch == 'D' || ch == 'J') { num_registers += 2; } else { num_registers += 1; } } return num_registers; } size_t Method::NumArgArrayBytes() const { const String* shorty = GetShorty(); size_t num_bytes = 0; for (int i = 1; i < shorty->GetLength(); ++i) { char ch = shorty->CharAt(i); if (ch == 'D' || ch == 'J') { num_bytes += 8; } else if (ch == 'L') { // Argument is a reference or an array. The shorty descriptor // does not distinguish between these types. num_bytes += sizeof(Object*); } else { num_bytes += 4; } } return num_bytes; } size_t Method::NumArgs() const { // "1 +" because the first in Args is the receiver. // "- 1" because we don't count the return type. return (IsStatic() ? 0 : 1) + GetShorty()->GetLength() - 1; } // The number of reference arguments to this method including implicit this // pointer size_t Method::NumReferenceArgs() const { const String* shorty = GetShorty(); size_t result = IsStatic() ? 0 : 1; // The implicit this pointer. for (int i = 1; i < shorty->GetLength(); i++) { char ch = shorty->CharAt(i); if ((ch == 'L') || (ch == '[')) { result++; } } return result; } // The number of long or double arguments size_t Method::NumLongOrDoubleArgs() const { const String* shorty = GetShorty(); size_t result = 0; for (int i = 1; i < shorty->GetLength(); i++) { char ch = shorty->CharAt(i); if ((ch == 'D') || (ch == 'J')) { result++; } } return result; } // Is the given method parameter a reference? bool Method::IsParamAReference(unsigned int param) const { CHECK_LT(param, NumArgs()); if (IsStatic()) { param++; // 0th argument must skip return value at start of the shorty } else if (param == 0) { return true; // this argument } return GetShorty()->CharAt(param) == 'L'; } // Is the given method parameter a long or double? bool Method::IsParamALongOrDouble(unsigned int param) const { CHECK_LT(param, NumArgs()); if (IsStatic()) { param++; // 0th argument must skip return value at start of the shorty } else if (param == 0) { return false; // this argument } char ch = GetShorty()->CharAt(param); return (ch == 'J' || ch == 'D'); } static size_t ShortyCharToSize(char x) { switch (x) { case 'V': return 0; case '[': return kPointerSize; case 'L': return kPointerSize; case 'D': return 8; case 'J': return 8; default: return 4; } } size_t Method::ParamSize(unsigned int param) const { CHECK_LT(param, NumArgs()); if (IsStatic()) { param++; // 0th argument must skip return value at start of the shorty } else if (param == 0) { return kPointerSize; // this argument } return ShortyCharToSize(GetShorty()->CharAt(param)); } size_t Method::ReturnSize() const { return ShortyCharToSize(GetShorty()->CharAt(0)); } bool Method::HasSameNameAndDescriptor(const Method* that) const { return (this->GetName()->Equals(that->GetName()) && this->GetSignature()->Equals(that->GetSignature())); } uint32_t Method::ToDexPC(const uintptr_t pc) const { const uint32_t* mapping_table = GetMappingTable(); if (mapping_table == NULL) { DCHECK(IsNative()); return DexFile::kDexNoIndex; // Special no mapping case } size_t mapping_table_length = GetMappingTableLength(); uint32_t sought_offset = pc - reinterpret_cast(GetCode()); uint32_t best_offset = 0; uint32_t best_dex_offset = 0; for (size_t i = 0; i < mapping_table_length; i += 2) { uint32_t map_offset = mapping_table[i]; uint32_t map_dex_offset = mapping_table[i + 1]; if (map_offset == sought_offset) { best_offset = map_offset; best_dex_offset = map_dex_offset; break; } if (map_offset < sought_offset && map_offset > best_offset) { best_offset = map_offset; best_dex_offset = map_dex_offset; } } return best_dex_offset; } uintptr_t Method::ToNativePC(const uint32_t dex_pc) const { const uint32_t* mapping_table = GetMappingTable(); if (mapping_table == NULL) { DCHECK(dex_pc == 0); return 0; // Special no mapping/pc == 0 case } size_t mapping_table_length = GetMappingTableLength(); for (size_t i = 0; i < mapping_table_length; i += 2) { uint32_t map_offset = mapping_table[i]; uint32_t map_dex_offset = mapping_table[i + 1]; if (map_dex_offset == dex_pc) { return reinterpret_cast(GetCode()) + map_offset; } } LOG(FATAL) << "Looking up Dex PC not contained in method"; return 0; } uint32_t Method::FindCatchBlock(Class* exception_type, uint32_t dex_pc) const { DexCache* dex_cache = GetDeclaringClass()->GetDexCache(); const ClassLoader* class_loader = GetDeclaringClass()->GetClassLoader(); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); const DexFile& dex_file = class_linker->FindDexFile(dex_cache); const DexFile::CodeItem* code_item = dex_file.GetCodeItem(GetCodeItemOffset()); // Iterate over the catch handlers associated with dex_pc for (DexFile::CatchHandlerIterator iter = dex_file.dexFindCatchHandler(*code_item, dex_pc); !iter.HasNext(); iter.Next()) { uint32_t iter_type_idx = iter.Get().type_idx_; // Catch all case if (iter_type_idx == DexFile::kDexNoIndex) { return iter.Get().address_; } // Does this catch exception type apply? Class* iter_exception_type = class_linker->ResolveType(dex_file, iter_type_idx, dex_cache, class_loader); if (iter_exception_type->IsAssignableFrom(exception_type)) { return iter.Get().address_; } } // Handler not found return DexFile::kDexNoIndex; } void Method::Invoke(Thread* self, Object* receiver, byte* args, JValue* result) const { // Push a transition back into managed code onto the linked list in thread. CHECK_EQ(Thread::kRunnable, self->GetState()); NativeToManagedRecord record; self->PushNativeToManagedRecord(&record); // Call the invoke stub associated with the method. // Pass everything as arguments. const Method::InvokeStub* stub = GetInvokeStub(); bool have_executable_code = (GetCode() != NULL); #if !defined(__arm__) // Currently we can only compile non-native methods for ARM. have_executable_code = IsNative(); #endif if (have_executable_code && stub != NULL) { LOG(INFO) << "invoking " << PrettyMethod(this) << " code=" << (void*) GetCode() << " stub=" << (void*) stub; (*stub)(this, receiver, self, args, result); LOG(INFO) << "returned " << PrettyMethod(this) << " code=" << (void*) GetCode() << " stub=" << (void*) stub; } else { if (Runtime::Current()->IsStarted()) { LOG(WARNING) << "Not invoking method with no associated code: " << PrettyMethod(this); } if (result != NULL) { result->j = 0; } } // Pop transition. self->PopNativeToManagedRecord(record); } bool Method::IsRegistered() const { void* native_method = GetFieldPtr(OFFSET_OF_OBJECT_MEMBER(Method, native_method_), false); void* jni_stub = Runtime::Current()->GetJniStubArray()->GetData(); return native_method != jni_stub; } void Method::RegisterNative(const void* native_method) { CHECK(IsNative()); CHECK(native_method != NULL); SetFieldPtr(OFFSET_OF_OBJECT_MEMBER(Method, native_method_), native_method, false); } void Method::UnregisterNative() { CHECK(IsNative()); // restore stub to lookup native pointer via dlsym RegisterNative(Runtime::Current()->GetJniStubArray()->GetData()); } void Class::SetStatus(Status new_status) { CHECK(new_status > GetStatus() || new_status == kStatusError || !Runtime::Current()->IsStarted()) << PrettyClass(this) << " " << GetStatus() << " -> " << new_status; CHECK(sizeof(Status) == sizeof(uint32_t)) << PrettyClass(this); return SetField32(OFFSET_OF_OBJECT_MEMBER(Class, status_), new_status, false); } DexCache* Class::GetDexCache() const { return GetFieldObject(OFFSET_OF_OBJECT_MEMBER(Class, dex_cache_), false); } void Class::SetDexCache(DexCache* new_dex_cache) { SetFieldObject(OFFSET_OF_OBJECT_MEMBER(Class, dex_cache_), new_dex_cache, false); } Object* Class::AllocObject() { DCHECK(!IsAbstract()) << PrettyClass(this); DCHECK(!IsInterface()) << PrettyClass(this); DCHECK(!IsPrimitive()) << PrettyClass(this); DCHECK(!Runtime::Current()->IsStarted() || IsInitializing()) << PrettyClass(this); return Heap::AllocObject(this, this->object_size_); } void Class::DumpClass(std::ostream& os, int flags) const { if ((flags & kDumpClassFullDetail) == 0) { os << PrettyClass(this); if ((flags & kDumpClassClassLoader) != 0) { os << ' ' << GetClassLoader(); } if ((flags & kDumpClassInitialized) != 0) { os << ' ' << GetStatus(); } os << std::endl; return; } Class* super = GetSuperClass(); os << "----- " << (IsInterface() ? "interface" : "class") << " " << "'" << GetDescriptor()->ToModifiedUtf8() << "' cl=" << GetClassLoader() << " -----\n", os << " objectSize=" << SizeOf() << " " << "(" << (super != NULL ? super->SizeOf() : -1) << " from super)\n", os << StringPrintf(" access=0x%04x.%04x\n", GetAccessFlags() >> 16, GetAccessFlags() & kAccJavaFlagsMask); if (super != NULL) { os << " super='" << PrettyClass(super) << "' (cl=" << super->GetClassLoader() << ")\n"; } if (IsArrayClass()) { os << " componentType=" << PrettyClass(GetComponentType()) << "\n"; } if (NumInterfaces() > 0) { os << " interfaces (" << NumInterfaces() << "):\n"; for (size_t i = 0; i < NumInterfaces(); ++i) { Class* interface = GetInterface(i); const ClassLoader* cl = interface->GetClassLoader(); os << StringPrintf(" %2d: %s (cl=%p)\n", i, PrettyClass(interface).c_str(), cl); } } os << " vtable (" << NumVirtualMethods() << " entries, " << (super != NULL ? super->NumVirtualMethods() : 0) << " in super):\n"; for (size_t i = 0; i < NumVirtualMethods(); ++i) { os << StringPrintf(" %2d: %s\n", i, PrettyMethod(GetVirtualMethodDuringLinking(i)).c_str()); } os << " direct methods (" << NumDirectMethods() << " entries):\n"; for (size_t i = 0; i < NumDirectMethods(); ++i) { os << StringPrintf(" %2d: %s\n", i, PrettyMethod(GetDirectMethod(i)).c_str()); } if (NumStaticFields() > 0) { os << " static fields (" << NumStaticFields() << " entries):\n"; if (IsResolved() || IsErroneous()) { for (size_t i = 0; i < NumStaticFields(); ++i) { os << StringPrintf(" %2d: %s\n", i, PrettyField(GetStaticField(i)).c_str()); } } else { os << " "; } } if (NumInstanceFields() > 0) { os << " instance fields (" << NumInstanceFields() << " entries):\n"; if (IsResolved() || IsErroneous()) { for (size_t i = 0; i < NumInstanceFields(); ++i) { os << StringPrintf(" %2d: %s\n", i, PrettyField(GetInstanceField(i)).c_str()); } } else { os << " "; } } } void Class::SetReferenceInstanceOffsets(uint32_t new_reference_offsets) { if (new_reference_offsets != CLASS_WALK_SUPER) { // Sanity check that the number of bits set in the reference offset bitmap // agrees with the number of references Class* cur = this; size_t cnt = 0; while (cur) { cnt += cur->NumReferenceInstanceFieldsDuringLinking(); cur = cur->GetSuperClass(); } CHECK_EQ((size_t)__builtin_popcount(new_reference_offsets), cnt); } SetField32(OFFSET_OF_OBJECT_MEMBER(Class, reference_instance_offsets_), new_reference_offsets, false); } void