/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "compiler_internals.h" #include "dataflow.h" #include "codegen/ralloc_util.h" namespace art { static bool SetFp(CompilationUnit* cu, int index, bool is_fp) { bool change = false; if (is_fp && !cu->reg_location[index].fp) { cu->reg_location[index].fp = true; cu->reg_location[index].defined = true; change = true; } return change; } static bool SetCore(CompilationUnit* cu, int index, bool is_core) { bool change = false; if (is_core && !cu->reg_location[index].defined) { cu->reg_location[index].core = true; cu->reg_location[index].defined = true; change = true; } return change; } static bool SetRef(CompilationUnit* cu, int index, bool is_ref) { bool change = false; if (is_ref && !cu->reg_location[index].defined) { cu->reg_location[index].ref = true; cu->reg_location[index].defined = true; change = true; } return change; } static bool SetWide(CompilationUnit* cu, int index, bool is_wide) { bool change = false; if (is_wide && !cu->reg_location[index].wide) { cu->reg_location[index].wide = true; change = true; } return change; } static bool SetHigh(CompilationUnit* cu, int index, bool is_high) { bool change = false; if (is_high && !cu->reg_location[index].high_word) { cu->reg_location[index].high_word = true; change = true; } return change; } /* * Infer types and sizes. We don't need to track change on sizes, * as it doesn't propagate. We're guaranteed at least one pass through * the cfg. */ static bool InferTypeAndSize(CompilationUnit* cu, BasicBlock* bb) { MIR *mir; bool changed = false; // Did anything change? if (bb->data_flow_info == NULL) return false; if (bb->block_type != kDalvikByteCode && bb->block_type != kEntryBlock) return false; for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) { SSARepresentation *ssa_rep = mir->ssa_rep; if (ssa_rep) { int attrs = oat_data_flow_attributes[mir->dalvikInsn.opcode]; // Handle defs if (attrs & DF_DA) { if (attrs & DF_CORE_A) { changed |= SetCore(cu, ssa_rep->defs[0], true); } if (attrs & DF_REF_A) { changed |= SetRef(cu, ssa_rep->defs[0], true); } if (attrs & DF_A_WIDE) { cu->reg_location[ssa_rep->defs[0]].wide = true; cu->reg_location[ssa_rep->defs[1]].wide = true; cu->reg_location[ssa_rep->defs[1]].high_word = true; DCHECK_EQ(SRegToVReg(cu, ssa_rep->defs[0])+1, SRegToVReg(cu, ssa_rep->defs[1])); } } // Handles uses int next = 0; if (attrs & DF_UA) { if (attrs & DF_CORE_A) { changed |= SetCore(cu, ssa_rep->uses[next], true); } if (attrs & DF_REF_A) { changed |= SetRef(cu, ssa_rep->uses[next], true); } if (attrs & DF_A_WIDE) { cu->reg_location[ssa_rep->uses[next]].wide = true; cu->reg_location[ssa_rep->uses[next + 1]].wide = true; cu->reg_location[ssa_rep->uses[next + 1]].high_word = true; DCHECK_EQ(SRegToVReg(cu, ssa_rep->uses[next])+1, SRegToVReg(cu, ssa_rep->uses[next + 1])); next += 2; } else { next++; } } if (attrs & DF_UB) { if (attrs & DF_CORE_B) { changed |= SetCore(cu, ssa_rep->uses[next], true); } if (attrs & DF_REF_B) { changed |= SetRef(cu, ssa_rep->uses[next], true); } if (attrs & DF_B_WIDE) { cu->reg_location[ssa_rep->uses[next]].wide = true; cu->reg_location[ssa_rep->uses[next + 1]].wide = true; cu->reg_location[ssa_rep->uses[next + 1]].high_word = true; DCHECK_EQ(SRegToVReg(cu, ssa_rep->uses[next])+1, SRegToVReg(cu, ssa_rep->uses[next + 1])); next += 2; } else { next++; } } if (attrs & DF_UC) { if (attrs & DF_CORE_C) { changed |= SetCore(cu, ssa_rep->uses[next], true); } if (attrs & DF_REF_C) { changed |= SetRef(cu, ssa_rep->uses[next], true); } if (attrs & DF_C_WIDE) { cu->reg_location[ssa_rep->uses[next]].wide = true; cu->reg_location[ssa_rep->uses[next + 1]].wide = true; cu->reg_location[ssa_rep->uses[next + 1]].high_word = true; DCHECK_EQ(SRegToVReg(cu, ssa_rep->uses[next])+1, SRegToVReg(cu, ssa_rep->uses[next + 1])); } } // Special-case return handling if ((mir->dalvikInsn.opcode == Instruction::RETURN) || (mir->dalvikInsn.opcode == Instruction::RETURN_WIDE) || (mir->dalvikInsn.opcode == Instruction::RETURN_OBJECT)) { switch(cu->shorty[0]) { case 'I': changed |= SetCore(cu, ssa_rep->uses[0], true); break; case 'J': changed |= SetCore(cu, ssa_rep->uses[0], true); changed |= SetCore(cu, ssa_rep->uses[1], true); cu->reg_location[ssa_rep->uses[0]].wide = true; cu->reg_location[ssa_rep->uses[1]].wide = true; cu->reg_location[ssa_rep->uses[1]].high_word = true; break; case 'F': changed |= SetFp(cu, ssa_rep->uses[0], true); break; case 'D': changed |= SetFp(cu, ssa_rep->uses[0], true); changed |= SetFp(cu, ssa_rep->uses[1], true); cu->reg_location[ssa_rep->uses[0]].wide = true; cu->reg_location[ssa_rep->uses[1]].wide = true; cu->reg_location[ssa_rep->uses[1]].high_word = true; break; case 'L': changed |= SetRef(cu, ssa_rep->uses[0], true); break; default: break; } } // Special-case handling for format 35c/3rc invokes Instruction::Code opcode = mir->dalvikInsn.opcode; int flags = (static_cast(opcode) >= kNumPackedOpcodes) ? 0 : Instruction::FlagsOf(mir->dalvikInsn.opcode); if ((flags & Instruction::kInvoke) && (attrs & (DF_FORMAT_35C | DF_FORMAT_3RC))) { DCHECK_EQ(next, 0); int target_idx = mir->dalvikInsn.vB; const char* shorty = GetShortyFromTargetIdx(cu, target_idx); // Handle result type if floating point if ((shorty[0] == 'F') || (shorty[0] == 'D')) { MIR* move_result_mir = FindMoveResult(cu, bb, mir); // Result might not be used at all, so no move-result if (move_result_mir && (move_result_mir->dalvikInsn.opcode != Instruction::MOVE_RESULT_OBJECT)) { SSARepresentation* tgt_rep = move_result_mir->ssa_rep; DCHECK(tgt_rep != NULL); tgt_rep->fp_def[0] = true; changed |= SetFp(cu, tgt_rep->defs[0], true); if (shorty[0] == 'D') { tgt_rep->fp_def[1] = true; changed |= SetFp(cu, tgt_rep->defs[1], true); } } } int num_uses = mir->dalvikInsn.vA; // If this is a non-static invoke, mark implicit "this" if (((mir->dalvikInsn.opcode != Instruction::INVOKE_STATIC) && (mir->dalvikInsn.opcode != Instruction::INVOKE_STATIC_RANGE))) { cu->reg_location[ssa_rep->uses[next]].defined = true; cu->reg_location[ssa_rep->uses[next]].ref = true; next++; } uint32_t cpos = 1; if (strlen(shorty) > 1) { for (int i = next; i < num_uses;) { DCHECK_LT(cpos, strlen(shorty)); switch (shorty[cpos++]) { case 