/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_SRC_MUTEX_H_ #define ART_SRC_MUTEX_H_ #include #include #include #include #include "globals.h" #include "logging.h" #include "macros.h" // Currently Darwin doesn't support locks with timeouts. #if !defined(__APPLE__) #define HAVE_TIMED_RWLOCK 1 #else #define HAVE_TIMED_RWLOCK 0 #endif namespace art { const bool kDebugLocking = kIsDebugBuild; class LOCKABLE Mutex; class LOCKABLE ReaderWriterMutex; // MutexLevel is used to impose a lock hierarchy [1] where acquisition of a Mutex at a higher or // equal level to a lock a thread holds is invalid. The lock hierarchy achieves a cycle free // partial ordering and thereby cause deadlock situations to fail checks. // // [1] http://www.drdobbs.com/parallel/use-lock-hierarchies-to-avoid-deadlock/204801163 enum MutexLevel { kLoggingLock = 0, kUnexpectedSignalLock = 1, kThreadSuspendCountLock = 2, kAbortLock = 3, kDefaultMutexLevel = 4, kJdwpSerialLock = 5, kAllocSpaceLock = 6, kLoadLibraryLock = 7, kClassLinkerClassesLock = 8, kThreadListLock = 9, kHeapBitmapLock = 10, kMonitorLock = 11, kMutatorLock = 12, kZygoteCreationLock = 13, kMaxMutexLevel = kMutatorLock, }; std::ostream& operator<<(std::ostream& os, const MutexLevel& rhs); // Global mutexes corresponding to the levels above. class Locks { public: static void Init(); // The mutator_lock_ is used to allow mutators to execute in a shared (reader) mode or to block // mutators by having an exclusive (writer) owner. In normal execution each mutator thread holds // a share on the mutator_lock_. The garbage collector may also execute with shared access but // at times requires exclusive access to the heap (not to be confused with the heap meta-data // guarded by the heap_lock_ below). When the garbage collector requires exclusive access it asks // the mutators to suspend themselves which also involves usage of the thread_suspend_count_lock_ // to cover weaknesses in using ReaderWriterMutexes with ConditionVariables. We use a condition // variable to wait upon in the suspension logic as releasing and then re-acquiring a share on // the mutator lock doesn't necessarily allow the exclusive user (e.g the garbage collector) // chance to acquire the lock. // // Thread suspension: // Shared users | Exclusive user // (holding mutator lock and in kRunnable state) | .. running .. // .. running .. | Request thread suspension by: // .. running .. | - acquiring thread_suspend_count_lock_ // .. running .. | - incrementing Thread::suspend_count_ on // .. running .. | all mutator threads // .. running .. | - releasing thread_suspend_count_lock_ // .. running .. | Block trying to acquire exclusive mutator lock // Poll Thread::suspend_count_ and enter full | .. blocked .. // suspend code. | .. blocked .. // Change state to kSuspended | .. blocked .. // x: Release share on mutator_lock_ | Carry out exclusive access // Acquire thread_suspend_count_lock_ | .. exclusive .. // while Thread::suspend_count_ > 0 | .. exclusive .. // - wait on Thread::resume_cond_ | .. exclusive .. // (releases thread_suspend_count_lock_) | .. exclusive .. // .. waiting .. | Release mutator_lock_ // .. waiting .. | Request thread resumption by: // .. waiting .. | - acquiring thread_suspend_count_lock_ // .. waiting .. | - decrementing Thread::suspend_count_ on // .. waiting .. | all mutator threads // .. waiting .. | - notifying on Thread::resume_cond_ // - re-acquire thread_suspend_count_lock_ | - releasing thread_suspend_count_lock_ // Release thread_suspend_count_lock_ | .. running .. // Acquire share on mutator_lock_ | .. running .. // - This could block but the thread still | .. running .. // has a state of kSuspended and so this | .. running .. // isn't an issue. | .. running .. // Acquire