/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "compiler_internals.h" #include "dataflow.h" #include "bb_opt.h" namespace art { /* * Main table containing data flow attributes for each bytecode. The * first kNumPackedOpcodes entries are for Dalvik bytecode * instructions, where extended opcode at the MIR level are appended * afterwards. * * TODO - many optimization flags are incomplete - they will only limit the * scope of optimizations but will not cause mis-optimizations. */ const int oat_data_flow_attributes[kMirOpLast] = { // 00 NOP DF_NOP, // 01 MOVE vA, vB DF_DA | DF_UB | DF_IS_MOVE, // 02 MOVE_FROM16 vAA, vBBBB DF_DA | DF_UB | DF_IS_MOVE, // 03 MOVE_16 vAAAA, vBBBB DF_DA | DF_UB | DF_IS_MOVE, // 04 MOVE_WIDE vA, vB DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE, // 05 MOVE_WIDE_FROM16 vAA, vBBBB DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE, // 06 MOVE_WIDE_16 vAAAA, vBBBB DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_IS_MOVE, // 07 MOVE_OBJECT vA, vB DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B, // 08 MOVE_OBJECT_FROM16 vAA, vBBBB DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B, // 09 MOVE_OBJECT_16 vAAAA, vBBBB DF_DA | DF_UB | DF_NULL_TRANSFER_0 | DF_IS_MOVE | DF_REF_A | DF_REF_B, // 0A MOVE_RESULT vAA DF_DA, // 0B MOVE_RESULT_WIDE vAA DF_DA | DF_A_WIDE, // 0C MOVE_RESULT_OBJECT vAA DF_DA | DF_REF_A, // 0D MOVE_EXCEPTION vAA DF_DA | DF_REF_A, // 0E RETURN_VOID DF_NOP, // 0F RETURN vAA DF_UA, // 10 RETURN_WIDE vAA DF_UA | DF_A_WIDE, // 11 RETURN_OBJECT vAA DF_UA | DF_REF_A, // 12 CONST_4 vA, #+B DF_DA | DF_SETS_CONST, // 13 CONST_16 vAA, #+BBBB DF_DA | DF_SETS_CONST, // 14 CONST vAA, #+BBBBBBBB DF_DA | DF_SETS_CONST, // 15 CONST_HIGH16 VAA, #+BBBB0000 DF_DA | DF_SETS_CONST, // 16 CONST_WIDE_16 vAA, #+BBBB DF_DA | DF_A_WIDE | DF_SETS_CONST, // 17 CONST_WIDE_32 vAA, #+BBBBBBBB DF_DA | DF_A_WIDE | DF_SETS_CONST, // 18 CONST_WIDE vAA, #+BBBBBBBBBBBBBBBB DF_DA | DF_A_WIDE | DF_SETS_CONST, // 19 CONST_WIDE_HIGH16 vAA, #+BBBB000000000000 DF_DA | DF_A_WIDE | DF_SETS_CONST, // 1A CONST_STRING vAA, string@BBBB DF_DA | DF_REF_A, // 1B CONST_STRING_JUMBO vAA, string@BBBBBBBB DF_DA | DF_REF_A, // 1C CONST_CLASS vAA, type@BBBB DF_DA | DF_REF_A, // 1D MONITOR_ENTER vAA DF_UA | DF_NULL_CHK_0 | DF_REF_A, // 1E MONITOR_EXIT vAA DF_UA | DF_NULL_CHK_0 | DF_REF_A, // 1F CHK_CAST vAA, type@BBBB DF_UA | DF_REF_A | DF_UMS, // 20 INSTANCE_OF vA, vB, type@CCCC DF_DA | DF_UB | DF_CORE_A | DF_REF_B | DF_UMS, // 21 ARRAY_LENGTH vA, vB DF_DA | DF_UB | DF_NULL_CHK_0 | DF_CORE_A | DF_REF_B, // 22 NEW_INSTANCE vAA, type@BBBB DF_DA | DF_NON_NULL_DST | DF_REF_A | DF_UMS, // 23 NEW_ARRAY vA, vB, type@CCCC DF_DA | DF_UB | DF_NON_NULL_DST | DF_REF_A | DF_CORE_B | DF_UMS, // 24 FILLED_NEW_ARRAY {vD, vE, vF, vG, vA} DF_FORMAT_35C | DF_NON_NULL_RET | DF_UMS, // 25 FILLED_NEW_ARRAY_RANGE {vCCCC .. vNNNN}, type@BBBB DF_FORMAT_3RC | DF_NON_NULL_RET | DF_UMS, // 26 FILL_ARRAY_DATA vAA, +BBBBBBBB DF_UA | DF_REF_A | DF_UMS, // 27 THROW vAA DF_UA | DF_REF_A | DF_UMS, // 28 GOTO DF_NOP, // 29 GOTO_16 DF_NOP, // 2A GOTO_32 DF_NOP, // 2B PACKED_SWITCH vAA, +BBBBBBBB DF_UA, // 2C SPARSE_SWITCH vAA, +BBBBBBBB DF_UA, // 2D CMPL_FLOAT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_FP_B | DF_FP_C | DF_CORE_A, // 2E CMPG_FLOAT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_FP_B | DF_FP_C | DF_CORE_A, // 2F CMPL_DOUBLE vAA, vBB, vCC DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_B | DF_FP_C | DF_CORE_A, // 30 CMPG_DOUBLE vAA, vBB, vCC DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_B | DF_FP_C | DF_CORE_A, // 31 CMP_LONG vAA, vBB, vCC DF_DA | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 32 IF_EQ vA, vB, +CCCC DF_UA | DF_UB, // 33 IF_NE vA, vB, +CCCC DF_UA | DF_UB, // 34 IF_LT vA, vB, +CCCC DF_UA | DF_UB, // 35 IF_GE vA, vB, +CCCC DF_UA | DF_UB, // 36 IF_GT vA, vB, +CCCC DF_UA | DF_UB, // 37 IF_LE vA, vB, +CCCC DF_UA | DF_UB, // 38 IF_EQZ vAA, +BBBB DF_UA, // 39 IF_NEZ vAA, +BBBB DF_UA, // 3A IF_LTZ vAA, +BBBB DF_UA, // 3B IF_GEZ vAA, +BBBB DF_UA, // 3C IF_GTZ vAA, +BBBB DF_UA, // 3D IF_LEZ vAA, +BBBB DF_UA, // 3E UNUSED_3E DF_NOP, // 3F UNUSED_3F DF_NOP, // 40 UNUSED_40 DF_NOP, // 41 UNUSED_41 DF_NOP, // 42 UNUSED_42 DF_NOP, // 43 UNUSED_43 DF_NOP, // 44 AGET vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C, // 45 AGET_WIDE vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C, // 46 AGET_OBJECT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_A | DF_REF_B | DF_CORE_C, // 47 AGET_BOOLEAN vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C, // 48 AGET_BYTE vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C, // 49 AGET_CHAR vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C, // 4A AGET_SHORT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_NULL_CHK_0 | DF_RANGE_CHK_1 | DF_REF_B | DF_CORE_C, // 4B APUT vAA, vBB, vCC DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C, // 4C APUT_WIDE vAA, vBB, vCC DF_UA | DF_A_WIDE | DF_UB | DF_UC | DF_NULL_CHK_2 | DF_RANGE_CHK_3 | DF_REF_B | DF_CORE_C, // 4D APUT_OBJECT vAA, vBB, vCC DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_A | DF_REF_B | DF_CORE_C, // 4E APUT_BOOLEAN vAA, vBB, vCC DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C, // 4F APUT_BYTE vAA, vBB, vCC DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C, // 50 APUT_CHAR vAA, vBB, vCC DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C, // 51 APUT_SHORT vAA, vBB, vCC DF_UA | DF_UB | DF_UC | DF_NULL_CHK_1 | DF_RANGE_CHK_2 | DF_REF_B | DF_CORE_C, // 52 IGET vA, vB, field@CCCC DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B, // 53 IGET_WIDE vA, vB, field@CCCC DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_0 | DF_REF_B, // 54 IGET_OBJECT vA, vB, field@CCCC DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_A | DF_REF_B, // 55 IGET_BOOLEAN vA, vB, field@CCCC DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B, // 56 IGET_BYTE vA, vB, field@CCCC DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B, // 57 IGET_CHAR vA, vB, field@CCCC DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B, // 58 IGET_SHORT vA, vB, field@CCCC DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B, // 59 IPUT vA, vB, field@CCCC DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B, // 5A IPUT_WIDE vA, vB, field@CCCC DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_2 | DF_REF_B, // 5B IPUT_OBJECT vA, vB, field@CCCC DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_A | DF_REF_B, // 5C IPUT_BOOLEAN vA, vB, field@CCCC DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B, // 5D IPUT_BYTE vA, vB, field@CCCC DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B, // 5E IPUT_CHAR vA, vB, field@CCCC DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B, // 5F IPUT_SHORT vA, vB, field@CCCC DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B, // 60 SGET vAA, field@BBBB DF_DA | DF_UMS, // 61 SGET_WIDE vAA, field@BBBB DF_DA | DF_A_WIDE | DF_UMS, // 62 SGET_OBJECT vAA, field@BBBB DF_DA | DF_REF_A | DF_UMS, // 63 SGET_BOOLEAN vAA, field@BBBB DF_DA | DF_UMS, // 64 SGET_BYTE vAA, field@BBBB DF_DA | DF_UMS, // 65 SGET_CHAR vAA, field@BBBB DF_DA | DF_UMS, // 66 SGET_SHORT vAA, field@BBBB DF_DA | DF_UMS, // 67 SPUT vAA, field@BBBB DF_UA | DF_UMS, // 68 SPUT_WIDE vAA, field@BBBB DF_UA | DF_A_WIDE | DF_UMS, // 69 SPUT_OBJECT vAA, field@BBBB DF_UA | DF_REF_A | DF_UMS, // 6A SPUT_BOOLEAN vAA, field@BBBB DF_UA | DF_UMS, // 6B SPUT_BYTE vAA, field@BBBB DF_UA | DF_UMS, // 6C SPUT_CHAR vAA, field@BBBB DF_UA | DF_UMS, // 6D SPUT_SHORT vAA, field@BBBB DF_UA | DF_UMS, // 6E INVOKE_VIRTUAL {vD, vE, vF, vG, vA} DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS, // 6F INVOKE_SUPER {vD, vE, vF, vG, vA} DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS, // 70 INVOKE_DIRECT {vD, vE, vF, vG, vA} DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS, // 71 INVOKE_STATIC {vD, vE, vF, vG, vA} DF_FORMAT_35C | DF_UMS, // 72 INVOKE_INTERFACE {vD, vE, vF, vG, vA} DF_FORMAT_35C | DF_UMS, // 73 UNUSED_73 DF_NOP, // 74 INVOKE_VIRTUAL_RANGE {vCCCC .. vNNNN} DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS, // 75 INVOKE_SUPER_RANGE {vCCCC .. vNNNN} DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS, // 76 INVOKE_DIRECT_RANGE {vCCCC .. vNNNN} DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS, // 77 INVOKE_STATIC_RANGE {vCCCC .. vNNNN} DF_FORMAT_3RC | DF_UMS, // 78 INVOKE_INTERFACE_RANGE {vCCCC .. vNNNN} DF_FORMAT_3RC | DF_UMS, // 79 UNUSED_79 DF_NOP, // 7A UNUSED_7A DF_NOP, // 7B NEG_INT vA, vB DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // 7C NOT_INT vA, vB DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // 7D NEG_LONG vA, vB DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, // 7E NOT_LONG vA, vB DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, // 7F NEG_FLOAT vA, vB DF_DA | DF_UB | DF_FP_A | DF_FP_B, // 80 NEG_DOUBLE vA, vB DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B, // 81 INT_TO_LONG vA, vB DF_DA | DF_A_WIDE | DF_UB | DF_CORE_A | DF_CORE_B, // 82 INT_TO_FLOAT vA, vB DF_DA | DF_UB | DF_FP_A | DF_CORE_B, // 83 INT_TO_DOUBLE vA, vB DF_DA | DF_A_WIDE | DF_UB | DF_FP_A | DF_CORE_B, // 84 LONG_TO_INT vA, vB DF_DA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, // 85 LONG_TO_FLOAT vA, vB DF_DA | DF_UB | DF_B_WIDE | DF_FP_A | DF_CORE_B, // 86 LONG_TO_DOUBLE vA, vB DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_CORE_B, // 87 FLOAT_TO_INT vA, vB DF_DA | DF_UB | DF_FP_B | DF_CORE_A, // 88 FLOAT_TO_LONG vA, vB DF_DA | DF_A_WIDE | DF_UB | DF_FP_B | DF_CORE_A, // 89 FLOAT_TO_DOUBLE vA, vB DF_DA | DF_A_WIDE | DF_UB | DF_FP_A | DF_FP_B, // 8A DOUBLE_TO_INT vA, vB DF_DA | DF_UB | DF_B_WIDE | DF_FP_B | DF_CORE_A, // 8B DOUBLE_TO_LONG vA, vB DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_B | DF_CORE_A, // 8C DOUBLE_TO_FLOAT vA, vB DF_DA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B, // 8D INT_TO_BYTE vA, vB DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // 8E INT_TO_CHAR vA, vB DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // 8F INT_TO_SHORT vA, vB DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // 90 ADD_INT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 91 SUB_INT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 92 MUL_INT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 93 DIV_INT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 94 REM_INT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 95 AND_INT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 96 OR_INT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 97 XOR_INT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 98 SHL_INT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 99 SHR_INT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 9A USHR_INT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 9B ADD_LONG vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 9C SUB_LONG vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 9D MUL_LONG vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 9E DIV_LONG vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C, // 9F REM_LONG vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C, // A0 AND_LONG vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C, // A1 OR_LONG vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C, // A2 XOR_LONG vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_CORE_A | DF_CORE_B | DF_CORE_C, // A3 SHL_LONG vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // A4 SHR_LONG vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // A5 USHR_LONG vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_CORE_A | DF_CORE_B | DF_CORE_C, // A6 ADD_FLOAT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C, // A7 SUB_FLOAT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C, // A8 MUL_FLOAT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C, // A9 DIV_FLOAT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C, // AA REM_FLOAT vAA, vBB, vCC DF_DA | DF_UB | DF_UC | DF_FP_A | DF_FP_B | DF_FP_C, // AB ADD_DOUBLE vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C, // AC SUB_DOUBLE vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C, // AD MUL_DOUBLE vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C, // AE DIV_DOUBLE vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C, // AF REM_DOUBLE vAA, vBB, vCC DF_DA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_UC | DF_C_WIDE | DF_FP_A | DF_FP_B | DF_FP_C, // B0 ADD_INT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // B1 SUB_INT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // B2 MUL_INT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // B3 DIV_INT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // B4 REM_INT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // B5 AND_INT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // B6 OR_INT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // B7 XOR_INT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // B8 SHL_INT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // B9 SHR_INT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // BA USHR_INT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // BB ADD_LONG_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, // BC SUB_LONG_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, // BD MUL_LONG_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, // BE DIV_LONG_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, // BF REM_LONG_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, // C0 AND_LONG_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, // C1 OR_LONG_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, // C2 XOR_LONG_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, // C3 SHL_LONG_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // C4 SHR_LONG_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // C5 USHR_LONG_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_CORE_A | DF_CORE_B, // C6 ADD_FLOAT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B, // C7 SUB_FLOAT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B, // C8 MUL_FLOAT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B, // C9 DIV_FLOAT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B, // CA REM_FLOAT_2ADDR vA, vB DF_DA | DF_UA | DF_UB | DF_FP_A | DF_FP_B, // CB ADD_DOUBLE_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B, // CC SUB_DOUBLE_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B, // CD MUL_DOUBLE_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B, // CE DIV_DOUBLE_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B, // CF REM_DOUBLE_2ADDR vA, vB DF_DA | DF_A_WIDE | DF_UA | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B, // D0 ADD_INT_LIT16 vA, vB, #+CCCC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // D1 RSUB_INT vA, vB, #+CCCC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // D2 MUL_INT_LIT16 vA, vB, #+CCCC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // D3 DIV_INT_LIT16 vA, vB, #+CCCC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // D4 REM_INT_LIT16 vA, vB, #+CCCC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // D5 AND_INT_LIT16 vA, vB, #+CCCC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // D6 OR_INT_LIT16 vA, vB, #+CCCC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // D7 XOR_INT_LIT16 vA, vB, #+CCCC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // D8 ADD_INT_LIT8 vAA, vBB, #+CC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // D9 RSUB_INT_LIT8 vAA, vBB, #+CC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // DA MUL_INT_LIT8 vAA, vBB, #+CC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // DB DIV_INT_LIT8 vAA, vBB, #+CC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // DC REM_INT_LIT8 vAA, vBB, #+CC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // DD AND_INT_LIT8 vAA, vBB, #+CC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // DE OR_INT_LIT8 vAA, vBB, #+CC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // DF XOR_INT_LIT8 vAA, vBB, #+CC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // E0 SHL_INT_LIT8 vAA, vBB, #+CC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // E1 