Class::SetReferenceStaticOffsets(uint32_t new_reference_offsets) { if (new_reference_offsets != CLASS_WALK_SUPER) { // Sanity check that the number of bits set in the reference offset bitmap // agrees with the number of references CHECK_EQ((size_t)__builtin_popcount(new_reference_offsets), NumReferenceStaticFieldsDuringLinking()); } SetField32(OFFSET_OF_OBJECT_MEMBER(Class, reference_static_offsets_), new_reference_offsets, false); } size_t Class::PrimitiveSize() const { switch (GetPrimitiveType()) { case kPrimBoolean: case kPrimByte: case kPrimChar: case kPrimShort: case kPrimInt: case kPrimFloat: return sizeof(int32_t); case kPrimLong: case kPrimDouble: return sizeof(int64_t); default: LOG(FATAL) << "Primitive type size calculation on invalid type " << this; return 0; } } size_t Class::GetTypeSize(const String* descriptor) { switch (descriptor->CharAt(0)) { case 'B': return 1; // byte case 'C': return 2; // char case 'D': return 8; // double case 'F': return 4; // float case 'I': return 4; // int case 'J': return 8; // long case 'S': return 2; // short case 'Z': return 1; // boolean case 'L': return sizeof(Object*); case '[': return sizeof(Array*); default: LOG(ERROR) << "Unknown type " << descriptor; return 0; } } bool Class::Implements(const Class* klass) const { DCHECK(klass != NULL); DCHECK(klass->IsInterface()) << PrettyClass(this); // All interfaces implemented directly and by our superclass, and // recursively all super-interfaces of those interfaces, are listed // in iftable_, so we can just do a linear scan through that. int32_t iftable_count = GetIfTableCount(); ObjectArray* iftable = GetIfTable(); for (int32_t i = 0; i < iftable_count; i++) { if (iftable->Get(i)->GetInterface() == klass) { return true; } } return false; } // Determine whether "this" is assignable from "klazz", where both of these // are array classes. // // Consider an array class, e.g. Y[][], where Y is a subclass of X. // Y[][] = Y[][] --> true (identity) // X[][] = Y[][] --> true (element superclass) // Y = Y[][] --> false // Y[] = Y[][] --> false // Object = Y[][] --> true (everything is an object) // Object[] = Y[][] --> true // Object[][] = Y[][] --> true // Object[][][] = Y[][] --> false (too many []s) // Serializable = Y[][] --> true (all arrays are Serializable) // Serializable[] = Y[][] --> true // Serializable[][] = Y[][] --> false (unless Y is Serializable) // // Don't forget about primitive types. // Object[] = int[] --> false // bool Class::IsArrayAssignableFromArray(const Class* src) const { DCHECK(IsArrayClass()) << PrettyClass(this); DCHECK(src->IsArrayClass()) << PrettyClass(src); return GetComponentType()->IsAssignableFrom(src->GetComponentType()); } bool Class::IsAssignableFromArray(const Class* src) const { DCHECK(!IsInterface()) << PrettyClass(this); // handled first in IsAssignableFrom DCHECK(src->IsArrayClass()) << PrettyClass(src); if (!IsArrayClass()) { // If "this" is not also an array, it must be Object. // src's super should be java_lang_Object, since it is an array. Class* java_lang_Object = src->GetSuperClass(); DCHECK(java_lang_Object != NULL) << PrettyClass(src); DCHECK(java_lang_Object->GetSuperClass() == NULL) << PrettyClass(src); return this == java_lang_Object; } return IsArrayAssignableFromArray(src); } bool Class::IsSubClass(const Class* klass) const { DCHECK(!IsInterface()) << PrettyClass(this); DCHECK(!IsArrayClass()) << PrettyClass(this); const Class* current = this; do { if (current == klass) { return true; } current = current->GetSuperClass(); } while (current != NULL); return false; } bool Class::IsInSamePackage(const String* descriptor_string_1, const String* descriptor_string_2) { const std::string descriptor1(descriptor_string_1->ToModifiedUtf8()); const std::string descriptor2(descriptor_string_2->ToModifiedUtf8()); size_t i = 0; while (descriptor1[i] != '\0' && descriptor1[i] == descriptor2[i]) { ++i; } if (descriptor1.find('/', i) != StringPiece::npos || descriptor2.find('/', i) != StringPiece::npos) { return false; } else { return true; } } #if 0 bool Class::IsInSamePackage(const StringPiece& descriptor1, const StringPiece& descriptor2) { size_t size = std::min(descriptor1.size(), descriptor2.size()); std::pair pos; pos = std::mismatch(descriptor1.begin(), descriptor1.begin() + size, descriptor2.begin()); return !(*(pos.second).rfind('/') != npos && descriptor2.rfind('/') != npos); } #endif bool Class::IsInSamePackage(const Class* that) const { const Class* klass1 = this; const Class* klass2 = that; if (klass1 == klass2) { return true; } // Class loaders must match. if (klass1->GetClassLoader() != klass2->GetClassLoader()) { return false; } // Arrays are in the same package when their element classes are. while (klass1->IsArrayClass()) { klass1 = klass1->GetComponentType(); } while (klass2->IsArrayClass()) { klass2 = klass2->GetComponentType(); } // Compare the package part of the descriptor string. return IsInSamePackage(klass1->descriptor_, klass2->descriptor_); } const ClassLoader* Class::GetClassLoader() const { return GetFieldObject( OFFSET_OF_OBJECT_MEMBER(Class, class_loader_), false); } void Class::SetClassLoader(const ClassLoader* new_cl) { ClassLoader* new_class_loader = const_cast(new_cl); SetFieldObject(OFFSET_OF_OBJECT_MEMBER(Class, class_loader_), new_class_loader, false); } Method* Class::FindVirtualMethodForInterface(Method* method) { Class* declaring_class = method->GetDeclaringClass(); DCHECK(declaring_class != NULL) << PrettyClass(this); DCHECK(declaring_class->IsInterface()) << PrettyMethod(method); // TODO cache to improve lookup speed int32_t iftable_count = GetIfTableCount(); ObjectArray* iftable = GetIfTable(); for (int32_t i = 0; i < iftable_count; i++) { InterfaceEntry* interface_entry = iftable->Get(i); if (interface_entry->GetInterface() == declaring_class) { return interface_entry->GetMethodArray()->Get(method->GetMethodIndex()); } } Thread::Current()->ThrowNewExceptionF("Ljava/lang/IncompatibleClassChangeError;", "Class %s does not implement interface %s", PrettyDescriptor(GetDescriptor()).c_str(), PrettyDescriptor(declaring_class->GetDescriptor()).c_str()); return NULL; } Method* Class::FindInterfaceMethod(const StringPiece& name, const StringPiece& signature) { // Check the current class before checking the interfaces. Method* method = FindVirtualMethod(name, signature); if (method != NULL) { return method; } int32_t iftable_count = GetIfTableCount(); ObjectArray* iftable = GetIfTable(); for (int32_t i = 0; i < iftable_count; i++) { method = iftable->Get(i)->GetInterface()->FindVirtualMethod(name, signature); if (method != NULL) { return method; } } return NULL; } Method* Class::FindDeclaredDirectMethod(const StringPiece& name, const StringPiece& signature) { for (size_t i = 0; i < NumDirectMethods(); ++i) { Method* method = GetDirectMethod(i); if (method->GetName()->Equals(name) && method->GetSignature()->Equals(signature)) { return method; } } return NULL; } Method* Class::FindDirectMethod(const