/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "jni_internal.h" #include "object.h" #include "JniConstants.h" // Last to avoid problems with LOG redefinition. /* * We make guarantees about the atomicity of accesses to primitive * variables. These guarantees also apply to elements of arrays. * In particular, 8-bit, 16-bit, and 32-bit accesses must be atomic and * must not cause "word tearing". Accesses to 64-bit array elements must * either be atomic or treated as two 32-bit operations. References are * always read and written atomically, regardless of the number of bits * used to represent them. * * We can't rely on standard libc functions like memcpy(3) and memmove(3) * in our implementation of System.arraycopy, because they may copy * byte-by-byte (either for the full run or for "unaligned" parts at the * start or end). We need to use functions that guarantee 16-bit or 32-bit * atomicity as appropriate. * * System.arraycopy() is heavily used, so having an efficient implementation * is important. The bionic libc provides a platform-optimized memory move * function that should be used when possible. If it's not available, * the trivial "reference implementation" versions below can be used until * a proper version can be written. * * For these functions, The caller must guarantee that dst/src are aligned * appropriately for the element type, and that n is a multiple of the * element size. */ #ifdef __BIONIC__ #define HAVE_MEMMOVE_WORDS #endif #ifdef HAVE_MEMMOVE_WORDS extern "C" void _memmove_words(void* dst, const void* src, size_t n); #define move16 _memmove_words #define move32 _memmove_words #else static void move16(void* dst, const void* src, size_t n) { DCHECK_EQ((((uintptr_t) dst | (uintptr_t) src | n) & 0x01), 0U); uint16_t* d = reinterpret_cast(dst); const uint16_t* s = reinterpret_cast(src); n /= sizeof(uint16_t); if (d < s) { // Copy forwards. while (n--) { *d++ = *s++; } } else { // Copy backwards. d += n; s += n; while (n--) { *--d = *--s; } } } static void move32(void* dst, const void* src, size_t n) { DCHECK_EQ((((uintptr_t) dst | (uintptr_t) src | n) & 0x03), 0U); uint32_t* d = reinterpret_cast(dst); const uint32_t* s = reinterpret_cast(src); n /= sizeof(uint32_t); if (d < s) { // Copy forwards. while (n--) { *d++ = *s++; } } else { // Copy backwards. d += n; s += n; while (n--) { *--d = *--s; } } } #endif // HAVE_MEMMOVE_WORDS namespace art { namespace { void ThrowArrayStoreException_NotAnArray(const char* identifier, Object* array) { std::string actualType(PrettyTypeOf(array)); Thread::Current()->ThrowNewExceptionF("Ljava/lang/ArrayStoreException;", "%s of type %s is not an array", identifier, actualType.c_str()); } void System_arraycopy(JNIEnv* env, jclass, jobject javaSrc, jint srcPos, jobject javaDst, jint dstPos, jint length) { ScopedThreadStateChange tsc(Thread::Current(), Thread::kRunnable); Thread* self = Thread::Current(); // Null pointer checks. if (javaSrc == NULL) { self->ThrowNewException("Ljava/lang/NullPointerException;", "src == null"); return; } if (javaDst == NULL) { self->ThrowNewException("Ljava/lang/NullPointerException;", "dst == null"); return; } // Make sure source and destination are both arrays. Object* srcObject = Decode(env, javaSrc); Object* dstObject = Decode(env, javaDst); if (!srcObject->IsArrayInstance()) { ThrowArrayStoreException_NotAnArray("source", srcObject); return; } if (!dstObject->IsArrayInstance()) { ThrowArrayStoreException_NotAnArray("destination", dstObject); return; } Array* srcArray = srcObject->AsArray(); Array* dstArray = dstObject->AsArray(); Class* srcComponentType = srcArray->GetClass()->GetComponentType(); Class* dstComponentType = dstArray->GetClass()->GetComponentType(); // Bounds checking. if (srcPos < 0 || dstPos < 0 || length < 0 || srcPos > srcArray->GetLength() - length || dstPos > dstArray->GetLength() - length) { self->ThrowNewExceptionF("Ljava/lang/ArrayIndexOutOfBoundsException;", "src.length=%d srcPos=%d dst.length=%d dstPos=%d