/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "mark_sweep.h" #include #include #include "class_loader.h" #include "dex_cache.h" #include "heap.h" #include "indirect_reference_table.h" #include "intern_table.h" #include "logging.h" #include "macros.h" #include "mark_stack.h" #include "monitor.h" #include "object.h" #include "runtime.h" #include "space.h" #include "timing_logger.h" #include "thread.h" namespace art { MarkSweep::MarkSweep(MarkStack* mark_stack) : current_mark_bitmap_(NULL), mark_stack_(mark_stack), heap_(NULL), finger_(NULL), condemned_(NULL), soft_reference_list_(NULL), weak_reference_list_(NULL), finalizer_reference_list_(NULL), phantom_reference_list_(NULL), cleared_reference_list_(NULL), class_count_(0), array_count_(0), other_count_(0) { DCHECK(mark_stack_ != NULL); } void MarkSweep::Init() { heap_ = Runtime::Current()->GetHeap(); mark_stack_->Reset(); const Spaces& spaces = heap_->GetSpaces(); // TODO: C++0x auto for (Spaces::const_iterator cur = spaces.begin(); cur != spaces.end(); ++cur) { if ((*cur)->GetGcRetentionPolicy() == GCRP_ALWAYS_COLLECT) { current_mark_bitmap_ = (*cur)->GetMarkBitmap(); break; } } // TODO: if concurrent, enable card marking in compiler // TODO: check that the mark bitmap is entirely clear. } void MarkSweep::MarkObject0(const Object* obj, bool check_finger) { DCHECK(obj != NULL); SpaceBitmap* space_bitmap = NULL; // Try to take advantage of locality of references within a space, failing this find the space // the hard way. if (current_mark_bitmap_->HasAddress(obj)) { space_bitmap = current_mark_bitmap_; } else { space_bitmap = heap_->GetMarkBitmap()->GetSpaceBitmap(obj); } if (obj < condemned_) { DCHECK(IsMarked(obj)); return; } bool is_marked = space_bitmap->Test(obj); // This object was not previously marked. if (!is_marked) { space_bitmap->Set(obj); if (check_finger && obj < finger_) { // The object must be pushed on to the mark stack. mark_stack_->Push(obj); } } } // Used to mark objects when recursing. Recursion is done by moving // the finger across the bitmaps in address order and marking child // objects. Any newly-marked objects whose addresses are lower than // the finger won't be visited by the bitmap scan, so those objects // need to be added to the mark stack. void MarkSweep::MarkObject(const Object* obj) { if (obj != NULL) { MarkObject0(obj, true); } } void MarkSweep::MarkObjectVisitor(const Object* root, void* arg) { DCHECK(root != NULL); DCHECK(arg != NULL); MarkSweep* mark_sweep = reinterpret_cast(arg); DCHECK(mark_sweep->finger_ == NULL); // no point to check finger if it is NULL mark_sweep->MarkObject0(root, false); } void MarkSweep::ReMarkObjectVisitor(const Object* root, void* arg) { DCHECK(root != NULL); DCHECK(arg != NULL); MarkSweep* mark_sweep = reinterpret_cast(arg); mark_sweep->MarkObject0(root, true); } // Marks all objects in the root set. void MarkSweep::MarkRoots() { Runtime::Current()->VisitRoots(MarkObjectVisitor, this); } class CheckObjectVisitor { public: CheckObjectVisitor(MarkSweep* const mark_sweep) : mark_sweep_(mark_sweep) { } void operator ()(const Object* obj, const Object* ref, MemberOffset offset, bool is_static) const SHARED_LOCKS_REQUIRED(GlobalSynchronization::heap_bitmap_lock_, GlobalSynchronization::mutator_lock_) { mark_sweep_->CheckReference(obj, ref, offset, is_static); } private: MarkSweep* const mark_sweep_; }; void MarkSweep::CheckObject(const Object* obj) { DCHECK(obj != NULL); CheckObjectVisitor visitor(this); VisitObjectReferences(obj, visitor); } void MarkSweep::VerifyImageRootVisitor(Object* root, void* arg) { DCHECK(root != NULL); DCHECK(arg != NULL); MarkSweep* mark_sweep = reinterpret_cast(arg); DCHECK(mark_sweep->heap_->GetMarkBitmap()->Test(root)); mark_sweep->CheckObject(root); } void MarkSweep::CopyMarkBits() { const std::vector& spaces = heap_->GetSpaces(); for (size_t i = 0; i < spaces.size(); ++i) { Space* space = spaces[i]; if (space->GetGcRetentionPolicy() == GCRP_FULL_COLLECT) { SpaceBitmap* live_bitmap = space->GetLiveBitmap(); SpaceBitmap* mark_bitmap = space->GetMarkBitmap(); DCHECK_EQ(live_bitmap->Size(), mark_bitmap->Size()); std::copy(live_bitmap->Begin(), live_bitmap->Begin() + live_bitmap->Size() / kWordSize, mark_bitmap->Begin()); } } } class ScanImageRootVisitor { public: ScanImageRootVisitor(MarkSweep* const mark_sweep) : mark_sweep_(mark_sweep) { } void operator ()(const Object* root) const EXCLUSIVE_LOCKS_REQUIRED(GlobalSynchronization::heap_bitmap_lock_) SHARED_LOCKS_REQUIRED(GlobalSynchronization::mutator_lock_) { DCHECK(root != NULL); mark_sweep_->ScanObject(root); } private: MarkSweep* const mark_sweep_; }; // Marks all objects that are in images and have been touched by the mutator void MarkSweep::ScanDirtyImageRoots() { const std::vector& spaces = heap_->GetSpaces(); CardTable* card_table = heap_->GetCardTable(); ScanImageRootVisitor image_root_visitor(this); for (size_t i = 0; i < spaces.size(); ++i) { Space* space = spaces[i]; if (space->IsImageSpace()) { card_table->Scan(space->GetLiveBitmap(), space->Begin(), space->End(), image_root_visitor); } } } void MarkSweep::ScanBitmapCallback(Object* obj, void* finger, void* arg) { MarkSweep* mark_sweep = reinterpret_cast(arg); mark_sweep->finger_ = reinterpret_cast(finger); mark_sweep->ScanObject(obj); } void MarkSweep::ScanDirtyCardCallback(Object* obj, void* arg) { MarkSweep* mark_sweep = reinterpret_cast(arg); mark_sweep->ScanObject(obj); } void MarkSweep::ScanGrayObjects() { const std::vector& spaces = heap_->GetSpaces(); CardTable* card_table = heap_->GetCardTable(); ScanImageRootVisitor image_root_visitor(this); for (size_t i = 0; i < spaces.size(); ++i) { byte* begin = spaces[i]->Begin(); byte* end = spaces[i]->End(); // Image spaces are handled properly since live == marked for them. card_table->Scan(spaces[i]->GetMarkBitmap(), begin, end, image_root_visitor); } } class CheckBitmapVisitor { public: CheckBitmapVisitor(MarkSweep* mark_sweep) : mark_sweep_(mark_sweep) { } void operator ()(const Object* obj) const SHARED_LOCKS_REQUIRED(GlobalSynchronization::heap_bitmap_lock_, GlobalSynchronization::mutator_lock_) { DCHECK(obj != NULL); mark_sweep_->CheckObject(obj); } private: MarkSweep* mark_sweep_; }; void MarkSweep::VerifyImageRoots() { // Verify roots ensures that all the references inside the image space point // objects which are either in the image space or marked objects in the alloc // space #ifndef NDEBUG CheckBitmapVisitor visitor(this); const Spaces& spaces = heap_->GetSpaces(); for (Spaces::const_iterator it = spaces.begin(); it != spaces.end(); ++it) { const Space* space = *it; if (space->IsImageSpace()) { uintptr_t begin = reinterpret_cast(space->Begin()); uintptr_t end = reinterpret_cast(space->End()); SpaceBitmap* live_bitmap = space->GetLiveBitmap(); DCHECK(live_bitmap != NULL); live_bitmap->VisitMarkedRange(begin, end, visitor); } } #endif } // Populates the mark stack based on the set of marked objects and // recursively marks until the mark stack is emptied. void MarkSweep::RecursiveMark(bool partial) { // RecursiveMark will build the lists of known instances of the Reference classes. // See DelayReferenceReferent for details. CHECK(soft_reference_list_ == NULL); CHECK(weak_reference_list_ == NULL); CHECK(finalizer_reference_list_ == NULL); CHECK(phantom_reference_list_ == NULL); CHECK(cleared_reference_list_ == NULL); void* arg = reinterpret_cast(this); const Spaces& spaces = heap_->GetSpaces(); for (size_t i = 0; i < spaces.size(); ++i) { Space* space = spaces[i]; if (space->GetGcRetentionPolicy() == GCRP_ALWAYS_COLLECT || (!partial && space->GetGcRetentionPolicy() == GCRP_FULL_COLLECT) ) { uintptr_t begin = reinterpret_cast(space->Begin()); uintptr_t end = reinterpret_cast(space->End()); current_mark_bitmap_ = space->GetMarkBitmap(); current_mark_bitmap_->ScanWalk(begin, end, &ScanBitmapCallback, arg); } } finger_ = reinterpret_cast(~0); // TODO: tune the frequency of emptying the mark stack ProcessMarkStack(); } void MarkSweep::RecursiveMarkDirtyObjects() { ScanGrayObjects(); ProcessMarkStack(); } void MarkSweep::ReMarkRoots() { Runtime::Current()->VisitRoots(ReMarkObjectVisitor, this); } void MarkSweep::SweepJniWeakGlobals(HeapBitmap* bitmap) { JavaVMExt* vm = Runtime::Current()->GetJavaVM(); MutexLock mu(vm->weak_globals_lock); IndirectReferenceTable* table = &vm->weak_globals; typedef IndirectReferenceTable::iterator It; // TODO: C++0x auto for (It it = table->begin(), end = table->end(); it != end; ++it) { const Object** entry = *it; if (!bitmap->Test(*entry)) { *entry = kClearedJniWeakGlobal; } } } void MarkSweep::SweepSystemWeaks(bool swap_bitmaps) { Runtime* runtime = Runtime::Current(); runtime->GetInternTable()->SweepInternTableWeaks(swap_bitmaps ? IsLiveCallback : IsMarkedCallback, this); runtime->GetMonitorList()->SweepMonitorList(swap_bitmaps ? IsLiveCallback : IsMarkedCallback, this); SweepJniWeakGlobals(swap_bitmaps ? GetHeap()->GetLiveBitmap() : GetHeap()->GetMarkBitmap()); } struct SweepCallbackContext { Heap* heap; AllocSpace* space; }; void MarkSweep::SweepCallback(size_t num_ptrs, Object** ptrs, void* arg) { GlobalSynchronization::heap_bitmap_lock_->AssertExclusiveHeld(); size_t freed_objects = num_ptrs; size_t freed_bytes = 0; SweepCallbackContext* context = static_cast(arg); Heap* heap = context->heap; AllocSpace* space = context->space; // Use a bulk free, that merges consecutive objects before freeing or free per object? // Documentation suggests better free performance with merging, but this may be at the expensive // of allocation. // TODO: investigate performance static const bool kUseFreeList = true; if (kUseFreeList) { for (size_t i = 0; i < num_ptrs; ++i) { Object* obj = static_cast(ptrs[i]); freed_bytes += space->AllocationSize(obj); } // AllocSpace::FreeList clears the value in ptrs, so perform after clearing the live bit space->FreeList(num_ptrs, ptrs); } else { for (size_t i = 0; i < num_ptrs; ++i) { Object* obj = static_cast(ptrs[i]); freed_bytes += space->AllocationSize(obj); space->Free(obj); } } heap->RecordFree(freed_objects, freed_bytes); } void MarkSweep::ZygoteSweepCallback(size_t num_ptrs, Object** ptrs, void* arg) { GlobalSynchronization::heap_bitmap_lock_->AssertExclusiveHeld(); SweepCallbackContext* context = static_cast(arg); Heap* heap = context->heap; // We don't free any actual memory to avoid dirtying the shared zygote pages. for (size_t i = 0; i < num_ptrs; ++i) { Object* obj = static_cast(ptrs[i]); heap->GetLiveBitmap()->Clear(obj); heap->GetCardTable()->MarkCard(obj); } } void MarkSweep::Sweep(bool partial) { // If we don't swap bitmaps then we can not do this concurrently. SweepSystemWeaks(true); DCHECK(mark_stack_->IsEmpty()); const Spaces& spaces = heap_->GetSpaces(); SweepCallbackContext scc; scc.heap = heap_; for (size_t i = 0; i < spaces.size(); ++i) { Space* space = spaces[i]; if ( space->GetGcRetentionPolicy() == GCRP_ALWAYS_COLLECT || (!partial && space->GetGcRetentionPolicy() == GCRP_FULL_COLLECT) ) { uintptr_t begin = reinterpret_cast(space->Begin()); uintptr_t end = reinterpret_cast(space->End()); scc.space = space->AsAllocSpace(); SpaceBitmap* live_bitmap = space->GetLiveBitmap(); SpaceBitmap* mark_bitmap = space->GetMarkBitmap(); if (space->GetGcRetentionPolicy() == GCRP_ALWAYS_COLLECT) { // Bitmaps are pre-swapped for optimization which enables sweeping with the heap unlocked. SpaceBitmap::SweepWalk( *mark_bitmap, *live_bitmap, begin, end, &SweepCallback, reinterpret_cast(&scc)); } else { // Zygote sweep takes care of dirtying cards and clearing live bits, does not free actual memory. SpaceBitmap::SweepWalk( *live_bitmap, *mark_bitmap, begin, end, &ZygoteSweepCallback, reinterpret_cast(&scc)); } } } } // Scans instance fields. inline void MarkSweep::ScanInstanceFields(const Object* obj) { DCHECK(obj != NULL); Class* klass = obj->GetClass(); DCHECK(klass != NULL); ScanFields(obj, klass->GetReferenceInstanceOffsets(), false); } // Scans static storage on a Class. inline void MarkSweep::ScanStaticFields(const Class* klass) { DCHECK(klass != NULL); ScanFields(klass, klass->GetReferenceStaticOffsets(), true); } inline void MarkSweep::ScanFields(const Object* obj, uint32_t ref_offsets, bool is_static) { if (ref_offsets != CLASS_WALK_SUPER) { // Found a reference offset bitmap. Mark the specified offsets. while (ref_offsets != 0) { size_t right_shift = CLZ(ref_offsets); MemberOffset byte_offset = CLASS_OFFSET_FROM_CLZ(right_shift); const Object* ref = obj->GetFieldObject(byte_offset, false); MarkObject(ref); ref_offsets &= ~(CLASS_HIGH_BIT >> right_shift); } } else { // There is no reference offset bitmap. In the non-static case, // walk up the class inheritance hierarchy and find reference // offsets the hard way. In the static case, just consider this // class. for (const Class* klass = is_static ? obj->AsClass() : obj->GetClass(); klass != NULL; klass = is_static ? NULL : klass->GetSuperClass()) { size_t num_reference_fields = (is_static ? klass->NumReferenceStaticFields() : klass->NumReferenceInstanceFields()); for (size_t i = 0; i < num_reference_fields; ++i) { Field* field = (is_static ? klass->GetStaticField(i) : klass->GetInstanceField(i)); MemberOffset field_offset = field->GetOffset(); const Object* ref = obj->GetFieldObject(field_offset, false); MarkObject(ref); } } } } void MarkSweep::CheckReference(const Object* obj, const Object* ref, MemberOffset offset, bool is_static) { const Spaces& spaces = heap_->GetSpaces(); // TODO: C++0x auto for (Spaces::const_iterator cur = spaces.begin(); cur != spaces.end(); ++cur) { if ((*cur)->IsAllocSpace() && (*cur)->Contains(ref)) { DCHECK(IsMarked(obj)); bool is_marked = IsMarked(ref); if (!is_marked) { LOG(INFO) << **cur; LOG(WARNING) << (is_static ? "Static ref'" : "Instance ref'") << PrettyTypeOf(ref) << "' (" << reinterpret_cast(ref) << ") in '" << PrettyTypeOf(obj) << "' (" << reinterpret_cast(obj) << ") at offset " << reinterpret_cast(offset.Int32Value()) << " wasn't marked"; const Class* klass = is_static ? obj->AsClass() : obj->GetClass(); DCHECK(klass != NULL); const ObjectArray* fields = is_static ? klass->GetSFields() : klass->GetIFields(); DCHECK(fields != NULL); bool found = false; for (int32_t i = 0; i < fields->GetLength(); ++i) { const Field* cur = fields->Get(i); if (cur->GetOffset().Int32Value() == offset.Int32Value()) { LOG(WARNING) << "Field referencing the alloc space was " << PrettyField(cur); found = true; break; } } if (!found) { LOG(WARNING) << "Could not find field in object alloc space with offset " << offset.Int32Value(); } bool