'D': ssa_rep->fp_use[i] = true; ssa_rep->fp_use[i+1] = true; cu->reg_location[ssa_rep->uses[i]].wide = true; cu->reg_location[ssa_rep->uses[i+1]].wide = true; cu->reg_location[ssa_rep->uses[i+1]].high_word = true; DCHECK_EQ(SRegToVReg(cu, ssa_rep->uses[i])+1, SRegToVReg(cu, ssa_rep->uses[i+1])); i++; break; case 'J': cu->reg_location[ssa_rep->uses[i]].wide = true; cu->reg_location[ssa_rep->uses[i+1]].wide = true; cu->reg_location[ssa_rep->uses[i+1]].high_word = true; DCHECK_EQ(SRegToVReg(cu, ssa_rep->uses[i])+1, SRegToVReg(cu, ssa_rep->uses[i+1])); changed |= SetCore(cu, ssa_rep->uses[i],true); i++; break; case 'F': ssa_rep->fp_use[i] = true; break; case 'L': changed |= SetRef(cu,ssa_rep->uses[i], true); break; default: changed |= SetCore(cu,ssa_rep->uses[i], true); break; } i++; } } } for (int i=0; ssa_rep->fp_use && i< ssa_rep->num_uses; i++) { if (ssa_rep->fp_use[i]) changed |= SetFp(cu, ssa_rep->uses[i], true); } for (int i=0; ssa_rep->fp_def && i< ssa_rep->num_defs; i++) { if (ssa_rep->fp_def[i]) changed |= SetFp(cu, ssa_rep->defs[i], true); } // Special-case handling for moves & Phi if (attrs & (DF_IS_MOVE | DF_NULL_TRANSFER_N)) { /* * If any of our inputs or outputs is defined, set all. * Some ugliness related to Phi nodes and wide values. * The Phi set will include all low words or all high * words, so we have to treat them specially. */ bool is_phi = (static_cast(mir->dalvikInsn.opcode) == kMirOpPhi); RegLocation rl_temp = cu->reg_location[ssa_rep->defs[0]]; bool defined_fp = rl_temp.defined && rl_temp.fp; bool defined_core = rl_temp.defined && rl_temp.core; bool defined_ref = rl_temp.defined && rl_temp.ref; bool is_wide = rl_temp.wide || ((attrs & DF_A_WIDE) != 0); bool is_high = is_phi && rl_temp.wide && rl_temp.high_word; for (int i = 0; i < ssa_rep->num_uses;i++) { rl_temp = cu->reg_location[ssa_rep->uses[i]]; defined_fp |= rl_temp.defined && rl_temp.fp; defined_core |= rl_temp.defined && rl_temp.core; defined_ref |= rl_temp.defined && rl_temp.ref; is_wide |= rl_temp.wide; is_high |= is_phi && rl_temp.wide && rl_temp.high_word; } /* * TODO: cleaner fix * We don't normally expect to see a Dalvik register * definition used both as a floating point and core * value. However, the instruction rewriting that occurs * during verification can eliminate some type information, * leaving us confused. The real fix here is either to * add explicit type information to Dalvik byte codes, * or to recognize THROW_VERIFICATION_ERROR as * an unconditional branch and support dead code elimination. * As a workaround we can detect this situation and * disable register promotion (which is the only thing that * relies on distinctions between core and fp usages. */ if ((defined_fp && (defined_core | defined_ref)) && ((cu->disable_opt & (1 << kPromoteRegs)) == 0)) { LOG(WARNING) << PrettyMethod(cu->method_idx, *cu->dex_file) << " op at block " << bb->id << " has both fp and core/ref uses for same def."; cu->disable_opt |= (1 << kPromoteRegs); } changed |= SetFp(cu, ssa_rep->defs[0], defined_fp); changed |= SetCore(cu, ssa_rep->defs[0], defined_core); changed |= SetRef(cu, ssa_rep->defs[0], defined_ref); changed |= SetWide(cu, ssa_rep->defs[0], is_wide); changed |= SetHigh(cu, ssa_rep->defs[0], is_high); if (attrs & DF_A_WIDE) { changed |= SetWide(cu, ssa_rep->defs[1], true); changed |= SetHigh(cu, ssa_rep->defs[1], true); } for (int i = 0; i < ssa_rep->num_uses; i++) { changed |= SetFp(cu, ssa_rep->uses[i], defined_fp); changed |= SetCore(cu, ssa_rep->uses[i], defined_core); changed |= SetRef(cu, ssa_rep->uses[i], defined_ref); changed |= SetWide(cu, ssa_rep->uses[i], is_wide); changed |= SetHigh(cu, ssa_rep->uses[i], is_high); } if (attrs & DF_A_WIDE) { DCHECK_EQ(ssa_rep->num_uses, 2); changed |= SetWide(cu, ssa_rep->uses[1], true); changed |= SetHigh(cu, ssa_rep->uses[1], true); } } } } return changed; } static const char* storage_name[] = {" Frame ", "PhysReg", " Spill "}; static void DumpRegLocTable(CompilationUnit* cu, RegLocation* table, int count) { Codegen* cg = cu->cg.get(); for (int i = 0; i < count; i++) { LOG(INFO) << StringPrintf("Loc[%02d] : %s, %c %c %c %c %c %c %c%d %c%d S%d", table[i].orig_sreg, storage_name[table[i].location], table[i].wide ? 'W' : 'N', table[i].defined ? 'D' : 'U', table[i].fp ? 'F' : table[i].ref ? 'R' :'C', table[i].is_const ? 'c' : 'n', table[i].high_word ? 'H' : 'L', table[i].home ? 'h' : 't', cg->IsFpReg(table[i].low_reg) ? 's' : 'r', table[i].low_reg & cg->FpRegMask(), cg->IsFpReg(table[i].high_reg) ? 's' : 'r', table[i].high_reg & cg->FpRegMask(), table[i].s_reg_low); } } static const RegLocation fresh_loc = {kLocDalvikFrame, 0, 0, 0, 0, 0, 0, 0, 0, INVALID_REG, INVALID_REG, INVALID_SREG, INVALID_SREG}; int ComputeFrameSize(CompilationUnit* cu) { /* Figure out the frame size */ static const uint32_t kAlignMask = kStackAlignment - 1; uint32_t size = (cu->num_core_spills + cu->num_fp_spills + 1 /* filler word */ + cu->num_regs + cu->num_outs + cu->num_compiler_temps + 1 /* cur_method* */) * sizeof(uint32_t); /* Align and set */ return (size + kAlignMask) & ~(kAlignMask); } /* * Simple register allocation. Some Dalvik virtual registers may * be promoted to physical registers. Most of the work for temp * allocation is done on the fly. We also do some initialization and * type inference here. */ void SimpleRegAlloc(CompilationUnit* cu) { int i; RegLocation* loc; /* Allocate the location map */ loc = static_cast(NewMem(cu, cu->num_ssa_regs * sizeof(*loc), true, kAllocRegAlloc)); for (i=0; i< cu->num_ssa_regs; i++) { loc[i] = fresh_loc; loc[i].s_reg_low = i; loc[i].is_const = IsBitSet(cu->is_constant_v, i); } /* Patch up the locations for Method* and the compiler temps */ loc[cu->method_sreg].location = kLocCompilerTemp; loc[cu->method_sreg].defined = true; for (i = 0; i < cu->num_compiler_temps; i++) { CompilerTemp* ct = reinterpret_cast(cu->compiler_temps.elem_list[i]); loc[ct->s_reg].location = kLocCompilerTemp; loc[ct->s_reg].defined = true; } cu->reg_location = loc; /* Allocation the promotion map */ int num_regs = cu->num_dalvik_registers; cu->promotion_map = static_cast (NewMem(cu, (num_regs + cu->num_compiler_temps + 1) * sizeof(cu->promotion_map[0]), true, kAllocRegAlloc)); /* Add