SHR_INT_LIT8 vAA, vBB, #+CC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // E2 USHR_INT_LIT8 vAA, vBB, #+CC DF_DA | DF_UB | DF_CORE_A | DF_CORE_B, // E3 IGET_VOLATILE DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_B, // E4 IPUT_VOLATILE DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_B, // E5 SGET_VOLATILE DF_DA | DF_UMS, // E6 SPUT_VOLATILE DF_UA | DF_UMS, // E7 IGET_OBJECT_VOLATILE DF_DA | DF_UB | DF_NULL_CHK_0 | DF_REF_A | DF_REF_B, // E8 IGET_WIDE_VOLATILE DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_0 | DF_REF_B, // E9 IPUT_WIDE_VOLATILE DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_2 | DF_REF_B, // EA SGET_WIDE_VOLATILE DF_DA | DF_A_WIDE | DF_UMS, // EB SPUT_WIDE_VOLATILE DF_UA | DF_A_WIDE | DF_UMS, // EC BREAKPOINT DF_NOP, // ED THROW_VERIFICATION_ERROR DF_NOP | DF_UMS, // EE EXECUTE_INLINE DF_FORMAT_35C, // EF EXECUTE_INLINE_RANGE DF_FORMAT_3RC, // F0 INVOKE_OBJECT_INIT_RANGE DF_NOP | DF_NULL_CHK_0, // F1 RETURN_VOID_BARRIER DF_NOP, // F2 IGET_QUICK DF_DA | DF_UB | DF_NULL_CHK_0, // F3 IGET_WIDE_QUICK DF_DA | DF_A_WIDE | DF_UB | DF_NULL_CHK_0, // F4 IGET_OBJECT_QUICK DF_DA | DF_UB | DF_NULL_CHK_0, // F5 IPUT_QUICK DF_UA | DF_UB | DF_NULL_CHK_1, // F6 IPUT_WIDE_QUICK DF_UA | DF_A_WIDE | DF_UB | DF_NULL_CHK_2, // F7 IPUT_OBJECT_QUICK DF_UA | DF_UB | DF_NULL_CHK_1, // F8 INVOKE_VIRTUAL_QUICK DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS, // F9 INVOKE_VIRTUAL_QUICK_RANGE DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS, // FA INVOKE_SUPER_QUICK DF_FORMAT_35C | DF_NULL_CHK_OUT0 | DF_UMS, // FB INVOKE_SUPER_QUICK_RANGE DF_FORMAT_3RC | DF_NULL_CHK_OUT0 | DF_UMS, // FC IPUT_OBJECT_VOLATILE DF_UA | DF_UB | DF_NULL_CHK_1 | DF_REF_A | DF_REF_B, // FD SGET_OBJECT_VOLATILE DF_DA | DF_REF_A | DF_UMS, // FE SPUT_OBJECT_VOLATILE DF_UA | DF_REF_A | DF_UMS, // FF UNUSED_FF DF_NOP, // Beginning of extended MIR opcodes // 100 MIR_PHI DF_DA | DF_NULL_TRANSFER_N, // 101 MIR_COPY DF_DA | DF_UB | DF_IS_MOVE, // 102 MIR_FUSED_CMPL_FLOAT DF_UA | DF_UB | DF_FP_A | DF_FP_B, // 103 MIR_FUSED_CMPG_FLOAT DF_UA | DF_UB | DF_FP_A | DF_FP_B, // 104 MIR_FUSED_CMPL_DOUBLE DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B, // 105 MIR_FUSED_CMPG_DOUBLE DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_FP_A | DF_FP_B, // 106 MIR_FUSED_CMP_LONG DF_UA | DF_A_WIDE | DF_UB | DF_B_WIDE | DF_CORE_A | DF_CORE_B, // 107 MIR_NOP DF_NOP, // 108 MIR_NULL_CHECK 0, // 109 MIR_RANGE_CHECK 0, // 110 MIR_DIV_ZERO_CHECK 0, // 111 MIR_CHECK 0, }; /* Return the base virtual register for a SSA name */ int SRegToVReg(const CompilationUnit* cu, int ssa_reg) { DCHECK_LT(ssa_reg, static_cast(cu->ssa_base_vregs->num_used)); return GET_ELEM_N(cu->ssa_base_vregs, int, ssa_reg); } int SRegToSubscript(const CompilationUnit* cu, int ssa_reg) { DCHECK(ssa_reg < static_cast(cu->ssa_subscripts->num_used)); return GET_ELEM_N(cu->ssa_subscripts, int, ssa_reg); } static int GetSSAUseCount(CompilationUnit* cu, int s_reg) { DCHECK(s_reg < static_cast(cu->raw_use_counts.num_used)); return cu->raw_use_counts.elem_list[s_reg]; } static std::string GetSSAName(const CompilationUnit* cu, int ssa_reg) { return StringPrintf("v%d_%d", SRegToVReg(cu, ssa_reg), SRegToSubscript(cu, ssa_reg)); } // Similar to GetSSAName, but if ssa name represents an immediate show that as well. static std::string GetSSANameWithConst(const CompilationUnit* cu, int ssa_reg, bool singles_only) { if (cu->reg_location == NULL) { // Pre-SSA - just use the standard name return GetSSAName(cu, ssa_reg); } if (cu->reg_location[ssa_reg].is_const) { if (!singles_only && cu->reg_location[ssa_reg].wide) { int64_t immval = cu->constant_values[ssa_reg + 1]; immval = (immval << 32) | cu->constant_values[ssa_reg]; return StringPrintf("v%d_%d#0x%llx", SRegToVReg(cu, ssa_reg), SRegToSubscript(cu, ssa_reg), immval); } else { int32_t immval = cu->constant_values[ssa_reg]; return StringPrintf("v%d_%d#0x%x", SRegToVReg(cu, ssa_reg), SRegToSubscript(cu, ssa_reg), immval); } } else { return StringPrintf("v%d_%d", SRegToVReg(cu, ssa_reg), SRegToSubscript(cu, ssa_reg)); } } char* GetDalvikDisassembly(CompilationUnit* cu, const MIR* mir) { DecodedInstruction insn = mir->dalvikInsn; std::string str; int flags = 0; int opcode = insn.opcode; char* ret; bool nop = false; SSARepresentation* ssa_rep = mir->ssa_rep; Instruction::Format dalvik_format = Instruction::k10x; // Default to no-operand format int defs = (ssa_rep != NULL) ? ssa_rep->num_defs : 0; int uses = (ssa_rep != NULL) ? ssa_rep->num_uses : 0; // Handle special cases. if ((opcode == kMirOpCheck) || (opcode == kMirOpCheckPart2)) { str.append(extended_mir_op_names[opcode - kMirOpFirst]); str.append(": "); // Recover the original Dex instruction insn = mir->meta.throw_insn->dalvikInsn; ssa_rep = mir->meta.throw_insn->ssa_rep; defs = ssa_rep->num_defs; uses = ssa_rep->num_uses; opcode = insn.opcode; } else if (opcode == kMirOpNop) { str.append("["); insn.opcode = mir->meta.original_opcode; opcode = mir->meta.original_opcode; nop = true; } if (opcode >= kMirOpFirst) { str.append(extended_mir_op_names[opcode - kMirOpFirst]); } else { dalvik_format = Instruction::FormatOf(insn.opcode); flags = Instruction::FlagsOf(insn.opcode); str.append(Instruction::Name(insn.opcode)); } if (opcode == kMirOpPhi) { int* incoming = reinterpret_cast(insn.vB); str.append(StringPrintf(" %s = (%s", GetSSANameWithConst(cu, ssa_rep->defs[0], true).c_str(), GetSSANameWithConst(cu, ssa_rep->uses[0], true).c_str())); str.append(StringPrintf(":%d",incoming[0])); int i; for (i = 1; i < uses; i++) { str.append(StringPrintf(", %s:%d", GetSSANameWithConst(cu, ssa_rep->uses[i], true).c_str(), incoming[i])); } str.append(")"); } else if (flags & Instruction::kBranch) { // For branches, decode the instructions to print out the branch targets. int offset = 0; switch (dalvik_format) { case Instruction::k21t: str.append(StringPrintf(" %s,", GetSSANameWithConst(cu, ssa_rep->uses[0], false).c_str())); offset = insn.vB; break; case Instruction::k22t: str.append(StringPrintf(" %s, %s,", GetSSANameWithConst(cu, ssa_rep->uses[0], false).c_str(), GetSSANameWithConst(cu, ssa_rep->uses[1], false).c_str())); offset = insn.vC; break; case Instruction::k10t: case Instruction::k20t: case Instruction::k30t: offset = insn.vA; break; default: LOG(FATAL) << "Unexpected branch format " << dalvik_format << " from " << insn.opcode; } str.append(StringPrintf(" 0x%x (%c%x)", mir->offset + offset, offset > 0 ? '+' : '-', offset > 0 ? offset : -offset)); } else { // For invokes-style formats, treat wide regs as a pair of singles bool show_singles = ((dalvik_format == Instruction::k35c) || (dalvik_format == Instruction::k3rc)); if (defs != 0) { str.append(StringPrintf(" %s", GetSSANameWithConst(cu, ssa_rep->defs[0], false).c_str())); if (uses != 0) { str.append(", "); } } for (int i = 0; i < uses; i++) { str.append( StringPrintf(" %s", GetSSANameWithConst(cu, ssa_rep->uses[i], show_singles).c_str())); if (!show_singles && (cu->reg_location != NULL) && cu->reg_location[i].wide) { // For the listing, skip the high sreg. i++; } if (i != (uses -1)) { str.append(","); } } switch (dalvik_format) { case Instruction::k11n: // Add one immediate from vB case Instruction::k21s: case Instruction::k31i: case Instruction::k21h: str.append(StringPrintf(", #%d", insn.vB)); break; case Instruction::k51l: // Add one wide immediate str.append(StringPrintf(", #%lld", insn.vB_wide)); break; case Instruction::k21c: // One register, one string/type/method index case Instruction::k31c: str.append(StringPrintf(", index #%d", insn.vB)); break; case Instruction::k22c: // Two registers, one string/type/method index str.append(StringPrintf(", index #%d", insn.vC)); break; case Instruction::k22s: // Add one immediate from vC case Instruction::k22b: str.append(StringPrintf(", #%d", insn.vC)); break; default: ; // Nothing left to print } } if (nop) { str.append("]--optimized away"); } int length = str.length() + 1; ret = static_cast(NewMem(cu, length, false, kAllocDFInfo)); strncpy(ret, str.c_str(), length); return ret; } /* Any