obj_marked = heap_->GetCardTable()->IsDirty(obj); if (!obj_marked) { LOG(WARNING) << "Object '" << PrettyTypeOf(obj) << "' " << "(" << reinterpret_cast(obj) << ") contains references to " << "the alloc space, but wasn't card marked"; } } } break; } } // Scans the header, static field references, and interface pointers // of a class object. inline void MarkSweep::ScanClass(const Object* obj) { #ifndef NDEBUG ++class_count_; #endif ScanInstanceFields(obj); ScanStaticFields(obj->AsClass()); } // Scans the header of all array objects. If the array object is // specialized to a reference type, scans the array data as well. inline void MarkSweep::ScanArray(const Object* obj) { #ifndef NDEBUG ++array_count_; #endif MarkObject(obj->GetClass()); if (obj->IsObjectArray()) { const ObjectArray* array = obj->AsObjectArray(); for (int32_t i = 0; i < array->GetLength(); ++i) { const Object* element = array->GetWithoutChecks(i); MarkObject(element); } } } // Process the "referent" field in a java.lang.ref.Reference. If the // referent has not yet been marked, put it on the appropriate list in // the gcHeap for later processing. void MarkSweep::DelayReferenceReferent(Object* obj) { DCHECK(obj != NULL); Class* klass = obj->GetClass(); DCHECK(klass != NULL); DCHECK(klass->IsReferenceClass()); Object* pending = obj->GetFieldObject(heap_->GetReferencePendingNextOffset(), false); Object* referent = heap_->GetReferenceReferent(obj); if (pending == NULL && referent != NULL && !IsMarked(referent)) { Object** list = NULL; if (klass->IsSoftReferenceClass()) { list = &soft_reference_list_; } else if (klass->IsWeakReferenceClass()) { list = &weak_reference_list_; } else if (klass->IsFinalizerReferenceClass()) { list = &finalizer_reference_list_; } else if (klass->IsPhantomReferenceClass()) { list = &phantom_reference_list_; } DCHECK(list != NULL) << PrettyClass(klass) << " " << std::hex << klass->GetAccessFlags(); heap_->EnqueuePendingReference(obj, list); } } // Scans the header and field references of a data object. If the // scanned object is a reference subclass, it is scheduled for later // processing. inline void MarkSweep::ScanOther(const Object* obj) { #ifndef NDEBUG ++other_count_; #endif ScanInstanceFields(obj); if (obj->GetClass()->IsReferenceClass()) { DelayReferenceReferent(const_cast(obj)); } } // Scans an object reference. Determines the type of the reference // and dispatches to a specialized scanning routine. void MarkSweep::ScanObject(const Object* obj) { DCHECK(obj != NULL); DCHECK(obj->GetClass() != NULL); DCHECK(heap_->GetMarkBitmap()->Test(obj)); if (obj->IsClass()) { ScanClass(obj); } else if (obj->IsArrayInstance()) { ScanArray(obj); } else { ScanOther(obj); } } // Scan anything that's on the mark stack. void MarkSweep::ProcessMarkStack() { while (!mark_stack_->IsEmpty()) { const Object* obj = mark_stack_->Pop(); DCHECK(obj != NULL); ScanObject(obj); } } // Walks the reference list marking any references subject to the // reference clearing policy. References with a black referent are // removed from the list. References with white referents biased // toward saving are blackened and also removed from the list. void MarkSweep::PreserveSomeSoftReferences(Object** list) { DCHECK(list != NULL); Object* clear = NULL; size_t counter = 0; DCHECK(mark_stack_->IsEmpty()); while (*list != NULL) { Object* ref = heap_->DequeuePendingReference(list); Object* referent = heap_->GetReferenceReferent(ref); if (referent == NULL) { // Referent was cleared by the user during marking. continue; } bool is_marked = IsMarked(referent); if (!is_marked && ((++counter) & 1)) { // Referent is