/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "heap_bitmap.h" #include #include "UniquePtr.h" #include "logging.h" #include "utils.h" namespace art { HeapBitmap* HeapBitmap::Create(const char* name, byte* heap_begin, size_t heap_capacity) { CHECK(heap_begin != NULL); size_t bitmap_size = HB_OFFSET_TO_INDEX(heap_capacity) * kWordSize; UniquePtr mem_map(MemMap::MapAnonymous(name, NULL, bitmap_size, PROT_READ | PROT_WRITE)); if (mem_map.get() == NULL) { LOG(ERROR) << "Failed to allocate bitmap " << name; return NULL; } word* bitmap_begin = reinterpret_cast(mem_map->Begin()); return new HeapBitmap(name, mem_map.release(), bitmap_begin, bitmap_size, heap_begin); } // Clean up any resources associated with the bitmap. HeapBitmap::~HeapBitmap() {} // Fill the bitmap with zeroes. Returns the bitmap's memory to the // system as a side-effect. void HeapBitmap::Clear() { if (bitmap_begin_ != NULL) { // This returns the memory to the system. Successive page faults // will return zeroed memory. int result = madvise(bitmap_begin_, bitmap_size_, MADV_DONTNEED); if (result == -1) { PLOG(WARNING) << "madvise failed"; } heap_end_ = heap_begin_ - 1; } } // Return true iff is within the range of pointers that this bitmap could potentially cover, // even if a bit has not been set for it. bool HeapBitmap::HasAddress(const void* obj) const { if (obj != NULL) { const uintptr_t offset = (uintptr_t)obj - heap_begin_; const size_t index = HB_OFFSET_TO_INDEX(offset); return index < bitmap_size_ / kWordSize; } return false; } void HeapBitmap::VisitRange(uintptr_t visit_begin, uintptr_t visit_end, Callback* visitor, void* arg) const { size_t start = HB_OFFSET_TO_INDEX(visit_begin - heap_begin_); size_t end = HB_OFFSET_TO_INDEX(visit_end - heap_begin_ - 1); for (size_t i = start; i <= end; i++) { word w = bitmap_begin_[i]; if (w != 0) { word high_bit = 1 << (kBitsPerWord - 1); uintptr_t ptr_base = HB_INDEX_TO_OFFSET(i) + heap_begin_; while (w != 0) { const int shift = CLZ(w); Object* obj = reinterpret_cast(ptr_base + shift * kAlignment); (*visitor)(obj, arg); w &= ~(high_bit >> shift); } } } } // Visits set bits in address order. The callback is not permitted to // change the bitmap bits or max during the traversal. void HeapBitmap::Walk(HeapBitmap::Callback* callback, void* arg) { CHECK(bitmap_begin_ != NULL); CHECK(callback != NULL); if (heap_end_ < heap_begin_) { return; // Bitmap is empty. } uintptr_t end = HB_OFFSET_TO_INDEX(heap_end_ - heap_begin_); for (uintptr_t i = 0; i <= end; ++i) { word w = bitmap_begin_[i]; if (UNLIKELY(w != 0)) { word high_bit = 1 << (kBitsPerWord - 1); uintptr_t ptr_base = HB_INDEX_TO_OFFSET(i) + heap_begin_; while (w != 0) { const int shift = CLZ(w); Object* obj = reinterpret_cast(ptr_base + shift * kAlignment); (*callback)(obj, arg); w &= ~(high_bit >> shift); } } } } // Similar to Walk but the callback routine is permitted to change the bitmap bits and end during // traversal. Used by the the root marking scan exclusively. // // The callback is invoked with a finger argument. The finger is a pointer to an address not yet // visited by the traversal. If the callback sets a bit for an address at or above the finger, this // address will be visited by the traversal. If the callback sets a bit for an address below the // finger, this