register that is used before being defined is considered live-in */ static void HandleLiveInUse(CompilationUnit* cu, ArenaBitVector* use_v, ArenaBitVector* def_v, ArenaBitVector* live_in_v, int dalvik_reg_id) { SetBit(cu, use_v, dalvik_reg_id); if (!IsBitSet(def_v, dalvik_reg_id)) { SetBit(cu, live_in_v, dalvik_reg_id); } } /* Mark a reg as being defined */ static void HandleDef(CompilationUnit* cu, ArenaBitVector* def_v, int dalvik_reg_id) { SetBit(cu, def_v, dalvik_reg_id); } /* * Find out live-in variables for natural loops. Variables that are live-in in * the main loop body are considered to be defined in the entry block. */ bool FindLocalLiveIn(CompilationUnit* cu, BasicBlock* bb) { MIR* mir; ArenaBitVector *use_v, *def_v, *live_in_v; if (bb->data_flow_info == NULL) return false; use_v = bb->data_flow_info->use_v = AllocBitVector(cu, cu->num_dalvik_registers, false, kBitMapUse); def_v = bb->data_flow_info->def_v = AllocBitVector(cu, cu->num_dalvik_registers, false, kBitMapDef); live_in_v = bb->data_flow_info->live_in_v = AllocBitVector(cu, cu->num_dalvik_registers, false, kBitMapLiveIn); for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) { int df_attributes = oat_data_flow_attributes[mir->dalvikInsn.opcode]; DecodedInstruction *d_insn = &mir->dalvikInsn; if (df_attributes & DF_HAS_USES) { if (df_attributes & DF_UA) { HandleLiveInUse(cu, use_v, def_v, live_in_v, d_insn->vA); if (df_attributes & DF_A_WIDE) { HandleLiveInUse(cu, use_v, def_v, live_in_v, d_insn->vA+1); } } if (df_attributes & DF_UB) { HandleLiveInUse(cu, use_v, def_v, live_in_v, d_insn->vB); if (df_attributes & DF_B_WIDE) { HandleLiveInUse(cu, use_v, def_v, live_in_v, d_insn->vB+1); } } if (df_attributes & DF_UC) { HandleLiveInUse(cu, use_v, def_v, live_in_v, d_insn->vC); if (df_attributes & DF_C_WIDE) { HandleLiveInUse(cu, use_v, def_v, live_in_v, d_insn->vC+1); } } } if (df_attributes & DF_FORMAT_35C) { for (unsigned int i = 0; i < d_insn->vA; i++) { HandleLiveInUse(cu, use_v, def_v, live_in_v, d_insn->arg[i]); } } if (df_attributes & DF_FORMAT_3RC) { for (unsigned int i = 0; i < d_insn->vA; i++) { HandleLiveInUse(cu, use_v, def_v, live_in_v, d_insn->vC+i); } } if (df_attributes & DF_HAS_DEFS) { HandleDef(cu, def_v, d_insn->vA); if (df_attributes & DF_A_WIDE) { HandleDef(cu, def_v, d_insn->vA+1); } } } return true; } static int AddNewSReg(CompilationUnit* cu, int v_reg) { // Compiler temps always have a subscript of 0 int subscript = (v_reg < 0) ? 0 : ++cu->ssa_last_defs[v_reg]; int ssa_reg = cu->num_ssa_regs++; InsertGrowableList(cu, cu->ssa_base_vregs, v_reg); InsertGrowableList(cu, cu->ssa_subscripts, subscript); std::string ssa_name = GetSSAName(cu, ssa_reg); char* name = static_cast(NewMem(cu, ssa_name.length() + 1, false, kAllocDFInfo)); strncpy(name, ssa_name.c_str(), ssa_name.length() + 1); InsertGrowableList(cu, cu->ssa_strings, reinterpret_cast(name)); DCHECK_EQ(cu->ssa_base_vregs->num_used, cu->ssa_subscripts->num_used); return ssa_reg; } /* Find out the latest SSA register for a given Dalvik register */ static void HandleSSAUse(CompilationUnit* cu, int* uses, int dalvik_reg, int reg_index) { DCHECK((dalvik_reg >= 0) && (dalvik_reg < cu->num_dalvik_registers)); uses[reg_index] = cu->vreg_to_ssa_map[dalvik_reg]; } /* Setup a new SSA register for a given Dalvik register */ static void HandleSSADef(CompilationUnit* cu, int* defs, int dalvik_reg, int reg_index) { DCHECK((dalvik_reg >= 0) && (dalvik_reg < cu->num_dalvik_registers)); int ssa_reg = AddNewSReg(cu, dalvik_reg); cu->vreg_to_ssa_map[dalvik_reg] = ssa_reg; defs[reg_index] = ssa_reg; } /* Look up new SSA names for format_35c instructions */ static void DataFlowSSAFormat35C(CompilationUnit* cu, MIR* mir) { DecodedInstruction *d_insn = &mir->dalvikInsn; int num_uses = d_insn->vA; int i; mir->ssa_rep->num_uses = num_uses; mir->ssa_rep->uses = static_cast(NewMem(cu, sizeof(int) * num_uses, true, kAllocDFInfo)); // NOTE: will be filled in during type & size inference pass mir->ssa_rep->fp_use = static_cast(NewMem(cu, sizeof(bool) * num_uses, true, kAllocDFInfo)); for (i = 0; i < num_uses; i++) { HandleSSAUse(cu, mir->ssa_rep->uses, d_insn->arg[i], i); } } /* Look up new SSA names for format_3rc instructions */ static void DataFlowSSAFormat3RC(CompilationUnit* cu, MIR* mir) { DecodedInstruction *d_insn = &mir->dalvikInsn; int num_uses = d_insn->vA; int i; mir->ssa_rep->num_uses = num_uses; mir->ssa_rep->uses = static_cast(NewMem(cu, sizeof(int) * num_uses, true, kAllocDFInfo)); // NOTE: will be filled in during type & size inference pass mir->ssa_rep->fp_use = static_cast(NewMem(cu, sizeof(bool) * num_uses, true, kAllocDFInfo)); for (i = 0; i < num_uses; i++) { HandleSSAUse(cu, mir->ssa_rep->uses, d_insn->vC+i, i); } } /* Entry function to convert a block into SSA representation */ bool DoSSAConversion(CompilationUnit* cu, BasicBlock* bb) { MIR* mir; if (bb->data_flow_info == NULL) return false; for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) { mir->ssa_rep = static_cast(NewMem(cu, sizeof(SSARepresentation), true, kAllocDFInfo)); int df_attributes = oat_data_flow_attributes[mir->dalvikInsn.opcode]; // If not a pseudo-op, note non-leaf or can throw if (static_cast(mir->dalvikInsn.opcode) < static_cast(kNumPackedOpcodes)) { int flags = Instruction::FlagsOf(mir->dalvikInsn.opcode); if (flags & Instruction::kThrow) { cu->attrs &= ~METHOD_IS_THROW_FREE; } if (flags & Instruction::kInvoke) { cu->attrs &= ~METHOD_IS_LEAF; } } int num_uses = 0; if (df_attributes & DF_FORMAT_35C) { DataFlowSSAFormat35C(cu, mir); continue; } if (df_attributes & DF_FORMAT_3RC) { DataFlowSSAFormat3RC(cu, mir); continue; } if (df_attributes & DF_HAS_USES) { if (df_attributes & DF_UA) { num_uses++; if (df_attributes & DF_A_WIDE) { num_uses ++; } } if (df_attributes & DF_UB) { num_uses++; if (df_attributes & DF_B_WIDE) { num_uses ++; } } if (df_attributes & DF_UC) { num_uses++; if (df_attributes & DF_C_WIDE) { num_uses ++; } } } if (num_uses) { mir->ssa_rep->num_uses = num_uses; mir->ssa_rep->uses = static_cast(NewMem(cu, sizeof(int) * num_uses, false, kAllocDFInfo)); mir->ssa_rep->fp_use = static_cast(NewMem(cu, sizeof(bool) * num_uses, false, kAllocDFInfo)); } int num_defs = 0; if (df_attributes & DF_HAS_DEFS) { num_defs++; if (df_attributes & DF_A_WIDE) { num_defs++; } } if (num_defs) { mir->ssa_rep->num_defs = num_defs; mir->ssa_rep->defs = static_cast(NewMem(cu, sizeof(int) * num_defs, false, kAllocDFInfo)); mir->ssa_rep->fp_def = static_cast(NewMem(cu, sizeof(bool) * num_defs, false, kAllocDFInfo)); } DecodedInstruction *d_insn = &mir->dalvikInsn; if (df_attributes & DF_HAS_USES) { num_uses = 0; if (df_attributes & DF_UA) { mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_A; HandleSSAUse(cu, mir->ssa_rep->uses, d_insn->vA, num_uses++); if (df_attributes & DF_A_WIDE) { mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_A; HandleSSAUse(cu, mir->ssa_rep->uses, d_insn->vA+1, num_uses++); } } if (df_attributes & DF_UB) { mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_B; HandleSSAUse(cu, mir->ssa_rep->uses, d_insn->vB, num_uses++); if (df_attributes & DF_B_WIDE) { mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_B; HandleSSAUse(cu, mir->ssa_rep->uses, d_insn->vB+1, num_uses++); } } if (df_attributes & DF_UC) { mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_C; HandleSSAUse(cu, mir->ssa_rep->uses, d_insn->vC, num_uses++); if (df_attributes & DF_C_WIDE) { mir->ssa_rep->fp_use[num_uses] = df_attributes & DF_FP_C; HandleSSAUse(cu, mir->ssa_rep->uses, d_insn->vC+1, num_uses++); } } } if (df_attributes & DF_HAS_DEFS) { mir->ssa_rep->fp_def[0] = df_attributes & DF_FP_A; HandleSSADef(cu, mir->ssa_rep->defs, d_insn->vA, 0); if (df_attributes & DF_A_WIDE) { mir->ssa_rep->fp_def[1] = df_attributes & DF_FP_A; HandleSSADef(cu, mir->ssa_rep->defs, d_insn->vA+1, 1); } } } if (!cu->disable_dataflow) { /* * Take a snapshot of Dalvik->SSA mapping at the end of each block. The * input to PHI nodes can be derived from the snapshot of all * predecessor blocks. */ bb->data_flow_info->vreg_to_ssa_map = static_cast(NewMem(cu, sizeof(int) * cu->num_dalvik_registers, false, kAllocDFInfo)); memcpy(bb->data_flow_info->vreg_to_ssa_map, cu->vreg_to_ssa_map, sizeof(int) * cu->num_dalvik_registers); } return true; } /* Setup a constant value for opcodes thare have the DF_SETS_CONST attribute */ static void SetConstant(CompilationUnit* cu, int ssa_reg, int value) { SetBit(cu, cu->is_constant_v, ssa_reg); cu->constant_values[ssa_reg] = value; } bool DoConstantPropogation(CompilationUnit* cu, BasicBlock* bb) { MIR* mir; ArenaBitVector *is_constant_v = cu->is_constant_v; for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) { int df_attributes = oat_data_flow_attributes[mir->dalvikInsn.opcode]; DecodedInstruction *d_insn = &mir->dalvikInsn; if (!