StringPiece& name, const StringPiece& signature) { for (Class* klass = this; klass != NULL; klass = klass->GetSuperClass()) { Method* method = klass->FindDeclaredDirectMethod(name, signature); if (method != NULL) { return method; } } return NULL; } Method* Class::FindDeclaredVirtualMethod(const StringPiece& name, const StringPiece& signature) { for (size_t i = 0; i < NumVirtualMethods(); ++i) { Method* method = GetVirtualMethod(i); if (method->GetName()->Equals(name) && method->GetSignature()->Equals(signature)) { return method; } } return NULL; } Method* Class::FindVirtualMethod(const StringPiece& name, const StringPiece& signature) { for (Class* klass = this; klass != NULL; klass = klass->GetSuperClass()) { Method* method = klass->FindDeclaredVirtualMethod(name, signature); if (method != NULL) { return method; } } return NULL; } Field* Class::FindDeclaredInstanceField(const StringPiece& name, Class* type) { // Is the field in this class? // Interfaces are not relevant because they can't contain instance fields. for (size_t i = 0; i < NumInstanceFields(); ++i) { Field* f = GetInstanceField(i); if (f->GetName()->Equals(name) && type == f->GetType()) { return f; } } return NULL; } Field* Class::FindInstanceField(const StringPiece& name, Class* type) { // Is the field in this class, or any of its superclasses? // Interfaces are not relevant because they can't contain instance fields. for (Class* c = this; c != NULL; c = c->GetSuperClass()) { Field* f = c->FindDeclaredInstanceField(name, type); if (f != NULL) { return f; } } return NULL; } Field* Class::FindDeclaredStaticField(const StringPiece& name, Class* type) { DCHECK(type != NULL); for (size_t i = 0; i < NumStaticFields(); ++i) { Field* f = GetStaticField(i); if (f->GetName()->Equals(name) && f->GetType() == type) { return f; } } return NULL; } Field* Class::FindStaticField(const StringPiece& name, Class* type) { // Is the field in this class (or its interfaces), or any of its // superclasses (or their interfaces)? for (Class* c = this; c != NULL; c = c->GetSuperClass()) { // Is the field in this class? Field* f = c->FindDeclaredStaticField(name, type); if (f != NULL) { return f; } // Is this field in any of this class' interfaces? for (int32_t i = 0; i < c->GetIfTableCount(); ++i) { InterfaceEntry* interface_entry = c->GetIfTable()->Get(i); Class* interface = interface_entry->GetInterface(); f = interface->FindDeclaredStaticField(name, type); if (f != NULL) { return f; } } } return NULL; } Array* Array::Alloc(Class* array_class, int32_t component_count, size_t component_size) { DCHECK(array_class != NULL); DCHECK_GE(component_count, 0); DCHECK(array_class->IsArrayClass()); size_t header_size = sizeof(Array); size_t data_size = component_count * component_size; size_t size = header_size + data_size; // Check for overflow and throw OutOfMemoryError if this was an unreasonable request. size_t component_shift = sizeof(size_t) * 8 - 1 - CLZ(component_size); if (data_size >> component_shift != size_t(component_count) || size < data_size) { Thread::Current()->ThrowNewExceptionF("Ljava/lang/OutOfMemoryError;", "%s of length %zd exceeds the VM limit", PrettyDescriptor(array_class->GetDescriptor()).c_str(), component_count); return NULL; } Array* array = down_cast(Heap::AllocObject(array_class, size)); if (array != NULL) { DCHECK(array->IsArrayInstance()); array->SetLength(component_count); } return array; } Array* Array::Alloc(Class* array_class, int32_t component_count) { return