thread_suspend_count_lock_ | .. running .. // - we poll here as we're transitioning into | .. running .. // kRunnable and an individual thread suspend | .. running .. // request (e.g for debugging) won't try | .. running .. // to acquire the mutator lock (which would | .. running .. // block as we hold the mutator lock). This | .. running .. // poll ensures that if the suspender thought | .. running .. // we were suspended by incrementing our | .. running .. // Thread::suspend_count_ and then reading | .. running .. // our state we go back to waiting on | .. running .. // Thread::resume_cond_. | .. running .. // can_go_runnable = Thread::suspend_count_ == 0 | .. running .. // Release thread_suspend_count_lock_ | .. running .. // if can_go_runnable | .. running .. // Change state to kRunnable | .. running .. // else | .. running .. // Goto x | .. running .. // .. running .. | .. running .. static ReaderWriterMutex* mutator_lock_; // Allow reader-writer mutual exclusion on the mark and live bitmaps of the heap. static ReaderWriterMutex* heap_bitmap_lock_ ACQUIRED_AFTER(mutator_lock_); // The thread_list_lock_ guards ThreadList::list_. It is also commonly held to stop threads // attaching and detaching. static Mutex* thread_list_lock_ ACQUIRED_AFTER(heap_bitmap_lock_); // Guards lists of classes within the class linker. static Mutex* classlinker_classes_lock_ ACQUIRED_AFTER(thread_list_lock_); // When declaring any Mutex add DEFAULT_MUTEX_ACQUIRED_AFTER to use annotalysis to check the code // doesn't try to hold a higher level Mutex. #define DEFAULT_MUTEX_ACQUIRED_AFTER ACQUIRED_AFTER(classlinker_classes_lock_) // Have an exclusive aborting thread. static Mutex* abort_lock_ ACQUIRED_AFTER(classlinker_classes_lock_); // Allow mutual exclusion when manipulating Thread::suspend_count_. // TODO: Does the trade-off of a per-thread lock make sense? static Mutex* thread_suspend_count_lock_ ACQUIRED_AFTER(abort_lock_); // One unexpected signal at a time lock. static Mutex* unexpected_signal_lock_ ACQUIRED_AFTER(thread_suspend_count_lock_); // Have an exclusive logging thread. static Mutex* logging_lock_ ACQUIRED_AFTER(unexpected_signal_lock_); }; // Base class for all Mutex implementations class BaseMutex { public: const std::string& GetName() const { return name_; } virtual bool IsMutex() const { return false; } virtual bool IsReaderWriterMutex() const { return false; } protected: friend class ConditionVariable; BaseMutex(const char* name, MutexLevel level); virtual ~BaseMutex() {} void RegisterAsLockedWithCurrentThread(); void RegisterAsUnlockedWithCurrentThread(); void CheckSafeToWait(); const MutexLevel level_; // Support for lock hierarchy. const std::string name_; }; // A Mutex is used to achieve mutual exclusion between threads. A Mutex can be used to gain // exclusive access to what it guards. A Mutex can be in one of two states: // - Free - not owned by any thread, // - Exclusive - owned by a single thread. // // The effect of locking and unlocking operations on the state is: // State | ExclusiveLock | ExclusiveUnlock // ------------------------------------------- // Free | Exclusive | error // Exclusive | Block* | Free // * Mutex is not reentrant and so an attempt to ExclusiveLock on the same thread will result in // an error. Being non-reentrant simplifies Waiting on ConditionVariables. class LOCKABLE Mutex : public BaseMutex { public: explicit Mutex(const char* name, MutexLevel level = kDefaultMutexLevel, bool recursive = false); ~Mutex(); virtual bool IsMutex() const { return true; } // Block until mutex is free then acquire exclusive access. void ExclusiveLock() EXCLUSIVE_LOCK_FUNCTION(); void Lock() EXCLUSIVE_LOCK_FUNCTION() { ExclusiveLock(); } // Returns true if acquires exclusive access, false otherwise. bool