(df_attributes & DF_HAS_DEFS)) continue; /* Handle instructions that set up constants directly */ if (df_attributes & DF_SETS_CONST) { if (df_attributes & DF_DA) { switch (d_insn->opcode) { case Instruction::CONST_4: case Instruction::CONST_16: case Instruction::CONST: SetConstant(cu, mir->ssa_rep->defs[0], d_insn->vB); break; case Instruction::CONST_HIGH16: SetConstant(cu, mir->ssa_rep->defs[0], d_insn->vB << 16); break; case Instruction::CONST_WIDE_16: case Instruction::CONST_WIDE_32: SetConstant(cu, mir->ssa_rep->defs[0], d_insn->vB); SetConstant(cu, mir->ssa_rep->defs[1], 0); break; case Instruction::CONST_WIDE: SetConstant(cu, mir->ssa_rep->defs[0], static_cast(d_insn->vB_wide)); SetConstant(cu, mir->ssa_rep->defs[1], static_cast(d_insn->vB_wide >> 32)); break; case Instruction::CONST_WIDE_HIGH16: SetConstant(cu, mir->ssa_rep->defs[0], 0); SetConstant(cu, mir->ssa_rep->defs[1], d_insn->vB << 16); break; default: break; } } /* Handle instructions that set up constants directly */ } else if (df_attributes & DF_IS_MOVE) { int i; for (i = 0; i < mir->ssa_rep->num_uses; i++) { if (!IsBitSet(is_constant_v, mir->ssa_rep->uses[i])) break; } /* Move a register holding a constant to another register */ if (i == mir->ssa_rep->num_uses) { SetConstant(cu, mir->ssa_rep->defs[0], cu->constant_values[mir->ssa_rep->uses[0]]); if (df_attributes & DF_A_WIDE) { SetConstant(cu, mir->ssa_rep->defs[1], cu->constant_values[mir->ssa_rep->uses[1]]); } } } } /* TODO: implement code to handle arithmetic operations */ return true; } /* Setup the basic data structures for SSA conversion */ void CompilerInitializeSSAConversion(CompilationUnit* cu) { int i; int num_dalvik_reg = cu->num_dalvik_registers; cu->ssa_base_vregs = static_cast(NewMem(cu, sizeof(GrowableList), false, kAllocDFInfo)); cu->ssa_subscripts = static_cast(NewMem(cu, sizeof(GrowableList), false, kAllocDFInfo)); cu->ssa_strings = static_cast(NewMem(cu, sizeof(GrowableList), false, kAllocDFInfo)); // Create the ssa mappings, estimating the max size CompilerInitGrowableList(cu, cu->ssa_base_vregs, num_dalvik_reg + cu->def_count + 128, kListSSAtoDalvikMap); CompilerInitGrowableList(cu, cu->ssa_subscripts, num_dalvik_reg + cu->def_count + 128, kListSSAtoDalvikMap); CompilerInitGrowableList(cu, cu->ssa_strings, num_dalvik_reg + cu->def_count + 128, kListSSAtoDalvikMap); /* * Initial number of SSA registers is equal to the number of Dalvik * registers. */ cu->num_ssa_regs = num_dalvik_reg; /* * Initialize the SSA2Dalvik map list. For the first num_dalvik_reg elements, * the subscript is 0 so we use the ENCODE_REG_SUB macro to encode the value * into "(0 << 16) | i" */ for (i = 0; i < num_dalvik_reg; i++) { InsertGrowableList(cu, cu->ssa_base_vregs, i); InsertGrowableList(cu, cu->ssa_subscripts, 0); std::string ssa_name = GetSSAName(cu, i); char* name = static_cast(NewMem(cu, ssa_name.length() + 1, true, kAllocDFInfo)); strncpy(name, ssa_name.c_str(), ssa_name.length() + 1); InsertGrowableList(cu, cu->ssa_strings, reinterpret_cast(name)); } /* * Initialize the DalvikToSSAMap map. There is one entry for each * Dalvik register, and the SSA names for those are the same. */ cu->vreg_to_ssa_map = static_cast(NewMem(cu, sizeof(int) * num_dalvik_reg, false, kAllocDFInfo)); /* Keep track of the higest def for each dalvik reg */ cu->ssa_last_defs = static_cast(NewMem(cu, sizeof(int) * num_dalvik_reg, false, kAllocDFInfo)); for (i = 0; i < num_dalvik_reg; i++) { cu->vreg_to_ssa_map[i] = i; cu->ssa_last_defs[i] = 0; } /* Add ssa reg for Method* */ cu->method_sreg = AddNewSReg(cu, SSA_METHOD_BASEREG); /* * Allocate the BasicBlockDataFlow structure for the entry and code blocks */ GrowableListIterator iterator; GrowableListIteratorInit(&cu->block_list, &iterator); while (true) { BasicBlock* bb = reinterpret_cast(GrowableListIteratorNext(&iterator)); if (bb == NULL) break; if (bb->hidden == true) continue; if (bb->block_type == kDalvikByteCode || bb->block_type == kEntryBlock || bb->block_type == kExitBlock) { bb->data_flow_info = static_cast(NewMem(cu, sizeof(BasicBlockDataFlow), true, kAllocDFInfo)); } } } /* Clear the visited flag for each BB */ bool ClearVisitedFlag(struct CompilationUnit* cu, struct BasicBlock* bb) { bb->visited = false; return true; } void DataFlowAnalysisDispatcher(CompilationUnit* cu, bool (*func)(CompilationUnit*, BasicBlock*), DataFlowAnalysisMode dfa_mode, bool is_iterative) { bool change = true; while (change) { change = false; switch (dfa_mode) { /* Scan all blocks and perform the operations specified in func */ case kAllNodes: { GrowableListIterator iterator; GrowableListIteratorInit(&cu->block_list, &iterator); while (true) { BasicBlock* bb = reinterpret_cast(GrowableListIteratorNext(&iterator)); if (bb == NULL) break; if (bb->hidden == true) continue; change |= (*func)(cu, bb); } } break; /* Scan reachable blocks and perform the ops specified in func. */ case kReachableNodes: { int num_reachable_blocks = cu->num_reachable_blocks; int idx; const GrowableList *block_list = &cu->block_list; for (idx = 0; idx < num_reachable_blocks; idx++) { int block_idx = cu->dfs_order.elem_list[idx]; BasicBlock* bb = reinterpret_cast( GrowableListGetElement(block_list, block_idx)); change |= (*func)(cu, bb); } } break; /* Scan reachable blocks by pre-order dfs and invoke func on each. */ case kPreOrderDFSTraversal: { int num_reachable_blocks = cu->num_reachable_blocks; int idx; const GrowableList *block_list = &cu->block_list; for (idx = 0; idx < num_reachable_blocks; idx++) { int dfs_idx = cu->dfs_order.elem_list[idx]; BasicBlock* bb = reinterpret_cast(GrowableListGetElement(block_list, dfs_idx)); change |= (*func)(cu, bb); } } break; /* Scan reachable blocks post-order dfs and invoke func on each. */ case kPostOrderDFSTraversal: { int num_reachable_blocks = cu->num_reachable_blocks; int idx; const GrowableList *block_list = &cu->block_list; for (idx = num_reachable_blocks - 1; idx >= 0; idx--) { int dfs_idx = cu->dfs_order.elem_list[idx]; BasicBlock* bb = reinterpret_cast( GrowableListGetElement(block_list, dfs_idx)); change |= (*func)(cu, bb); } } break; /* Scan reachable post-order dom tree and invoke func on each. */ case kPostOrderDOMTraversal: { int num_reachable_blocks = cu->num_reachable_blocks; int idx; const GrowableList *block_list = &cu->block_list; for (idx = 0; idx < num_reachable_blocks; idx++) { int dom_idx = cu->dom_post_order_traversal.elem_list[idx]; BasicBlock* bb = reinterpret_cast( GrowableListGetElement(block_list, dom_idx)); change |= (*func)(cu, bb); } } break; /* Scan reachable blocks reverse post-order dfs, invoke func on each */ case kReversePostOrderTraversal: { int num_reachable_blocks = cu->num_reachable_blocks; int idx; const GrowableList *block_list = &cu->block_list; for (idx = num_reachable_blocks - 1; idx >= 0; idx--) { int rev_idx = cu->dfs_post_order.elem_list[idx]; BasicBlock* bb = reinterpret_cast(GrowableListGetElement(block_list, rev_idx)); change |= (*func)(cu, bb); } } break; default: LOG(FATAL) << "Unknown traversal mode: " << dfa_mode; } /* If is_iterative is false, exit the loop after the first iteration */ change &= is_iterative; } } /* Advance to next strictly dominated MIR node in an extended basic block */ static MIR* AdvanceMIR(CompilationUnit* cu, BasicBlock** p_bb, MIR* mir) { BasicBlock* bb = *p_bb; if (mir != NULL) { mir = mir->next; if (mir == NULL) { bb = bb->fall_through; if ((bb == NULL) || bb->predecessors->num_used != 1) { mir = NULL; } else { *p_bb = bb; mir = bb->first_mir_insn; } } } return mir; } /* * To be used at an invoke mir. If the logically next mir node represents * a move-result, return it. Else, return NULL. If a move-result exists, * it is required to immediately follow the invoke with no intervening * opcodes or incoming arcs. However, if the result of the invoke is not * used, a move-result may not be present. */ MIR* FindMoveResult(CompilationUnit* cu, BasicBlock* bb, MIR* mir) { BasicBlock* tbb = bb; mir = AdvanceMIR(cu, &tbb, mir); while (mir != NULL) { int opcode = mir->dalvikInsn.opcode; if ((mir->dalvikInsn.opcode == Instruction::MOVE_RESULT) || (mir->dalvikInsn.opcode == Instruction::MOVE_RESULT_OBJECT) || (mir->dalvikInsn.opcode == Instruction::MOVE_RESULT_WIDE)) { break; } // Keep going if pseudo op, otherwise terminate if (opcode < kNumPackedOpcodes) { mir = NULL; } else { mir = AdvanceMIR(cu, &tbb, mir); } } return mir; } static BasicBlock* NextDominatedBlock(CompilationUnit* cu, BasicBlock* bb) { DCHECK((bb->block_type == kEntryBlock) || (bb->block_type == kDalvikByteCode) || (bb->block_type == kExitBlock)); bb = bb->fall_through; if (bb == NULL || (bb->predecessors->num_used != 1)) { return NULL; } DCHECK((bb->block_type == kDalvikByteCode) || (bb->block_type == kExitBlock)); return bb; } /* Do some MIR-level extended basic block optimizations */ static bool BasicBlockOpt(CompilationUnit* cu, BasicBlock* bb) { int num_temps = 0; BBOpt bb_opt(cu); while (bb != NULL) { for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) { // TUNING: use the returned value number for CSE. bb_opt.GetValueNumber(mir); // Look for interesting opcodes, skip otherwise Instruction::Code opcode = mir->dalvikInsn.opcode; switch (opcode) { case Instruction::CMPL_FLOAT: case Instruction::CMPL_DOUBLE: case Instruction::CMPG_FLOAT: case Instruction::CMPG_DOUBLE: case Instruction::CMP_LONG: if (cu->gen_bitcode) { // Bitcode doesn't allow this optimization. break; } if (mir->next != NULL) { MIR* mir_next = mir->next; Instruction::Code br_opcode = mir_next->dalvikInsn.opcode; ConditionCode ccode = kCondNv; switch(br_opcode) { case Instruction::IF_EQZ: ccode = kCondEq; break; case Instruction::IF_NEZ: ccode = kCondNe; break; case Instruction::IF_LTZ: ccode = kCondLt; break; case Instruction::IF_GEZ: ccode = kCondGe; break; case Instruction::IF_GTZ: ccode = kCondGt; break; case Instruction::IF_LEZ: ccode = kCondLe; break; default: break; } // Make sure result of cmp is used by next insn and nowhere else if ((ccode != kCondNv) && (mir->ssa_rep->defs[0] == mir_next->ssa_rep->uses[0]) && (GetSSAUseCount(cu, mir->ssa_rep->defs[0]) == 1)) { mir_next->dalvikInsn.arg[0] = ccode; switch(opcode) { case Instruction::CMPL_FLOAT: mir_next->dalvikInsn.opcode = static_cast(kMirOpFusedCmplFloat); break; case Instruction::CMPL_DOUBLE: mir_next->dalvikInsn.opcode = static_cast(kMirOpFusedCmplDouble); break; case Instruction::CMPG_FLOAT: mir_next->dalvikInsn.opcode = static_cast(kMirOpFusedCmpgFloat); break; case Instruction::CMPG_DOUBLE: mir_next->dalvikInsn.opcode = static_cast(kMirOpFusedCmpgDouble); break; case Instruction::CMP_LONG: mir_next->dalvikInsn.opcode = static_cast(kMirOpFusedCmpLong); break; default: LOG(ERROR) << "Unexpected opcode: " << opcode; } mir->dalvikInsn.opcode = static_cast(kMirOpNop); mir_next->ssa_rep->num_uses = mir->ssa_rep->num_uses; mir_next->ssa_rep->uses = mir->ssa_rep->uses; mir_next->ssa_rep->fp_use = mir->ssa_rep->fp_use; mir_next->ssa_rep->num_defs = 0; mir->ssa_rep->num_uses = 0; mir->ssa_rep->num_defs = 0; } } break; default: break; } } bb = NextDominatedBlock(cu, bb); } if (num_temps > cu->num_compiler_temps) { cu->num_compiler_temps = num_temps; } return true; } static bool NullCheckEliminationInit(struct CompilationUnit* cu, struct BasicBlock* bb) { if (bb->data_flow_info == NULL) return false; bb->data_flow_info->ending_null_check_v = AllocBitVector(cu, cu->num_ssa_regs, false, kBitMapNullCheck); ClearAllBits(bb->data_flow_info->ending_null_check_v); return true; } /* Collect stats on number of checks removed */ static bool CountChecks( struct CompilationUnit* cu, struct BasicBlock* bb) { if (bb->data_flow_info == NULL) return false; for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) { if (mir->ssa_rep == NULL) { continue; } int df_attributes = oat_data_flow_attributes[mir->dalvikInsn.opcode]; if (df_attributes & DF_HAS_NULL_CHKS) { cu->checkstats->null_checks++; if (mir->optimization_flags & MIR_IGNORE_NULL_CHECK) { cu->checkstats->null_checks_eliminated++; } } if (df_attributes & DF_HAS_RANGE_CHKS) { cu->checkstats->range_checks++; if (mir->optimization_flags & MIR_IGNORE_RANGE_CHECK) { cu->checkstats->range_checks_eliminated++; } } } return false; } /* Try to make common case the fallthrough path */ static bool LayoutBlocks(struct CompilationUnit* cu, struct BasicBlock* bb) { // TODO: For now, just looking for direct throws. Consider generalizing for profile feedback if (!bb->explicit_throw) { return false; } BasicBlock* walker = bb; while (true) { // Check termination conditions if ((walker->block_type == kEntryBlock) || (walker->predecessors->num_used != 1)) { break; } BasicBlock* prev = GET_ELEM_N(walker->predecessors, BasicBlock*, 0); if (prev->conditional_branch) { if (prev->fall_through == walker) { // Already done - return break; } DCHECK_EQ(walker, prev->taken); // Got one. Flip it and exit Instruction::Code opcode = prev->last_mir_insn->dalvikInsn.opcode; switch (opcode) { case Instruction::IF_EQ: opcode = Instruction::IF_NE; break; case Instruction::IF_NE: opcode = Instruction::IF_EQ; break; case Instruction::IF_LT: opcode = Instruction::IF_GE; break; case Instruction::IF_GE: opcode = Instruction::IF_LT; break; case Instruction::IF_GT: opcode = Instruction::IF_LE; break; case Instruction::IF_LE: opcode = Instruction::IF_GT; break; case Instruction::IF_EQZ: opcode = Instruction::IF_NEZ; break; case Instruction::IF_NEZ: opcode = Instruction::IF_EQZ; break; case Instruction::IF_LTZ: opcode = Instruction::IF_GEZ; break; case Instruction::IF_GEZ: opcode = Instruction::IF_LTZ; break; case Instruction::IF_GTZ: opcode = Instruction::IF_LEZ; break; case Instruction::IF_LEZ: opcode = Instruction::IF_GTZ; break; default: LOG(FATAL) << "Unexpected opcode " << opcode; } prev->last_mir_insn->dalvikInsn.opcode = opcode; BasicBlock* t_bb = prev->taken; prev->taken = prev->fall_through; prev->fall_through = t_bb; break; } walker = prev; } return false; } /* Combine any basic blocks terminated by instructions that we now know can't throw */ static bool CombineBlocks(struct CompilationUnit* cu, struct BasicBlock* bb) { // Loop here to allow combining a sequence of blocks while (true) { // Check termination conditions if ((bb->first_mir_insn == NULL) || (bb->data_flow_info == NULL) || (bb->block_type == kExceptionHandling) || (bb->block_type == kExitBlock) || (bb->block_type == kDead) || ((bb->taken == NULL) || (bb->taken->block_type != kExceptionHandling)) || (bb->successor_block_list.block_list_type != kNotUsed) || (static_cast(bb->last_mir_insn->dalvikInsn.opcode) != kMirOpCheck)) { break; } // Test the kMirOpCheck instruction MIR* mir = bb->last_mir_insn; // Grab the attributes from the paired opcode MIR* throw_insn = mir->meta.throw_insn; int df_attributes = oat_data_flow_attributes[throw_insn->dalvikInsn.opcode]; bool can_combine = true; if (df_attributes & DF_HAS_NULL_CHKS) { can_combine &= ((throw_insn->optimization_flags & MIR_IGNORE_NULL_CHECK) != 0); } if (df_attributes & DF_HAS_RANGE_CHKS) { can_combine &= ((throw_insn->optimization_flags & MIR_IGNORE_RANGE_CHECK) != 0); } if (!can_combine) { break; } // OK - got one. Combine BasicBlock* bb_next = bb->fall_through; DCHECK(!bb_next->catch_entry); DCHECK_EQ(bb_next->predecessors->num_used, 1U); MIR* t_mir = bb->last_mir_insn->prev; // Overwrite the kOpCheck insn with the paired opcode DCHECK_EQ(bb_next->first_mir_insn, throw_insn); *bb->last_mir_insn = *throw_insn; bb->last_mir_insn->prev = t_mir; // Use the successor