Alloc(array_class, component_count, array_class->GetComponentSize()); } bool Array::ThrowArrayIndexOutOfBoundsException(int32_t index) const { Thread::Current()->ThrowNewExceptionF("Ljava/lang/ArrayIndexOutOfBoundsException;", "length=%i; index=%i", length_, index); return false; } bool Array::ThrowArrayStoreException(Object* object) const { Thread::Current()->ThrowNewExceptionF("Ljava/lang/ArrayStoreException;", "Can't store an element of type %s into an array of type %s", PrettyTypeOf(object).c_str(), PrettyTypeOf(this).c_str()); return false; } template PrimitiveArray* PrimitiveArray::Alloc(size_t length) { DCHECK(array_class_ != NULL); Array* raw_array = Array::Alloc(array_class_, length, sizeof(T)); return down_cast*>(raw_array); } template Class* PrimitiveArray::array_class_ = NULL; // Explicitly instantiate all the primitive array types. template class PrimitiveArray; // BooleanArray template class PrimitiveArray; // ByteArray template class PrimitiveArray; // CharArray template class PrimitiveArray; // DoubleArray template class PrimitiveArray; // FloatArray template class PrimitiveArray; // IntArray template class PrimitiveArray; // LongArray template class PrimitiveArray; // ShortArray // TODO: get global references for these Class* String::java_lang_String_ = NULL; void String::SetClass(Class* java_lang_String) { CHECK(java_lang_String_ == NULL); CHECK(java_lang_String != NULL); java_lang_String_ = java_lang_String; } void String::ResetClass() { CHECK(java_lang_String_ != NULL); java_lang_String_ = NULL; } String* String::Intern() { return Runtime::Current()->GetInternTable()->InternWeak(this); } int32_t String::GetHashCode() { int32_t result = GetField32(OFFSET_OF_OBJECT_MEMBER(String, hash_code_), false); if (result == 0) { ComputeHashCode(); } result = GetField32(OFFSET_OF_OBJECT_MEMBER(String, hash_code_), false); DCHECK(result != 0 || ComputeUtf16Hash(GetCharArray(), GetOffset(), GetLength()) == 0) << ToModifiedUtf8() << " " << result; return result; } int32_t String::GetLength() const { int32_t result = GetField32(OFFSET_OF_OBJECT_MEMBER(String, count_), false); DCHECK(result >= 0 && result <= GetCharArray()->GetLength()); return result; } uint16_t String::CharAt(int32_t index) const { // TODO: do we need this? Equals is the only caller, and could // bounds check itself. if (index < 0 || index >= count_) { Thread* self = Thread::Current(); self->ThrowNewExceptionF("Ljava/lang/StringIndexOutOfBoundsException;", "length=%i; index=%i", count_, index); return 0; } return GetCharArray()->Get(index + GetOffset()); } String* String::AllocFromUtf16(int32_t utf16_length, const uint16_t* utf16_data_in, int32_t hash_code) { String* string = Alloc(GetJavaLangString(), utf16_length); // TODO: use 16-bit wide memset variant CharArray* array = const_cast(string->GetCharArray()); for (int i = 0; i < utf16_length; i++) { array->Set(i, utf16_data_in[i]); } if (hash_code != 0) { string->SetHashCode(hash_code); } else { string->ComputeHashCode(); } return string; } String* String::AllocFromModifiedUtf8(const char* utf) { size_t char_count = CountModifiedUtf8Chars(utf); return AllocFromModifiedUtf8(char_count, utf); } String* String::AllocFromModifiedUtf8(int32_t utf16_length, const char* utf8_data_in) { String* string = Alloc(GetJavaLangString(), utf16_length); uint16_t* utf16_data_out = const_cast(string->GetCharArray()->GetData()); ConvertModifiedUtf8ToUtf16(utf16_data_out, utf8_data_in); string->ComputeHashCode(); return string; } String* String::Alloc(Class* java_lang_String, int32_t