address will not be visited (typiscally such an address would be placed on the // marking stack). void HeapBitmap::ScanWalk(uintptr_t scan_begin, uintptr_t scan_end, ScanCallback* callback, void* arg) { CHECK(bitmap_begin_ != NULL); CHECK(callback != NULL); CHECK_LE(scan_begin, scan_end); CHECK_GE(scan_begin, heap_begin_); size_t start = HB_OFFSET_TO_INDEX(scan_begin - heap_begin_); if (scan_end < heap_end_) { // The end of the space we're looking at is before the current maximum bitmap PC, scan to that // and don't recompute end on each iteration size_t end = HB_OFFSET_TO_INDEX(scan_end - heap_begin_ - 1); for (size_t i = start; i <= end; i++) { word w = bitmap_begin_[i]; if (UNLIKELY(w != 0)) { word high_bit = 1 << (kBitsPerWord - 1); uintptr_t ptr_base = HB_INDEX_TO_OFFSET(i) + heap_begin_; void* finger = reinterpret_cast(HB_INDEX_TO_OFFSET(i + 1) + heap_begin_); while (w != 0) { const int shift = CLZ(w); Object* obj = reinterpret_cast(ptr_base + shift * kAlignment); (*callback)(obj, finger, arg); w &= ~(high_bit >> shift); } } } } else { size_t end = HB_OFFSET_TO_INDEX(heap_end_ - heap_begin_); for (size_t i = start; i <= end; i++) { word w = bitmap_begin_[i]; if (UNLIKELY(w != 0)) { word high_bit = 1 << (kBitsPerWord - 1); uintptr_t ptr_base = HB_INDEX_TO_OFFSET(i) + heap_begin_; void* finger = reinterpret_cast(HB_INDEX_TO_OFFSET(i + 1) + heap_begin_); while (w != 0) { const int shift = CLZ(w); Object* obj = reinterpret_cast(ptr_base + shift * kAlignment); (*callback)(obj, finger, arg); w &= ~(high_bit >> shift); } } // update 'end' in case callback modified bitmap end = HB_OFFSET_TO_INDEX(heap_end_ - heap_begin_); } } } // Walk through the bitmaps in increasing address order, and find the // object pointers that correspond to garbage objects. Call // zero or more times with lists of these object pointers. // // The callback is not permitted to increase the max of either bitmap. void HeapBitmap::SweepWalk(const HeapBitmap& live_bitmap, const HeapBitmap& mark_bitmap, uintptr_t sweep_begin, uintptr_t sweep_end, HeapBitmap::SweepCallback* callback, void* arg) { CHECK(live_bitmap.bitmap_begin_ != NULL); CHECK(mark_bitmap.bitmap_begin_ != NULL); CHECK_EQ(live_bitmap.heap_begin_, mark_bitmap.heap_begin_); CHECK_EQ(live_bitmap.bitmap_size_, mark_bitmap.bitmap_size_); CHECK(callback != NULL); CHECK_LE(sweep_begin, sweep_end); CHECK_GE(sweep_begin, live_bitmap.heap_begin_); sweep_end = std::min(sweep_end - 1, live_bitmap.heap_end_); if (live_bitmap.heap_end_ < live_bitmap.heap_begin_) { // Easy case; both are obviously empty. // TODO: this should never happen return; } // TODO: rewrite the callbacks to accept a std::vector rather than a Object**? std::vector pointer_buf(4 * kBitsPerWord); Object** pb = &pointer_buf[0]; size_t start = HB_OFFSET_TO_INDEX(sweep_begin - live_bitmap.heap_begin_); size_t end = HB_OFFSET_TO_INDEX(sweep_end - live_bitmap.heap_begin_); word* live = live_bitmap.bitmap_begin_; word* mark = mark_bitmap.bitmap_begin_; for (size_t i = start; i <= end; i++) { word garbage = live[i] & ~mark[i]; if (UNLIKELY(garbage != 0)) { word high_bit = 1 << (kBitsPerWord - 1); uintptr_t ptr_base = HB_INDEX_TO_OFFSET(i) + live_bitmap.heap_begin_; while (garbage != 0) { int shift = CLZ(garbage); garbage &= ~(high_bit >> shift); *pb++ = reinterpret_cast(ptr_base + shift * kAlignment); } // Make sure that there are always enough slots available for an // entire word of one bits. if (pb >= &pointer_buf[pointer_buf.size() - kBitsPerWord]) { (*callback)(pb - &pointer_buf[0], &pointer_buf[0], arg); pb = &pointer_buf[0]; } } } if (pb > &pointer_buf[0]) { (*callback)(pb - &pointer_buf[0], &pointer_buf[0], arg); } } } // namespace art // Support needed for in order traversal #include "object.h" #include "object_utils.h" namespace art { static void WalkFieldsInOrder(HeapBitmap* visited, HeapBitmap::Callback* callback, Object* obj, void* arg); // Walk instance fields of the given Class. Separate function to allow recursion on the super // class. static void WalkInstanceFields(HeapBitmap* visited, HeapBitmap::Callback* callback, Object* obj, Class* klass, void* arg) { // Visit fields of parent classes first. Class* super = klass->GetSuperClass(); if (super != NULL) { WalkInstanceFields(visited, callback, obj, super, arg); } // Walk instance fields ObjectArray* fields = klass->GetIFields(); if (fields != NULL) { for (int32_t i = 0; i < fields->GetLength(); i++) { Field* field = fields->Get(i); FieldHelper fh(field); if (!fh.GetType()->IsPrimitive()) { Object* value = field->GetObj(obj); if (value != NULL) { WalkFieldsInOrder(visited, callback, value, arg); } } } } } // For an unvisited object, visit it then all its children found via fields. static void WalkFieldsInOrder(HeapBitmap* visited, HeapBitmap::Callback* callback, Object* obj, void* arg) { if (visited->Test(obj)) { return; } // visit the object itself (*callback)(obj, arg); visited->Set(obj); // Walk instance fields of all objects Class* klass = obj->GetClass(); WalkInstanceFields(visited, callback, obj, klass, arg); // Walk static fields of a Class if (obj->IsClass()) { ObjectArray* fields = klass->GetSFields(); if (fields != NULL) { for (int32_t i = 0; i < fields->GetLength(); i++) { Field* field = fields->Get(i); FieldHelper fh(field); if (!fh.GetType()->IsPrimitive()) { Object* value = field->GetObj(NULL); if (value != NULL) { WalkFieldsInOrder(visited, callback, value, arg); } } } } } else if (obj->IsObjectArray()) { // Walk elements of an object array ObjectArray* obj_array = obj->AsObjectArray(); int32_t length = obj_array->GetLength(); for (int32_t i = 0; i < length; i++) { Object* value = obj_array->Get(i); if (value != NULL) { WalkFieldsInOrder(visited, callback, value, arg); } } } } // Visits set bits with an in order traversal. The callback is not permitted to change the bitmap // bits or max during the traversal. void HeapBitmap::InOrderWalk(HeapBitmap::Callback* callback, void* arg) { UniquePtr visited(Create("bitmap for in-order walk", reinterpret_cast(heap_begin_), HB_INDEX_TO_OFFSET(bitmap_size_ / kWordSize))); CHECK(bitmap_begin_ != NULL); CHECK(callback != NULL); uintptr_t end = HB_OFFSET_TO_INDEX(heap_end_ - heap_begin_); for (uintptr_t i = 0; i <= end; ++i) { word w = bitmap_begin_[i]; if (UNLIKELY(w != 0)) { word high_bit = 1 << (kBitsPerWord - 1); uintptr_t ptr_base = HB_INDEX_TO_OFFSET(i) + heap_begin_; while (w != 0) { const int shift = CLZ(w); Object* obj = reinterpret_cast(ptr_base + shift * kAlignment); WalkFieldsInOrder(visited.get(), callback, obj, arg); w &= ~(high_bit >> shift); } } } } } // namespace art