// Copyright 2011 Google Inc. All Rights Reserved. #include "heap.h" #include #include "mark_sweep.h" #include "object.h" #include "space.h" #include "scoped_ptr.h" #include "stl_util.h" namespace art { std::vector Heap::spaces_; size_t Heap::startup_size_ = 0; size_t Heap::maximum_size_ = 0; size_t Heap::num_bytes_allocated_ = 0; size_t Heap::num_objects_allocated_ = 0; bool Heap::is_gc_running_ = false; HeapBitmap* Heap::mark_bitmap_ = NULL; HeapBitmap* Heap::live_bitmap_ = NULL; bool Heap::Init(size_t startup_size, size_t maximum_size) { Space* space = Space::Create(startup_size, maximum_size); if (space == NULL) { return false; } byte* base = space->GetBase(); size_t num_bytes = space->Size(); // Allocate the initial live bitmap. scoped_ptr live_bitmap(HeapBitmap::Create(base, num_bytes)); if (live_bitmap == NULL) { return false; } // Allocate the initial mark bitmap. scoped_ptr mark_bitmap(HeapBitmap::Create(base, num_bytes)); if (mark_bitmap == NULL) { return false; } spaces_.push_back(space); startup_size_ = startup_size; maximum_size_ = maximum_size; live_bitmap_ = live_bitmap.release(); mark_bitmap_ = mark_bitmap.release(); // TODO: allocate the card table return true; } void Heap::Destroy() { STLDeleteElements(&spaces_); delete mark_bitmap_; delete live_bitmap_; } Object* Heap::AllocObject(Class* klass, size_t num_bytes) { DCHECK((klass == NULL && num_bytes == sizeof(Class)) || klass->descriptor_ == NULL || (klass->object_size_ == (klass->IsArray() ? 0 : num_bytes))); Object* obj = Allocate(num_bytes); if (obj != NULL) { obj->klass_ = klass; } return obj; } void Heap::RecordAllocation(Space* space, const Object* obj) { size_t size = space->AllocationSize(obj); DCHECK_NE(size, 0u); num_bytes_allocated_ += size; num_objects_allocated_ += 1; live_bitmap_->Set(obj); } void Heap::RecordFree(Space* space, const Object* obj) { size_t size = space->AllocationSize(obj); DCHECK_NE(size, 0u); if (size < num_bytes_allocated_) { num_bytes_allocated_ -= size; } else { num_bytes_allocated_ = 0; } live_bitmap_->Clear(obj); if (num_objects_allocated_ > 0) { num_objects_allocated_ -= 1; } } Object* Heap::Allocate(size_t size) { CHECK_EQ(spaces_.size(), 1u); Space* space = spaces_[0]; Object* obj = Allocate(space, size); if (obj != NULL) { RecordAllocation(space, obj); } return obj; } Object* Heap::Allocate(Space* space, size_t size) { // Fail impossible allocations. TODO: collect soft references. if (size > maximum_size_) { return NULL; } Object* ptr = space->AllocWithoutGrowth(size); if (ptr != NULL) { return ptr; } // The allocation failed. If the GC is running, block until it // completes and retry. if (is_gc_running_) { // The GC is concurrently tracing the heap. Release the heap // lock, wait for the GC to complete, and retrying allocating. WaitForConcurrentGcToComplete(); ptr = space->AllocWithoutGrowth(size); if (ptr != NULL) { return ptr; } } // Another failure. Our thread was starved or there may be too many // live objects. Try a foreground GC. This will have no effect if // the concurrent GC is already running. CollectGarbageInternal(); ptr = space->AllocWithoutGrowth(size); if (ptr != NULL) { return ptr; } // Even that didn't work; this is an exceptional state. // Try harder, growing the heap if necessary. ptr = space->AllocWithGrowth(size); if (ptr != NULL) { //size_t new_footprint = dvmHeapSourceGetIdealFootprint(); size_t new_footprint = space->MaxAllowedFootprint(); // TODO: may want to grow a little bit more so that the amount of // free space is equal to the old free space + the // utilization slop for the new allocation. LOG(INFO) << "Grow heap (frag case) to " << new_footprint / MB << "for " << size << "-byte allocation"; return ptr; } // Most allocations should have succeeded by now, so the heap is // really full, really fragmented, or the requested size is really // big. Do another GC, collecting SoftReferences this time. The VM // spec requires that all SoftReferences have been collected and // cleared before throwing an OOME. // TODO: wait for the finalizers from the previous GC to finish LOG(INFO) << "Forcing collection of SoftReferences for " << size << "-byte allocation"; CollectGarbageInternal(); ptr = space->AllocWithGrowth(size); if (ptr != NULL) { return ptr; } LOG(ERROR) << "Out of memory on a " << size << " byte allocation"; // TODO: tell the HeapSource to dump its state // TODO: dump stack traces for all threads return NULL; } void Heap::CollectGarbage() { CollectGarbageInternal(); } void Heap::CollectGarbageInternal() { // TODO: check that heap lock is held // TODO: Suspend all threads { MarkSweep mark_sweep; mark_sweep.Init(); mark_sweep.MarkRoots(); // Push marked roots onto the mark stack // TODO: if concurrent // unlock heap // resume threads mark_sweep.RecursiveMark(); // TODO: if concurrent // lock heap // suspend threads // re-mark root set // scan dirty objects mark_sweep.ProcessReferences(false); // TODO: swap bitmaps mark_sweep.Sweep(); } GrowForUtilization(); // TODO: Resume all threads } void Heap::WaitForConcurrentGcToComplete() { } // Given the current contents of the active heap, increase the allowed // heap footprint to match the target utilization ratio. This should // only be called immediately after a full garbage collection. void Heap::GrowForUtilization() { UNIMPLEMENTED(ERROR); } } // namespace art