utf16_length) { return Alloc(java_lang_String, CharArray::Alloc(utf16_length)); } String* String::Alloc(Class* java_lang_String, CharArray* array) { String* string = down_cast(java_lang_String->AllocObject()); string->SetArray(array); string->SetCount(array->GetLength()); return string; } bool String::Equals(const String* that) const { if (this == that) { // Quick reference equality test return true; } else if (that == NULL) { // Null isn't an instanceof anything return false; } else if (this->GetLength() != that->GetLength()) { // Quick length inequality test return false; } else { // Note: don't short circuit on hash code as we're presumably here as the // hash code was already equal for (int32_t i = 0; i < that->GetLength(); ++i) { if (this->CharAt(i) != that->CharAt(i)) { return false; } } return true; } } bool String::Equals(const uint16_t* that_chars, int32_t that_offset, int32_t that_length) const { if (this->GetLength() != that_length) { return false; } else { for (int32_t i = 0; i < that_length; ++i) { if (this->CharAt(i) != that_chars[that_offset + i]) { return false; } } return true; } } bool String::Equals(const char* modified_utf8) const { for (int32_t i = 0; i < GetLength(); ++i) { uint16_t ch = GetUtf16FromUtf8(&modified_utf8); if (ch == '\0' || ch != CharAt(i)) { return false; } } return *modified_utf8 == '\0'; } bool String::Equals(const StringPiece& modified_utf8) const { if (modified_utf8.size() != GetLength()) { return false; } const char* p = modified_utf8.data(); for (int32_t i = 0; i < GetLength(); ++i) { uint16_t ch = GetUtf16FromUtf8(&p); if (ch != CharAt(i)) { return false; } } return true; } // Create a modified UTF-8 encoded std::string from a java/lang/String object. std::string String::ToModifiedUtf8() const { const uint16_t* chars = GetCharArray()->GetData() + GetOffset(); size_t byte_count(CountUtf8Bytes(chars, GetLength())); std::string result(byte_count, char(0)); ConvertUtf16ToModifiedUtf8(&result[0], chars, GetLength()); return result; } Class* StackTraceElement::java_lang_StackTraceElement_ = NULL; void StackTraceElement::SetClass(Class* java_lang_StackTraceElement) { CHECK(java_lang_StackTraceElement_ == NULL); CHECK(java_lang_StackTraceElement != NULL); java_lang_StackTraceElement_ = java_lang_StackTraceElement; } void StackTraceElement::ResetClass() { CHECK(java_lang_StackTraceElement_ != NULL); java_lang_StackTraceElement_ = NULL; } StackTraceElement* StackTraceElement::Alloc(const String* declaring_class, const String* method_name, const String* file_name, int32_t line_number) { StackTraceElement* trace = down_cast(GetStackTraceElement()->AllocObject()); trace->SetFieldObject(OFFSET_OF_OBJECT_MEMBER(StackTraceElement, declaring_class_), const_cast(declaring_class), false); trace->SetFieldObject(OFFSET_OF_OBJECT_MEMBER(StackTraceElement, method_name_), const_cast(method_name), false); trace->SetFieldObject(OFFSET_OF_OBJECT_MEMBER(StackTraceElement, file_name_), const_cast(file_name), false); trace->SetField32(OFFSET_OF_OBJECT_MEMBER(StackTraceElement, line_number_), line_number, false); return trace; } static const char* kClassStatusNames[] = { "Error", "NotReady", "Idx", "Loaded", "Resolved", "Verifying", "Verified", "Initializing", "Initialized" }; std::ostream& operator<<(std::ostream& os, const Class::Status& rhs) { if (rhs >= Class::kStatusError && rhs <= Class::kStatusInitialized) { os << kClassStatusNames[rhs + 1]; } else { os << "Class::Status[" << static_cast(rhs) << "]"; } return os; } } // namespace art