white and biased toward saving, mark it. MarkObject(referent); is_marked = true; } if (!is_marked) { // Referent is white, queue it for clearing. heap_->EnqueuePendingReference(ref, &clear); } } *list = clear; // Restart the mark with the newly black references added to the // root set. ProcessMarkStack(); } // Unlink the reference list clearing references objects with white // referents. Cleared references registered to a reference queue are // scheduled for appending by the heap worker thread. void MarkSweep::ClearWhiteReferences(Object** list) { DCHECK(list != NULL); while (*list != NULL) { Object* ref = heap_->DequeuePendingReference(list); Object* referent = heap_->GetReferenceReferent(ref); if (referent != NULL && !IsMarked(referent)) { // Referent is white, clear it. heap_->ClearReferenceReferent(ref); if (heap_->IsEnqueuable(ref)) { heap_->EnqueueReference(ref, &cleared_reference_list_); } } } DCHECK(*list == NULL); } // Enqueues finalizer references with white referents. White // referents are blackened, moved to the zombie field, and the // referent field is cleared. void MarkSweep::EnqueueFinalizerReferences(Object** list) { DCHECK(list != NULL); MemberOffset zombie_offset = heap_->GetFinalizerReferenceZombieOffset(); bool has_enqueued = false; while (*list != NULL) { Object* ref = heap_->DequeuePendingReference(list); Object* referent = heap_->GetReferenceReferent(ref); if (referent != NULL && !IsMarked(referent)) { MarkObject(referent); // If the referent is non-null the reference must queuable. DCHECK(heap_->IsEnqueuable(ref)); ref->SetFieldObject(zombie_offset, referent, false); heap_->ClearReferenceReferent(ref); heap_->EnqueueReference(ref, &cleared_reference_list_); has_enqueued = true; } } if (has_enqueued) { ProcessMarkStack(); } DCHECK(*list == NULL); } // Process reference class instances and schedule finalizations. void MarkSweep::ProcessReferences(Object** soft_references, bool clear_soft, Object** weak_references, Object** finalizer_references, Object** phantom_references) { DCHECK(soft_references != NULL); DCHECK(weak_references != NULL); DCHECK(finalizer_references != NULL); DCHECK(phantom_references != NULL); // Unless we are in the zygote or required to clear soft references // with white references, preserve some white referents. if (!clear_soft && !Runtime::Current()->IsZygote()) { PreserveSomeSoftReferences(soft_references); } // Clear all remaining soft and weak references with white // referents. ClearWhiteReferences(soft_references); ClearWhiteReferences(weak_references); // Preserve all white objects with finalize methods and schedule // them for finalization. EnqueueFinalizerReferences(finalizer_references); // Clear all f-reachable soft and weak references with white // referents. ClearWhiteReferences(soft_references); ClearWhiteReferences(weak_references); // Clear all phantom references with white referents. ClearWhiteReferences(phantom_references); // At this point all reference lists should be empty. DCHECK(*soft_references == NULL); DCHECK(*weak_references == NULL); DCHECK(*finalizer_references == NULL); DCHECK(*phantom_references == NULL); } MarkSweep::~MarkSweep() { #ifndef NDEBUG VLOG(heap) << "MarkSweep scanned classes=" << class_count_ << " arrays=" << array_count_ << " other=" << other_count_; #endif // Clear all of the alloc spaces' mark bitmaps. const Spaces& spaces = heap_->GetSpaces(); // TODO: C++0x auto for (Spaces::const_iterator cur = spaces.begin(); cur != spaces.end(); ++cur) { if ((*cur)->GetGcRetentionPolicy() != GCRP_NEVER_COLLECT) { (*cur)->GetMarkBitmap()->Clear(); } } mark_stack_->Reset(); } } // namespace art