/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "object_utils.h" #include #include #include #include #include #include #include #include #include #include #include "../compiler_internals.h" #include "method_codegen_driver.h" #include "local_optimizations.h" #include "codegen_util.h" #include "ralloc_util.h" static const char* kLabelFormat = "%c0x%x_%d"; static const char kInvalidBlock = 0xff; static const char kNormalBlock = 'L'; static const char kCatchBlock = 'C'; namespace art { // TODO: unify bad_loc const RegLocation bad_loc = {kLocDalvikFrame, 0, 0, 0, 0, 0, 0, 0, 0, INVALID_REG, INVALID_REG, INVALID_SREG, INVALID_SREG}; static RegLocation GetLoc(CompilationUnit* cu, llvm::Value* val); static llvm::BasicBlock* GetLLVMBlock(CompilationUnit* cu, int id) { return cu->id_to_block_map.Get(id); } static llvm::Value* GetLLVMValue(CompilationUnit* cu, int s_reg) { return reinterpret_cast(GrowableListGetElement(&cu->llvm_values, s_reg)); } // Replace the placeholder value with the real definition static void DefineValue(CompilationUnit* cu, llvm::Value* val, int s_reg) { llvm::Value* placeholder = GetLLVMValue(cu, s_reg); if (placeholder == NULL) { // This can happen on instruction rewrite on verification failure LOG(WARNING) << "Null placeholder"; return; } placeholder->replaceAllUsesWith(val); val->takeName(placeholder); cu->llvm_values.elem_list[s_reg] = reinterpret_cast(val); llvm::Instruction* inst = llvm::dyn_cast(placeholder); DCHECK(inst != NULL); inst->eraseFromParent(); // Set vreg for debugging if (!cu->compiler->IsDebuggingSupported()) { greenland::IntrinsicHelper::IntrinsicId id = greenland::IntrinsicHelper::SetVReg; llvm::Function* func = cu->intrinsic_helper->GetIntrinsicFunction(id); int v_reg = SRegToVReg(cu, s_reg); llvm::Value* table_slot = cu->irb->getInt32(v_reg); llvm::Value* args[] = { table_slot, val }; cu->irb->CreateCall(func, args); } } static llvm::Type* LlvmTypeFromLocRec(CompilationUnit* cu, RegLocation loc) { llvm::Type* res = NULL; if (loc.wide) { if (loc.fp) res = cu->irb->getDoubleTy(); else res = cu->irb->getInt64Ty(); } else { if (loc.fp) { res = cu->irb->getFloatTy(); } else { if (loc.ref) res = cu->irb->GetJObjectTy(); else res = cu->irb->getInt32Ty(); } } return res; } /* Create an in-memory RegLocation from an llvm Value. */ static void CreateLocFromValue(CompilationUnit* cu, llvm::Value* val) { // NOTE: llvm takes shortcuts with c_str() - get to std::string firstt std::string s(val->getName().str()); const char* val_name = s.c_str(); SafeMap::iterator it = cu->loc_map.find(val); DCHECK(it == cu->loc_map.end()) << " - already defined: " << val_name; int base_sreg = INVALID_SREG; int subscript = -1; sscanf(val_name, "v%d_%d", &base_sreg, &subscript); if ((base_sreg == INVALID_SREG) && (!strcmp(val_name, "method"))) { base_sreg = SSA_METHOD_BASEREG; subscript = 0; } DCHECK_NE(base_sreg, INVALID_SREG); DCHECK_NE(subscript, -1); // TODO: redo during C++'ification RegLocation loc = {kLocDalvikFrame, 0, 0, 0, 0, 0, 0, 0, 0, INVALID_REG, INVALID_REG, INVALID_SREG, INVALID_SREG}; llvm::Type* ty = val->getType(); loc.wide = ((ty == cu->irb->getInt64Ty()) || (ty == cu->irb->getDoubleTy())); loc.defined = true; loc.home = false; // May change during promotion loc.s_reg_low = base_sreg; loc.orig_sreg = cu->loc_map.size(); PromotionMap p_map = cu->promotion_map[base_sreg]; if (ty == cu->irb->getFloatTy()) { loc.fp = true; if (p_map.fp_location == kLocPhysReg) { loc.low_reg = p_map.FpReg; loc.location = kLocPhysReg; loc.home = true; } } else if (ty == cu->irb->getDoubleTy()) { loc.fp = true; PromotionMap p_map_high = cu->promotion_map[base_sreg + 1]; if ((p_map.fp_location == kLocPhysReg) && (p_map_high.fp_location == kLocPhysReg) && ((p_map.FpReg & 0x1) == 0) && (p_map.FpReg + 1 == p_map_high.FpReg)) { loc.low_reg = p_map.FpReg; loc.high_reg = p_map_high.FpReg; loc.location = kLocPhysReg; loc.home = true; } } else if (ty == cu->irb->GetJObjectTy()) { loc.ref = true; if (p_map.core_location == kLocPhysReg) { loc.low_reg = p_map.core_reg; loc.location = kLocPhysReg; loc.home = true; } } else if (ty == cu->irb->getInt64Ty()) { loc.core = true; PromotionMap p_map_high = cu->promotion_map[base_sreg + 1]; if ((p_map.core_location == kLocPhysReg) && (p_map_high.core_location == kLocPhysReg)) { loc.low_reg = p_map.core_reg; loc.high_reg = p_map_high.core_reg; loc.location = kLocPhysReg; loc.home = true; } } else { loc.core = true; if (p_map.core_location == kLocPhysReg) { loc.low_reg = p_map.core_reg; loc.location = kLocPhysReg; loc.home = true; } } if (cu->verbose && loc.home) { if (loc.wide) { LOG(INFO) << "Promoted wide " << s << " to regs " << loc.low_reg << "/" << loc.high_reg; } else { LOG(INFO) << "Promoted " << s << " to reg " << loc.low_reg; } } cu->loc_map.Put(val, loc); } static void InitIR(CompilationUnit* cu) { LLVMInfo* llvm_info = cu->llvm_info; if (llvm_info == NULL) { CompilerTls* tls = cu->compiler->GetTls(); CHECK(tls != NULL); llvm_info = static_cast(tls->GetLLVMInfo()); if (llvm_info == NULL) { llvm_info = new LLVMInfo(); tls->SetLLVMInfo(llvm_info); } } cu->context = llvm_info->GetLLVMContext(); cu->module = llvm_info->GetLLVMModule(); cu->intrinsic_helper = llvm_info->GetIntrinsicHelper(); cu->irb = llvm_info->GetIRBuilder(); } static const char* LlvmSSAName(CompilationUnit* cu, int ssa_reg) { return GET_ELEM_N(cu->ssa_strings, char*, ssa_reg); } llvm::BasicBlock* FindCaseTarget(CompilationUnit* cu, uint32_t vaddr) { BasicBlock* bb = FindBlock(cu, vaddr); DCHECK(bb != NULL); return GetLLVMBlock(cu, bb->id); } static void ConvertPackedSwitch(CompilationUnit* cu, BasicBlock* bb, int32_t table_offset, RegLocation rl_src) { const Instruction::PackedSwitchPayload* payload = reinterpret_cast( cu->insns + cu->current_dalvik_offset + table_offset); llvm::Value* value = GetLLVMValue(cu, rl_src.orig_sreg); llvm::SwitchInst* sw = cu->irb->CreateSwitch(value, GetLLVMBlock(cu, bb->fall_through->id), payload->case_count); for (uint16_t i = 0; i < payload->case_count; ++i) { llvm::BasicBlock* llvm_bb = FindCaseTarget(cu, cu->current_dalvik_offset + payload->targets[i]); sw->addCase(cu->irb->getInt32(payload->first_key + i), llvm_bb); } llvm::MDNode* switch_node = llvm::MDNode::get(*cu->context, cu->irb->getInt32(table_offset)); sw->setMetadata("SwitchTable", switch_node); bb->taken = NULL; bb->fall_through = NULL; } static void ConvertSparseSwitch(CompilationUnit* cu, BasicBlock* bb, int32_t table_offset, RegLocation rl_src) { const Instruction::SparseSwitchPayload* payload = reinterpret_cast( cu->insns + cu->current_dalvik_offset + table_offset); const int32_t* keys = payload->GetKeys(); const int32_t* targets = payload->GetTargets(); llvm::Value* value = GetLLVMValue(cu, rl_src.orig_sreg); llvm::SwitchInst* sw = cu->irb->CreateSwitch(value, GetLLVMBlock(cu, bb->fall_through->id), payload->case_count); for (size_t i = 0; i < payload->case_count; ++i) { llvm::BasicBlock* llvm_bb = FindCaseTarget(cu, cu->current_dalvik_offset + targets[i]); sw->addCase(cu->irb->getInt32(keys[i]), llvm_bb); } llvm::MDNode* switch_node = llvm::MDNode::get(*cu->context, cu->irb->getInt32(table_offset)); sw->setMetadata("SwitchTable", switch_node); bb->taken = NULL; bb->fall_through = NULL; } static void ConvertSget(CompilationUnit* cu, int32_t field_index, greenland::IntrinsicHelper::IntrinsicId id, RegLocation rl_dest) { llvm::Constant* field_idx = cu->irb->getInt32(field_index); llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id); llvm::Value* res = cu->irb->CreateCall(intr, field_idx); DefineValue(cu, res, rl_dest.orig_sreg); } static void ConvertSput(CompilationUnit* cu, int32_t field_index, greenland::IntrinsicHelper::IntrinsicId id, RegLocation rl_src) { llvm::SmallVector args; args.push_back(cu->irb->getInt32(field_index)); args.push_back(GetLLVMValue(cu, rl_src.orig_sreg)); llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id); cu->irb->CreateCall(intr, args); } static void ConvertFillArrayData(CompilationUnit* cu, int32_t offset, RegLocation rl_array) { greenland::IntrinsicHelper::IntrinsicId id; id = greenland::IntrinsicHelper::HLFillArrayData; llvm::SmallVector args; args.push_back(cu->irb->getInt32(offset)); args.push_back(GetLLVMValue(cu, rl_array.orig_sreg)); llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id); cu->irb->CreateCall(intr, args); } static llvm::Value* EmitConst(CompilationUnit* cu, llvm::ArrayRef src, RegLocation loc) { greenland::IntrinsicHelper::IntrinsicId id; if (loc.wide) { if (loc.fp) { id = greenland::IntrinsicHelper::ConstDouble; } else { id = greenland::IntrinsicHelper::ConstLong; } } else { if (loc.fp) { id = greenland::IntrinsicHelper::ConstFloat; } else if (loc.ref) { id = greenland::IntrinsicHelper::ConstObj; } else { id = greenland::IntrinsicHelper::ConstInt; } } llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id); return cu->irb->CreateCall(intr, src); } static void EmitPopShadowFrame(CompilationUnit* cu) { llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction( greenland::IntrinsicHelper::PopShadowFrame); cu->irb->CreateCall(intr); } static llvm::Value* EmitCopy(CompilationUnit* cu, llvm::ArrayRef src, RegLocation loc) { greenland::IntrinsicHelper::IntrinsicId id; if (loc.wide) { if (loc.fp) { id = greenland::IntrinsicHelper::CopyDouble; } else { id = greenland::IntrinsicHelper::CopyLong; } } else { if (loc.fp) { id = greenland::IntrinsicHelper::CopyFloat; } else if (loc.ref) { id = greenland::IntrinsicHelper::CopyObj; } else { id = greenland::IntrinsicHelper::CopyInt; } } llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id); return cu->irb->CreateCall(intr, src); } static void ConvertMoveException(CompilationUnit* cu, RegLocation rl_dest) { llvm::Function* func = cu->intrinsic_helper->GetIntrinsicFunction( greenland::IntrinsicHelper::GetException); llvm::Value* res = cu->irb->CreateCall(func); DefineValue(cu, res, rl_dest.orig_sreg); } static void ConvertThrow(CompilationUnit* cu, RegLocation rl_src) { llvm::Value* src = GetLLVMValue(cu, rl_src.orig_sreg); llvm::Function* func = cu->intrinsic_helper->GetIntrinsicFunction( greenland::IntrinsicHelper::HLThrowException); cu->irb->CreateCall(func, src); } static void ConvertMonitorEnterExit(CompilationUnit* cu, int opt_flags, greenland::IntrinsicHelper::IntrinsicId id, RegLocation rl_src) { llvm::SmallVector args; args.push_back(cu->irb->getInt32(opt_flags)); args.push_back(GetLLVMValue(cu, rl_src.orig_sreg)); llvm::Function* func = cu->intrinsic_helper->GetIntrinsicFunction(id); cu->irb->CreateCall(func, args); } static void ConvertArrayLength(CompilationUnit* cu, int opt_flags, RegLocation rl_dest, RegLocation