info from the next block bb->successor_block_list = bb_next->successor_block_list; // Use the ending block linkage from the next block bb->fall_through = bb_next->fall_through; bb->taken->block_type = kDead; // Kill the unused exception block bb->taken = bb_next->taken; // Include the rest of the instructions bb->last_mir_insn = bb_next->last_mir_insn; /* * NOTE: we aren't updating all dataflow info here. Should either make sure this pass * happens after uses of i_dominated, dom_frontier or update the dataflow info here. */ // Kill bb_next and remap now-dead id to parent bb_next->block_type = kDead; cu->block_id_map.Overwrite(bb_next->id, bb->id); // Now, loop back and see if we can keep going } return false; } /* Eliminate unnecessary null checks for a basic block. */ static bool EliminateNullChecks( struct CompilationUnit* cu, struct BasicBlock* bb) { if (bb->data_flow_info == NULL) return false; /* * Set initial state. Be conservative with catch * blocks and start with no assumptions about null check * status (except for "this"). */ if ((bb->block_type == kEntryBlock) | bb->catch_entry) { ClearAllBits(cu->temp_ssa_register_v); if ((cu->access_flags & kAccStatic) == 0) { // If non-static method, mark "this" as non-null int this_reg = cu->num_dalvik_registers - cu->num_ins; SetBit(cu, cu->temp_ssa_register_v, this_reg); } } else { // Starting state is intesection of all incoming arcs GrowableListIterator iter; GrowableListIteratorInit(bb->predecessors, &iter); BasicBlock* pred_bb = reinterpret_cast(GrowableListIteratorNext(&iter)); DCHECK(pred_bb != NULL); CopyBitVector(cu->temp_ssa_register_v, pred_bb->data_flow_info->ending_null_check_v); while (true) { pred_bb = reinterpret_cast(GrowableListIteratorNext(&iter)); if (!pred_bb) break; if ((pred_bb->data_flow_info == NULL) || (pred_bb->data_flow_info->ending_null_check_v == NULL)) { continue; } IntersectBitVectors(cu->temp_ssa_register_v, cu->temp_ssa_register_v, pred_bb->data_flow_info->ending_null_check_v); } } // Walk through the instruction in the block, updating as necessary for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) { if (mir->ssa_rep == NULL) { continue; } int df_attributes = oat_data_flow_attributes[mir->dalvikInsn.opcode]; // Mark target of NEW* as non-null if (df_attributes & DF_NON_NULL_DST) { SetBit(cu, cu->temp_ssa_register_v, mir->ssa_rep->defs[0]); } // Mark non-null returns from invoke-style NEW* if (df_attributes & DF_NON_NULL_RET) { MIR* next_mir = mir->next; // Next should be an MOVE_RESULT_OBJECT if (next_mir && next_mir->dalvikInsn.opcode == Instruction::MOVE_RESULT_OBJECT) { // Mark as null checked SetBit(cu, cu->temp_ssa_register_v, next_mir->ssa_rep->defs[0]); } else { if (next_mir) { LOG(WARNING) << "Unexpected opcode following new: " << next_mir->dalvikInsn.opcode; } else if (bb->fall_through) { // Look in next basic block struct BasicBlock* next_bb = bb->fall_through; for (MIR* tmir = next_bb->first_mir_insn; tmir != NULL; tmir =tmir->next) { if (static_cast(tmir->dalvikInsn.opcode) >= static_cast(kMirOpFirst)) { continue; } // First non-pseudo should be MOVE_RESULT_OBJECT if (tmir->dalvikInsn.opcode == Instruction::MOVE_RESULT_OBJECT) { // Mark as null checked SetBit(cu, cu->temp_ssa_register_v, tmir->ssa_rep->defs[0]); } else { LOG(WARNING) << "Unexpected op after new: " << tmir->dalvikInsn.opcode; } break; } } } } /* * Propagate nullcheck state on register copies (including * Phi pseudo copies. For the latter, nullcheck state is * the "and" of all the Phi's operands. */ if (df_attributes & (DF_NULL_TRANSFER_0 | DF_NULL_TRANSFER_N)) { int tgt_sreg = mir->ssa_rep->defs[0]; int operands = (df_attributes & DF_NULL_TRANSFER_0) ? 1 : mir->ssa_rep->num_uses; bool null_checked = true; for (int i = 0; i < operands; i++) { null_checked &= IsBitSet(cu->temp_ssa_register_v, mir->ssa_rep->uses[i]); } if (null_checked) { SetBit(cu, cu->temp_ssa_register_v, tgt_sreg); } } // Already nullchecked? if ((df_attributes & DF_HAS_NULL_CHKS) && !(mir->optimization_flags & MIR_IGNORE_NULL_CHECK)) { int src_idx; if (df_attributes & DF_NULL_CHK_1) { src_idx = 1; } else if (df_attributes & DF_NULL_CHK_2) { src_idx = 2; } else { src_idx = 0; } int src_sreg = mir->ssa_rep->uses[src_idx]; if (IsBitSet(cu->temp_ssa_register_v, src_sreg)) { // Eliminate the null check mir->optimization_flags |= MIR_IGNORE_NULL_CHECK; } else { // Mark s_reg as null-checked SetBit(cu, cu->temp_ssa_register_v, src_sreg); } } } // Did anything change? bool res = CompareBitVectors(bb->data_flow_info->ending_null_check_v, cu->temp_ssa_register_v); if (res) { CopyBitVector(bb->data_flow_info->ending_null_check_v, cu->temp_ssa_register_v); } return res; } void NullCheckElimination(CompilationUnit *cu) { if (!(cu->disable_opt & (1 << kNullCheckElimination))) { DCHECK(cu->temp_ssa_register_v != NULL); DataFlowAnalysisDispatcher(cu, NullCheckEliminationInit, kAllNodes, false /* is_iterative */); DataFlowAnalysisDispatcher(cu, EliminateNullChecks, kPreOrderDFSTraversal, true /* is_iterative */); } } void BasicBlockCombine(CompilationUnit* cu) { DataFlowAnalysisDispatcher(cu, CombineBlocks, kPreOrderDFSTraversal, false); } void CodeLayout(CompilationUnit* cu) { DataFlowAnalysisDispatcher(cu, LayoutBlocks, kAllNodes, false); } void DumpCheckStats(CompilationUnit *cu) { Checkstats* stats = static_cast(NewMem(cu, sizeof(Checkstats), true, kAllocDFInfo)); cu->checkstats = stats; DataFlowAnalysisDispatcher(cu, CountChecks, kAllNodes, false /* is_iterative */); if (stats->null_checks > 0) { float eliminated = static_cast(stats->null_checks_eliminated); float checks = static_cast(stats->null_checks); LOG(INFO) << "Null Checks: " << PrettyMethod(cu->method_idx, *cu->dex_file) << " " << stats->null_checks_eliminated << " of " << stats->null_checks << " -> " << (eliminated/checks) * 100.0 << "%"; } if (stats->range_checks > 0) { float eliminated = static_cast(stats->range_checks_eliminated); float checks = static_cast(stats->range_checks); LOG(INFO) << "Range Checks: " << PrettyMethod(cu->method_idx, *cu->dex_file) << " " << stats->range_checks_eliminated << " of " << stats->range_checks << " -> " << (eliminated/checks) * 100.0 << "%"; } } bool BuildExtendedBBList(struct CompilationUnit* cu, struct BasicBlock* bb) { if (bb->visited) return false; if (!((bb->block_type == kEntryBlock) || (bb->block_type == kDalvikByteCode) || (bb->block_type == kExitBlock))) { // Ignore special blocks bb->visited = true; return false; } // Must be head of extended basic block. if (cu->verbose) { LOG(INFO) << "Extended bb head " << bb->id; } cu->extended_basic_blocks.push_back(bb); // Visit blocks strictly dominated by this head. while (bb != NULL) { bb->visited = true; bb = NextDominatedBlock(cu, bb); if (cu->verbose && (bb != NULL)) { LOG(INFO) << "...added bb " << bb->id; } } return false; // Not iterative - return value will be ignored } void BasicBlockOptimization(CompilationUnit *cu) { if (!