types of incoming arguments based on signature */ int num_ins = cu->num_ins; if (num_ins > 0) { int s_reg = num_regs - num_ins; if ((cu->access_flags & kAccStatic) == 0) { // For non-static, skip past "this" cu->reg_location[s_reg].defined = true; cu->reg_location[s_reg].ref = true; s_reg++; } const char* shorty = cu->shorty; int shorty_len = strlen(shorty); for (int i = 1; i < shorty_len; i++) { switch (shorty[i]) { case 'D': cu->reg_location[s_reg].wide = true; cu->reg_location[s_reg+1].high_word = true; cu->reg_location[s_reg+1].fp = true; DCHECK_EQ(SRegToVReg(cu, s_reg)+1, SRegToVReg(cu, s_reg+1)); cu->reg_location[s_reg].fp = true; cu->reg_location[s_reg].defined = true; s_reg++; break; case 'J': cu->reg_location[s_reg].wide = true; cu->reg_location[s_reg+1].high_word = true; DCHECK_EQ(SRegToVReg(cu, s_reg)+1, SRegToVReg(cu, s_reg+1)); cu->reg_location[s_reg].core = true; cu->reg_location[s_reg].defined = true; s_reg++; break; case 'F': cu->reg_location[s_reg].fp = true; cu->reg_location[s_reg].defined = true; break; case 'L': cu->reg_location[s_reg].ref = true; cu->reg_location[s_reg].defined = true; break; default: cu->reg_location[s_reg].core = true; cu->reg_location[s_reg].defined = true; break; } s_reg++; } } /* Do type & size inference pass */ DataFlowAnalysisDispatcher(cu, InferTypeAndSize, kPreOrderDFSTraversal, true /* is_iterative */); /* * Set the s_reg_low field to refer to the pre-SSA name of the * base Dalvik virtual register. Once we add a better register * allocator, remove this remapping. */ for (i=0; i < cu->num_ssa_regs; i++) { if (cu->reg_location[i].location != kLocCompilerTemp) { int orig_sreg = cu->reg_location[i].s_reg_low; cu->reg_location[i].orig_sreg = orig_sreg; cu->reg_location[i].s_reg_low = SRegToVReg(cu, orig_sreg); } } /* * Now that everything is typed and constants propagated, identify those constants * that can be cheaply materialized and don't need to be flushed to a home location. * The default is to not flush, and some have already been marked as must flush. */ for (i=0; i < cu->num_ssa_regs; i++) { if (IsBitSet(cu->is_constant_v, i)) { bool flush = false; RegLocation loc = cu->reg_location[i]; if (loc.wide) { int64_t value = ConstantValueWide(cu, loc); if (loc.fp) { flush = !cu->cg->InexpensiveConstantDouble(value); } else { flush = !cu->cg->InexpensiveConstantLong(value); } } else { int32_t value = ConstantValue(cu, loc); if (loc.fp) { flush = !cu->cg->InexpensiveConstantFloat(value); } else { flush = !cu->cg->InexpensiveConstantInt(value); } } if (flush) { SetBit(cu, cu->must_flush_constant_v, i); } if (loc.wide) { i++; // Skip the high word } } } cu->core_spill_mask = 0; cu->fp_spill_mask = 0; cu->num_core_spills = 0; DoPromotion(cu); /* Get easily-accessable post-promotion copy of RegLocation for Method* */ cu->method_loc = cu->reg_location[cu->method_sreg]; if (cu->verbose && !(cu->disable_opt & (1 << kPromoteRegs))) { LOG(INFO) << "After Promotion"; DumpRegLocTable(cu, cu->reg_location, cu->num_ssa_regs); } /* Set the frame size */ cu->frame_size = ComputeFrameSize(cu); } } // namespace art