rl_src) { llvm::SmallVector args; args.push_back(cu->irb->getInt32(opt_flags)); args.push_back(GetLLVMValue(cu, rl_src.orig_sreg)); llvm::Function* func = cu->intrinsic_helper->GetIntrinsicFunction( greenland::IntrinsicHelper::OptArrayLength); llvm::Value* res = cu->irb->CreateCall(func, args); DefineValue(cu, res, rl_dest.orig_sreg); } static void EmitSuspendCheck(CompilationUnit* cu) { greenland::IntrinsicHelper::IntrinsicId id = greenland::IntrinsicHelper::CheckSuspend; llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id); cu->irb->CreateCall(intr); } static llvm::Value* ConvertCompare(CompilationUnit* cu, ConditionCode cc, llvm::Value* src1, llvm::Value* src2) { llvm::Value* res = NULL; DCHECK_EQ(src1->getType(), src2->getType()); switch(cc) { case kCondEq: res = cu->irb->CreateICmpEQ(src1, src2); break; case kCondNe: res = cu->irb->CreateICmpNE(src1, src2); break; case kCondLt: res = cu->irb->CreateICmpSLT(src1, src2); break; case kCondGe: res = cu->irb->CreateICmpSGE(src1, src2); break; case kCondGt: res = cu->irb->CreateICmpSGT(src1, src2); break; case kCondLe: res = cu->irb->CreateICmpSLE(src1, src2); break; default: LOG(FATAL) << "Unexpected cc value " << cc; } return res; } static void ConvertCompareAndBranch(CompilationUnit* cu, BasicBlock* bb, MIR* mir, ConditionCode cc, RegLocation rl_src1, RegLocation rl_src2) { if (bb->taken->start_offset <= mir->offset) { EmitSuspendCheck(cu); } llvm::Value* src1 = GetLLVMValue(cu, rl_src1.orig_sreg); llvm::Value* src2 = GetLLVMValue(cu, rl_src2.orig_sreg); llvm::Value* cond_value = ConvertCompare(cu, cc, src1, src2); cond_value->setName(StringPrintf("t%d", cu->temp_name++)); cu->irb->CreateCondBr(cond_value, GetLLVMBlock(cu, bb->taken->id), GetLLVMBlock(cu, bb->fall_through->id)); // Don't redo the fallthrough branch in the BB driver bb->fall_through = NULL; } static void ConvertCompareZeroAndBranch(CompilationUnit* cu, BasicBlock* bb, MIR* mir, ConditionCode cc, RegLocation rl_src1) { if (bb->taken->start_offset <= mir->offset) { EmitSuspendCheck(cu); } llvm::Value* src1 = GetLLVMValue(cu, rl_src1.orig_sreg); llvm::Value* src2; if (rl_src1.ref) { src2 = cu->irb->GetJNull(); } else { src2 = cu->irb->getInt32(0); } llvm::Value* cond_value = ConvertCompare(cu, cc, src1, src2); cu->irb->CreateCondBr(cond_value, GetLLVMBlock(cu, bb->taken->id), GetLLVMBlock(cu, bb->fall_through->id)); // Don't redo the fallthrough branch in the BB driver bb->fall_through = NULL; } static llvm::Value* GenDivModOp(CompilationUnit* cu, bool is_div, bool is_long, llvm::Value* src1, llvm::Value* src2) { greenland::IntrinsicHelper::IntrinsicId id; if (is_long) { if (is_div) { id = greenland::IntrinsicHelper::DivLong; } else { id = greenland::IntrinsicHelper::RemLong; } } else { if (is_div) { id = greenland::IntrinsicHelper::DivInt; } else { id = greenland::IntrinsicHelper::RemInt; } } llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id); llvm::SmallVectorargs; args.push_back(src1); args.push_back(src2); return cu->irb->CreateCall(intr, args); } static llvm::Value* GenArithOp(CompilationUnit* cu, OpKind op, bool is_long, llvm::Value* src1, llvm::Value* src2) { llvm::Value* res = NULL; switch(op) { case kOpAdd: res = cu->irb->CreateAdd(src1, src2); break; case kOpSub: res = cu->irb->CreateSub(src1, src2); break; case kOpRsub: res = cu->irb->CreateSub(src2, src1); break; case kOpMul: res = cu->irb->CreateMul(src1, src2); break; case kOpOr: res = cu->irb->CreateOr(src1, src2); break; case kOpAnd: res = cu->irb->CreateAnd(src1, src2); break; case