(cu->disable_opt & (1 << kBBOpt))) { CompilerInitGrowableList(cu, &cu->compiler_temps, 6, kListMisc); DCHECK_EQ(cu->num_compiler_temps, 0); // Mark all blocks as not visited DataFlowAnalysisDispatcher(cu, ClearVisitedFlag, kAllNodes, false /* is_iterative */); DataFlowAnalysisDispatcher(cu, BuildExtendedBBList, kPreOrderDFSTraversal, false /* is_iterative */); // Perform extended basic block optimizations. for (unsigned int i = 0; i < cu->extended_basic_blocks.size(); i++) { BasicBlockOpt(cu, cu->extended_basic_blocks[i]); } } } static void AddLoopHeader(CompilationUnit* cu, BasicBlock* header, BasicBlock* back_edge) { GrowableListIterator iter; GrowableListIteratorInit(&cu->loop_headers, &iter); for (LoopInfo* loop = reinterpret_cast(GrowableListIteratorNext(&iter)); (loop != NULL); loop = reinterpret_cast(GrowableListIteratorNext(&iter))) { if (loop->header == header) { InsertGrowableList(cu, &loop->incoming_back_edges, reinterpret_cast(back_edge)); return; } } LoopInfo* info = static_cast(NewMem(cu, sizeof(LoopInfo), true, kAllocDFInfo)); info->header = header; CompilerInitGrowableList(cu, &info->incoming_back_edges, 2, kListMisc); InsertGrowableList(cu, &info->incoming_back_edges, reinterpret_cast(back_edge)); InsertGrowableList(cu, &cu->loop_headers, reinterpret_cast(info)); } static bool FindBackEdges(struct CompilationUnit* cu, struct BasicBlock* bb) { if ((bb->data_flow_info == NULL) || (bb->last_mir_insn == NULL)) { return false; } Instruction::Code opcode = bb->last_mir_insn->dalvikInsn.opcode; if (Instruction::FlagsOf(opcode) & Instruction::kBranch) { if (bb->taken && (bb->taken->start_offset <= bb->start_offset)) { DCHECK(bb->dominators != NULL); if (IsBitSet(bb->dominators, bb->taken->id)) { if (cu->verbose) { LOG(INFO) << "Loop backedge from 0x" << std::hex << bb->last_mir_insn->offset << " to 0x" << std::hex << bb->taken->start_offset; } AddLoopHeader(cu, bb->taken, bb); } } } return false; } static void AddBlocksToLoop(CompilationUnit* cu, ArenaBitVector* blocks, BasicBlock* bb, int head_id) { if (!IsBitSet(bb->dominators, head_id) || IsBitSet(blocks, bb->id)) { return; } SetBit(cu, blocks, bb->id); GrowableListIterator iter; GrowableListIteratorInit(bb->predecessors, &iter); BasicBlock* pred_bb; for (pred_bb = reinterpret_cast(GrowableListIteratorNext(&iter)); pred_bb != NULL; pred_bb = reinterpret_cast(GrowableListIteratorNext(&iter))) { AddBlocksToLoop(cu, blocks, pred_bb, head_id); } } static void DumpLoops(CompilationUnit *cu) { GrowableListIterator iter; GrowableListIteratorInit(&cu->loop_headers, &iter); for (LoopInfo* loop = reinterpret_cast(GrowableListIteratorNext(&iter)); (loop != NULL); loop = reinterpret_cast(GrowableListIteratorNext(&iter))) { LOG(INFO) << "Loop head block id " << loop->header->id << ", offset 0x" << std::hex << loop->header->start_offset << ", Depth: " << loop->header->nesting_depth; GrowableListIterator iter; GrowableListIteratorInit(&loop->incoming_back_edges, &iter); BasicBlock* edge_bb; for (edge_bb = reinterpret_cast(GrowableListIteratorNext(&iter)); edge_bb != NULL; edge_bb = reinterpret_cast(GrowableListIteratorNext(&iter))) { LOG(INFO) << " Backedge block id " << edge_bb->id << ", offset 0x" << std::hex << edge_bb->start_offset; ArenaBitVectorIterator b_iter; BitVectorIteratorInit(loop->blocks, &b_iter); for (int bb_id = BitVectorIteratorNext(&b_iter); bb_id != -1; bb_id = BitVectorIteratorNext(&b_iter)) { BasicBlock *bb; bb = reinterpret_cast(GrowableListGetElement(&cu->block_list, bb_id)); LOG(INFO) << " (" << bb->id << ", 0x" << std::hex << bb->start_offset << ")"; } } } } void LoopDetection(CompilationUnit *cu) { if (cu->disable_opt & (1 << kPromoteRegs)) { return; } CompilerInitGrowableList(cu, &cu->loop_headers, 6, kListMisc); // Find the loop headers DataFlowAnalysisDispatcher(cu, FindBackEdges, kAllNodes, false /* is_iterative */); GrowableListIterator iter; GrowableListIteratorInit(&cu->loop_headers, &iter); // Add blocks to each header for (LoopInfo* loop = reinterpret_cast(GrowableListIteratorNext(&iter)); loop != NULL; loop = reinterpret_cast(GrowableListIteratorNext(&iter))) { loop->blocks = AllocBitVector(cu, cu->num_blocks, true, kBitMapMisc); SetBit(cu, loop->blocks, loop->header->id); GrowableListIterator iter; GrowableListIteratorInit(&loop->incoming_back_edges, &iter); BasicBlock* edge_bb; for (edge_bb = reinterpret_cast(GrowableListIteratorNext(&iter)); edge_bb != NULL; edge_bb = reinterpret_cast(GrowableListIteratorNext(&iter))) { AddBlocksToLoop(cu, loop->blocks, edge_bb, loop->header->id); } } // Compute the nesting depth of each header GrowableListIteratorInit(&cu->loop_headers, &iter); for (LoopInfo* loop = reinterpret_cast(GrowableListIteratorNext(&iter)); loop != NULL; loop = reinterpret_cast(GrowableListIteratorNext(&iter))) { GrowableListIterator iter2; GrowableListIteratorInit(&cu->loop_headers, &iter2); LoopInfo* loop2; for (loop2 = reinterpret_cast(GrowableListIteratorNext(&iter2)); loop2 != NULL; loop2 = reinterpret_cast(GrowableListIteratorNext(&iter2))) { if (IsBitSet(loop2->blocks, loop->header->id)) { loop->header->nesting_depth++; } } } // Assign nesting depth to each block in all loops GrowableListIteratorInit(&cu->loop_headers, &iter); for (LoopInfo* loop = reinterpret_cast(GrowableListIteratorNext(&iter)); (loop != NULL); loop = reinterpret_cast(GrowableListIteratorNext(&iter))) { ArenaBitVectorIterator b_iter; BitVectorIteratorInit(loop->blocks, &b_iter); for (int bb_id = BitVectorIteratorNext(&b_iter); bb_id != -1; bb_id = BitVectorIteratorNext(&b_iter)) { BasicBlock *bb; bb = reinterpret_cast(GrowableListGetElement(&cu->block_list, bb_id)); bb->nesting_depth = std::max(bb->nesting_depth, loop->header->nesting_depth); } } if (cu->verbose) { DumpLoops(cu); } } /* * This function will make a best guess at whether the invoke will * end up using Method*. It isn't critical to get it exactly right, * and attempting to do would involve more complexity than it's * worth. */ static bool InvokeUsesMethodStar(CompilationUnit* cu, MIR* mir) { InvokeType type; Instruction::Code opcode = mir->dalvikInsn.opcode; switch (opcode) { case Instruction::INVOKE_STATIC: case Instruction::INVOKE_STATIC_RANGE: type = kStatic; break; case Instruction::INVOKE_DIRECT: case Instruction::INVOKE_DIRECT_RANGE: type = kDirect; break; case Instruction::INVOKE_VIRTUAL: case Instruction::INVOKE_VIRTUAL_RANGE: type = kVirtual; break; case Instruction::INVOKE_INTERFACE: case Instruction::INVOKE_INTERFACE_RANGE: return false; case Instruction::INVOKE_SUPER_RANGE: case Instruction::INVOKE_SUPER: type = kSuper; break; default: LOG(WARNING) << "Unexpected invoke op: " << opcode; return false; } OatCompilationUnit m_unit(cu->class_loader, cu->class_linker, *cu->dex_file, cu->code_item, cu->class_def_idx, cu->method_idx, cu->access_flags); // TODO: add a flag so we don't counts the stats for this twice uint32_t dex_method_idx = mir->dalvikInsn.vB; int vtable_idx; uintptr_t direct_code; uintptr_t direct_method; bool fast_path = cu->compiler->ComputeInvokeInfo(dex_method_idx, &m_unit, type, vtable_idx, direct_code, direct_method) && !SLOW_INVOKE_PATH; return (((type == kDirect) || (type == kStatic)) && fast_path && ((direct_code == 0) || (direct_method == 0))); } /* * Count uses, weighting by loop nesting depth. This code only * counts explicitly used s_regs. A later phase will add implicit * counts for things such as Method*, null-checked references, etc. */ static bool CountUses(struct CompilationUnit* cu, struct BasicBlock* bb) { if (bb->block_type != kDalvikByteCode) { return false; } for (MIR* mir = bb->first_mir_insn; (mir != NULL); mir = mir->next) { if (mir->ssa_rep == NULL) { continue; } uint32_t weight = std::min(16U, static_cast(bb->nesting_depth)); for (int i = 0; i < mir->ssa_rep->num_uses; i++) { int s_reg = mir->ssa_rep->uses[i]; DCHECK_LT(s_reg, static_cast(cu->use_counts.num_used)); cu->raw_use_counts.elem_list[s_reg]++; cu->use_counts.elem_list[s_reg] += (1 << weight); } if (!(cu->disable_opt & (1 << kPromoteCompilerTemps))) { int df_attributes = oat_data_flow_attributes[mir->dalvikInsn.opcode]; // Implicit use of Method* ? */ if (df_attributes & DF_UMS) { /* * Some invokes will not use Method* - need to perform test similar * to that found in GenInvoke() to decide whether to count refs * for Method* on invoke-class opcodes. * TODO: refactor for common test here, save results for GenInvoke */ int uses_method_star = true; if ((df_attributes & (DF_FORMAT_35C | DF_FORMAT_3RC)) && !(df_attributes & DF_NON_NULL_RET)) { uses_method_star &= InvokeUsesMethodStar(cu, mir); } if (uses_method_star) { cu->raw_use_counts.elem_list[cu->method_sreg]++; cu->use_counts.elem_list[cu->method_sreg] += (1 << weight); } } } } return false; } void MethodUseCount(CompilationUnit *cu) { CompilerInitGrowableList(cu, &cu->use_counts, cu->num_ssa_regs + 32, kListMisc); CompilerInitGrowableList(cu, &cu->raw_use_counts, cu->num_ssa_regs + 32, kListMisc); // Initialize list for (int i = 0; i < cu->num_ssa_regs; i++) { InsertGrowableList(cu, &cu->use_counts, 0); InsertGrowableList(cu, &cu->raw_use_counts, 0); } if (cu->disable_opt & (1 << kPromoteRegs)) { return; } DataFlowAnalysisDispatcher(cu, CountUses, kAllNodes, false /* is_iterative */); } } // namespace art