length=%d", srcArray->GetLength(), srcPos, dstArray->GetLength(), dstPos, length); return; } // Handle primitive arrays. if (srcComponentType->IsPrimitive() || dstComponentType->IsPrimitive()) { // If one of the arrays holds a primitive type the other array must hold the exact same type. if (srcComponentType->IsPrimitive() != dstComponentType->IsPrimitive() || srcComponentType != dstComponentType) { std::string srcType(PrettyTypeOf(srcArray)); std::string dstType(PrettyTypeOf(dstArray)); self->ThrowNewExceptionF("Ljava/lang/ArrayStoreException;", "Incompatible types: src=%s, dst=%s", srcType.c_str(), dstType.c_str()); return; } size_t width = srcArray->GetClass()->GetComponentSize(); uint8_t* dstBytes = reinterpret_cast(dstArray->GetRawData(width)); const uint8_t* srcBytes = reinterpret_cast(srcArray->GetRawData(width)); switch (width) { case 1: memmove(dstBytes + dstPos, srcBytes + srcPos, length); break; case 2: move16(dstBytes + dstPos * 2, srcBytes + srcPos * 2, length * 2); break; case 4: move32(dstBytes + dstPos * 4, srcBytes + srcPos * 4, length * 4); break; case 8: // We don't need to guarantee atomicity of the entire 64-bit word. move32(dstBytes + dstPos * 8, srcBytes + srcPos * 8, length * 8); break; default: LOG(FATAL) << "Unknown primitive array type: " << PrettyTypeOf(srcArray); } return; } // Neither class is primitive. Are the types trivially compatible? const size_t width = sizeof(Object*); uint8_t* dstBytes = reinterpret_cast(dstArray->GetRawData(width)); const uint8_t* srcBytes = reinterpret_cast(srcArray->GetRawData(width)); if (dstArray == srcArray || dstComponentType->IsAssignableFrom(srcComponentType)) { // Yes. Bulk copy. COMPILE_ASSERT(sizeof(width) == sizeof(uint32_t), move32_assumes_Object_references_are_32_bit); move32(dstBytes + dstPos * width, srcBytes + srcPos * width, length * width); Heap::WriteBarrierArray(dstArray, dstPos, length); return; } // The arrays are not trivially compatible. However, we may still be able to copy some or all of // the elements if the source objects are compatible (for example, copying an Object[] to // String[], the Objects being copied might actually be Strings). // We can't do a bulk move because that would introduce a check-use race condition, so we copy // elements one by one. // We already dealt with overlapping copies, so we don't need to cope with that case below. CHECK_NE(dstArray, srcArray); Object* const * srcObjects = reinterpret_cast(srcBytes + srcPos * width); Object** dstObjects = reinterpret_cast(dstBytes + dstPos * width); Class* dstClass = dstArray->GetClass()->GetComponentType(); // We want to avoid redundant IsAssignableFrom checks where possible, so we cache a class that // we know is assignable to the destination array's component type. Class* lastAssignableElementClass = dstClass; Object* o = NULL; int i = 0; for (; i < length; ++i) { o = srcObjects[i]; if (o != NULL) { Class* oClass = o->GetClass(); if (lastAssignableElementClass == oClass) { dstObjects[i] = o; } else if (dstClass->IsAssignableFrom(oClass)) { lastAssignableElementClass = oClass; dstObjects[i] = o; } else { // Can't put this element into the array. break; } } else { dstObjects[i] = NULL; } } Heap::WriteBarrierArray(dstArray, dstPos, length); if (i != length) { std::string actualSrcType(PrettyTypeOf(o)); std::string dstType(PrettyTypeOf(dstArray)); self->ThrowNewExceptionF("Ljava/lang/ArrayStoreException;", "source[%d] of type %s cannot be stored in destination array of type %s", srcPos + i, actualSrcType.c_str(), dstType.c_str()); return; } } jint System_identityHashCode(JNIEnv* env, jclass, jobject javaObject) { Object* o = Decode(env, javaObject); return static_cast(reinterpret_cast(o)); } JNINativeMethod gMethods[] = { NATIVE_METHOD(System, arraycopy, "(Ljava/lang/Object;ILjava/lang/Object;II)V"), NATIVE_METHOD(System, identityHashCode, "(Ljava/lang/Object;)I"), }; } // namespace void register_java_lang_System(JNIEnv* env) { jniRegisterNativeMethods(env, "java/lang/System", gMethods, NELEM(gMethods)); } } // namespace art