kOpXor: res = cu->irb->CreateXor(src1, src2); break; case kOpDiv: res = GenDivModOp(cu, true, is_long, src1, src2); break; case kOpRem: res = GenDivModOp(cu, false, is_long, src1, src2); break; case kOpLsl: res = cu->irb->CreateShl(src1, src2); break; case kOpLsr: res = cu->irb->CreateLShr(src1, src2); break; case kOpAsr: res = cu->irb->CreateAShr(src1, src2); break; default: LOG(FATAL) << "Invalid op " << op; } return res; } static void ConvertFPArithOp(CompilationUnit* cu, OpKind op, RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) { llvm::Value* src1 = GetLLVMValue(cu, rl_src1.orig_sreg); llvm::Value* src2 = GetLLVMValue(cu, rl_src2.orig_sreg); llvm::Value* res = NULL; switch(op) { case kOpAdd: res = cu->irb->CreateFAdd(src1, src2); break; case kOpSub: res = cu->irb->CreateFSub(src1, src2); break; case kOpMul: res = cu->irb->CreateFMul(src1, src2); break; case kOpDiv: res = cu->irb->CreateFDiv(src1, src2); break; case kOpRem: res = cu->irb->CreateFRem(src1, src2); break; default: LOG(FATAL) << "Invalid op " << op; } DefineValue(cu, res, rl_dest.orig_sreg); } static void ConvertShift(CompilationUnit* cu, greenland::IntrinsicHelper::IntrinsicId id, RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) { llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id); llvm::SmallVectorargs; args.push_back(GetLLVMValue(cu, rl_src1.orig_sreg)); args.push_back(GetLLVMValue(cu, rl_src2.orig_sreg)); llvm::Value* res = cu->irb->CreateCall(intr, args); DefineValue(cu, res, rl_dest.orig_sreg); } static void ConvertShiftLit(CompilationUnit* cu, greenland::IntrinsicHelper::IntrinsicId id, RegLocation rl_dest, RegLocation rl_src, int shift_amount) { llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id); llvm::SmallVectorargs; args.push_back(GetLLVMValue(cu, rl_src.orig_sreg)); args.push_back(cu->irb->getInt32(shift_amount)); llvm::Value* res = cu->irb->CreateCall(intr, args); DefineValue(cu, res, rl_dest.orig_sreg); } static void ConvertArithOp(CompilationUnit* cu, OpKind op, RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) { llvm::Value* src1 = GetLLVMValue(cu, rl_src1.orig_sreg); llvm::Value* src2 = GetLLVMValue(cu, rl_src2.orig_sreg); DCHECK_EQ(src1->getType(), src2->getType()); llvm::Value* res = GenArithOp(cu, op, rl_dest.wide, src1, src2); DefineValue(cu, res, rl_dest.orig_sreg); } static void SetShadowFrameEntry(CompilationUnit* cu, llvm::Value* new_val) { int index = -1; DCHECK(new_val != NULL); int v_reg = SRegToVReg(cu, GetLoc(cu, new_val).orig_sreg); for (int i = 0; i < cu->num_shadow_frame_entries; i++) { if (cu->shadow_map[i] == v_reg) { index = i; break; } } if (index == -1) { return; } llvm::Type* ty = new_val->getType(); greenland::IntrinsicHelper::IntrinsicId id = greenland::IntrinsicHelper::SetShadowFrameEntry; llvm::Function* func = cu->intrinsic_helper->GetIntrinsicFunction(id); llvm::Value* table_slot = cu->irb->getInt32(index); // If new_val is a Null pointer, we'll see it here as a const int. Replace if (!ty->isPointerTy()) { // TODO: assert new_val created w/ dex_lang_const_int(0) or dex_lang_const_float(0) new_val = cu->irb->GetJNull(); } llvm::Value* args[] = { new_val, table_slot }; cu->irb->CreateCall(func, args); } static void ConvertArithOpLit(CompilationUnit* cu, OpKind op, RegLocation rl_dest, RegLocation rl_src1, int32_t imm) { llvm::Value* src1 = GetLLVMValue(cu, rl_src1.orig_sreg); llvm::Value* src2 = cu->irb->getInt32(imm); llvm::Value* res = GenArithOp(cu, op, rl_dest.wide, src1, src2); DefineValue(cu, res, rl_dest.orig_sreg); } /* * Process