ExclusiveTryLock() EXCLUSIVE_TRYLOCK_FUNCTION(true); bool TryLock() EXCLUSIVE_TRYLOCK_FUNCTION(true) { return ExclusiveTryLock(); } // Release exclusive access. void ExclusiveUnlock() UNLOCK_FUNCTION(); void Unlock() UNLOCK_FUNCTION() { ExclusiveUnlock(); } // Is the current thread the exclusive holder of the Mutex. bool IsExclusiveHeld() const; // Assert that the Mutex is exclusively held by the current thread. void AssertExclusiveHeld() { if (kDebugLocking) { CHECK(IsExclusiveHeld()); } } void AssertHeld() { AssertExclusiveHeld(); } // Assert that the Mutex is not held by the current thread. void AssertNotHeldExclusive() { if (kDebugLocking) { CHECK(!IsExclusiveHeld()); } } void AssertNotHeld() { AssertNotHeldExclusive(); } // Id associated with exclusive owner. uint64_t GetExclusiveOwnerTid() const; // Returns how many times this Mutex has been locked, it is better to use AssertHeld/NotHeld. unsigned int GetDepth() const { return recursion_count_; } private: pthread_mutex_t mutex_; const bool recursive_; // Can the lock be recursively held? unsigned int recursion_count_; friend class ConditionVariable; friend class MutexTester; DISALLOW_COPY_AND_ASSIGN(Mutex); }; // A ReaderWriterMutex is used to achieve mutual exclusion between threads, similar to a Mutex. // Unlike a Mutex a ReaderWriterMutex can be used to gain exclusive (writer) or shared (reader) // access to what it guards. A flaw in relation to a Mutex is that it cannot be used with a // condition variable. A ReaderWriterMutex can be in one of three states: // - Free - not owned by any thread, // - Exclusive - owned by a single thread, // - Shared(n) - shared amongst n threads. // // The effect of locking and unlocking operations on the state is: // // State | ExclusiveLock | ExclusiveUnlock | SharedLock | SharedUnlock // ---------------------------------------------------------------------------- // Free | Exclusive | error | SharedLock(1) | error // Exclusive | Block | Free | Block | error // Shared(n) | Block | error | SharedLock(n+1)* | Shared(n-1) or Free // * for large values of n the SharedLock may block. class LOCKABLE ReaderWriterMutex : public BaseMutex { public: explicit ReaderWriterMutex(const char* name, MutexLevel level = kDefaultMutexLevel); ~ReaderWriterMutex(); virtual bool IsReaderWriterMutex() const { return true; } // Block until ReaderWriterMutex is free then acquire exclusive access. void ExclusiveLock() EXCLUSIVE_LOCK_FUNCTION(); void WriterLock() EXCLUSIVE_LOCK_FUNCTION() { ExclusiveLock(); } // Release exclusive access. void ExclusiveUnlock() UNLOCK_FUNCTION(); void WriterUnlock() UNLOCK_FUNCTION() { ExclusiveUnlock(); } // Block until ReaderWriterMutex is free and acquire exclusive access. Returns true on success // or false if timeout is reached. #if HAVE_TIMED_RWLOCK bool ExclusiveLockWithTimeout(const timespec& abs_timeout) EXCLUSIVE_TRYLOCK_FUNCTION(true); #endif // Block until ReaderWriterMutex is shared or free then acquire a share on the access. void SharedLock() SHARED_LOCK_FUNCTION(); void ReaderLock() SHARED_LOCK_FUNCTION() { SharedLock(); } // Try to acquire share of ReaderWriterMutex. bool SharedTryLock() EXCLUSIVE_TRYLOCK_FUNCTION(true); // Release a share of the access. void SharedUnlock() UNLOCK_FUNCTION(); void ReaderUnlock() UNLOCK_FUNCTION() { SharedUnlock(); } // Is the current thread the exclusive holder of the ReaderWriterMutex. bool IsExclusiveHeld() const; // Assert the current thread has exclusive access to the ReaderWriterMutex. void AssertExclusiveHeld() { if (kDebugLocking) { CHECK(IsExclusiveHeld()); } } void AssertWriterHeld() { AssertExclusiveHeld(); } // Assert the current thread doesn't have exclusive access to the ReaderWriterMutex. void AssertNotExclusiveHeld() { if (kDebugLocking) { CHECK(!IsExclusiveHeld()); } } void AssertNotWriterHeld() { AssertNotExclusiveHeld(); } // Is the current thread a shared holder of the ReaderWriterMutex. bool IsSharedHeld() const; // Assert the current thread has shared access to the ReaderWriterMutex. void AssertSharedHeld() { if (kDebugLocking) { CHECK(IsSharedHeld()); } } void AssertReaderHeld() { AssertSharedHeld(); } // Assert the current thread doesn't hold this ReaderWriterMutex either in shared or exclusive // mode. void AssertNotHeld() { if (kDebugLocking) { CHECK(!IsSharedHeld()); } } // Id associated with exclusive owner. uint64_t GetExclusiveOwnerTid() const; private: pthread_rwlock_t rwlock_; friend class MutexTester; DISALLOW_COPY_AND_ASSIGN(ReaderWriterMutex); }; // ConditionVariables allow threads to queue and sleep. Threads may then be resumed individually // (Signal) or all at once (Broadcast). class ConditionVariable { public: explicit ConditionVariable(const std::string& name); ~ConditionVariable(); void Broadcast(); void Signal(); void Wait(Mutex& mutex); void TimedWait(Mutex& mutex, const timespec& ts); private: pthread_cond_t cond_; std::string name_; DISALLOW_COPY_AND_ASSIGN(ConditionVariable); }; // Scoped locker/unlocker for a regular Mutex that acquires mu upon construction and releases it // upon destruction. class SCOPED_LOCKABLE MutexLock { public: explicit MutexLock(Mutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) { mu_.ExclusiveLock(); } ~MutexLock() UNLOCK_FUNCTION() { mu_.ExclusiveUnlock(); } private: Mutex& mu_; DISALLOW_COPY_AND_ASSIGN(MutexLock); }; // Catch bug where variable name is omitted. "MutexLock (lock);" instead of "MutexLock mu(lock)". #define MutexLock(x) COMPILE_ASSERT(0, mutex_lock_declaration_missing_variable_name) // Scoped locker/unlocker for a ReaderWriterMutex that acquires read access to mu upon // construction and releases it upon destruction. class SCOPED_LOCKABLE ReaderMutexLock { public: explicit ReaderMutexLock(ReaderWriterMutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) { mu_.SharedLock(); } ~ReaderMutexLock() UNLOCK_FUNCTION() { mu_.SharedUnlock(); } private: ReaderWriterMutex& mu_; DISALLOW_COPY_AND_ASSIGN(ReaderMutexLock); }; // Catch bug where variable name is omitted. "ReaderMutexLock (lock);" instead of // "ReaderMutexLock mu(lock)". #define ReaderMutexLock(x) COMPILE_ASSERT(0, reader_mutex_lock_declaration_missing_variable_name) // Scoped locker/unlocker for a ReaderWriterMutex that acquires write access to mu upon // construction and releases it upon destruction. class SCOPED_LOCKABLE WriterMutexLock { public: explicit WriterMutexLock(ReaderWriterMutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) { mu_.ExclusiveLock(); } ~WriterMutexLock() UNLOCK_FUNCTION() { mu_.ExclusiveUnlock(); } private: ReaderWriterMutex& mu_; DISALLOW_COPY_AND_ASSIGN(WriterMutexLock); }; // Catch bug where variable name is omitted. "WriterMutexLock (lock);" instead of // "WriterMutexLock mu(lock)". #define WriterMutexLock(x) COMPILE_ASSERT(0, writer_mutex_lock_declaration_missing_variable_name) // Scoped unlocker/locker for a ReaderWriterMutex that releases read access to mu upon // construction and acquires it again upon destruction. class ReaderMutexUnlock { public: explicit ReaderMutexUnlock(ReaderWriterMutex& mu) UNLOCK_FUNCTION(mu) : mu_(mu) { mu_.SharedUnlock(); } ~ReaderMutexUnlock() SHARED_LOCK_FUNCTION(mu_) { mu_.SharedLock(); } private: ReaderWriterMutex& mu_; DISALLOW_COPY_AND_ASSIGN(ReaderMutexUnlock); }; // Catch bug where variable name is omitted. "ReaderMutexUnlock (lock);" instead of // "ReaderMutexUnlock mu(lock)". #define ReaderMutexUnlock(x) \ COMPILE_ASSERT(0, reader_mutex_unlock_declaration_missing_variable_name) } // namespace art #endif // ART_SRC_MUTEX_H_