arguments for invoke. Note: this code is also used to * collect and process arguments for NEW_FILLED_ARRAY and NEW_FILLED_ARRAY_RANGE. * The requirements are similar. */ static void ConvertInvoke(CompilationUnit* cu, BasicBlock* bb, MIR* mir, InvokeType invoke_type, bool is_range, bool is_filled_new_array) { CallInfo* info = NewMemCallInfo(cu, bb, mir, invoke_type, is_range); llvm::SmallVector args; // Insert the invoke_type args.push_back(cu->irb->getInt32(static_cast(invoke_type))); // Insert the method_idx args.push_back(cu->irb->getInt32(info->index)); // Insert the optimization flags args.push_back(cu->irb->getInt32(info->opt_flags)); // Now, insert the actual arguments for (int i = 0; i < info->num_arg_words;) { llvm::Value* val = GetLLVMValue(cu, info->args[i].orig_sreg); args.push_back(val); i += info->args[i].wide ? 2 : 1; } /* * Choose the invoke return type based on actual usage. Note: may * be different than shorty. For example, if a function return value * is not used, we'll treat this as a void invoke. */ greenland::IntrinsicHelper::IntrinsicId id; if (is_filled_new_array) { id = greenland::IntrinsicHelper::HLFilledNewArray; } else if (info->result.location == kLocInvalid) { id = greenland::IntrinsicHelper::HLInvokeVoid; } else { if (info->result.wide) { if (info->result.fp) { id = greenland::IntrinsicHelper::HLInvokeDouble; } else { id = greenland::IntrinsicHelper::HLInvokeLong; } } else if (info->result.ref) { id = greenland::IntrinsicHelper::HLInvokeObj; } else if (info->result.fp) { id = greenland::IntrinsicHelper::HLInvokeFloat; } else { id = greenland::IntrinsicHelper::HLInvokeInt; } } llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id); llvm::Value* res = cu->irb->CreateCall(intr, args); if (info->result.location != kLocInvalid) { DefineValue(cu, res, info->result.orig_sreg); if (info->result.ref) { SetShadowFrameEntry(cu, reinterpret_cast (cu->llvm_values.elem_list[info->result.orig_sreg])); } } } static void ConvertConstObject(CompilationUnit* cu, uint32_t idx, greenland::IntrinsicHelper::IntrinsicId id, RegLocation rl_dest) { llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id); llvm::Value* index = cu->irb->getInt32(idx); llvm::Value* res = cu->irb->CreateCall(intr, index); DefineValue(cu, res, rl_dest.orig_sreg); } static void ConvertCheckCast(CompilationUnit* cu, uint32_t type_idx, RegLocation rl_src) { greenland::IntrinsicHelper::IntrinsicId id; id = greenland::IntrinsicHelper::HLCheckCast; llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id); llvm::SmallVector args; args.push_back(cu->irb->getInt32(type_idx)); args.push_back(GetLLVMValue(cu, rl_src.orig_sreg)); cu->irb->CreateCall(intr, args); } static void ConvertNewInstance(CompilationUnit* cu, uint32_t type_idx, RegLocation rl_dest) { greenland::IntrinsicHelper::IntrinsicId id; id = greenland::IntrinsicHelper::NewInstance; llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id); llvm::Value* index = cu->irb->getInt32(type_idx); llvm::Value* res = cu->irb->CreateCall(intr, index); DefineValue(cu, res, rl_dest.orig_sreg); } static void ConvertNewArray(CompilationUnit* cu, uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src) { greenland::IntrinsicHelper::IntrinsicId id; id = greenland::IntrinsicHelper::NewArray; llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id); llvm::SmallVector args; args.push_back(cu->irb->getInt32(type_idx)); args.push_back(GetLLVMValue(cu, rl_src.orig_sreg)); llvm::Value* res = cu->irb->CreateCall(intr, args); DefineValue(cu, res, rl_dest.orig_sreg); } static void ConvertAget(CompilationUnit* cu, int opt_flags, greenland::IntrinsicHelper::IntrinsicId id, RegLocation rl_dest, RegLocation rl_array, RegLocation rl_index) { llvm::SmallVector args; args.push_back(cu->irb->getInt32(opt_flags)); args.push_back(GetLLVMValue(cu, rl_array.orig_sreg)); args.push_back(GetLLVMValue(cu, rl_index.orig_sreg)); llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id); llvm::Value* res = cu->irb->CreateCall(intr, args); DefineValue(cu, res, rl_dest.orig_sreg); } static void ConvertAput(CompilationUnit* cu, int opt_flags, greenland::IntrinsicHelper::IntrinsicId id, RegLocation rl_src, RegLocation rl_array, RegLocation rl_index) { llvm::SmallVector args; args.push_back(cu->irb->getInt32(opt_flags)); args.push_back(GetLLVMValue(cu, rl_src.orig_sreg)); args.push_back(GetLLVMValue(cu, rl_array.orig_sreg)); args.push_back(GetLLVMValue(cu, rl_index.orig_sreg)); llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id); cu->irb->CreateCall(intr, args); } static void ConvertIget(CompilationUnit* cu, int opt_flags, greenland::IntrinsicHelper::IntrinsicId id, RegLocation rl_dest, RegLocation rl_obj, int field_index) { llvm::SmallVector args; args.push_back(cu->irb->getInt32(opt_flags)); args.push_back(GetLLVMValue(cu, rl_obj.orig_sreg)); args.push_back(cu->irb->getInt32(field_index)); llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id); llvm::Value* res = cu->irb->CreateCall(intr, args); DefineValue(cu, res, rl_dest.orig_sreg); } static void ConvertIput(CompilationUnit* cu, int opt_flags, greenland::IntrinsicHelper::IntrinsicId id, RegLocation rl_src, RegLocation rl_obj, int field_index) { llvm::SmallVector args; args.push_back(cu->irb->getInt32(opt_flags)); args.push_back(GetLLVMValue(cu, rl_src.orig_sreg)); args.push_back(GetLLVMValue(cu, rl_obj.orig_sreg)); args.push_back(cu->irb->getInt32(field_index)); llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id); cu->irb->CreateCall(intr, args); } static void ConvertInstanceOf(CompilationUnit* cu, uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src) { greenland::IntrinsicHelper::IntrinsicId id; id = greenland::IntrinsicHelper::InstanceOf; llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id); llvm::SmallVector args; args.push_back(cu->irb->getInt32(type_idx)); args.push_back(GetLLVMValue(cu, rl_src.orig_sreg)); llvm::Value* res = cu->irb->CreateCall(intr, args); DefineValue(cu, res, rl_dest.orig_sreg); } static void ConvertIntToLong(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src) { llvm::Value* res = cu->irb->CreateSExt(GetLLVMValue(cu, rl_src.orig_sreg), cu->irb->getInt64Ty()); DefineValue(cu, res, rl_dest.orig_sreg); } static void ConvertLongToInt(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src) { llvm::Value* src = GetLLVMValue(cu, rl_src.orig_sreg); llvm::Value* res = cu->irb->CreateTrunc(src, cu->irb->getInt32Ty()); DefineValue(cu, res, rl_dest.orig_sreg); } static void ConvertFloatToDouble(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src) { llvm::Value* src = GetLLVMValue(cu, rl_src.orig_sreg); llvm::Value* res = cu->irb->CreateFPExt(src, cu->irb->getDoubleTy()); DefineValue(cu, res, rl_dest.orig_sreg); } static void ConvertDoubleToFloat(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src) { llvm::Value* src = GetLLVMValue(cu, rl_src.orig_sreg); llvm::Value* res = cu->irb->CreateFPTrunc(src, cu->irb->getFloatTy()); DefineValue(cu, res, rl_dest.orig_sreg); } static void ConvertWideComparison(CompilationUnit* cu, greenland::IntrinsicHelper::IntrinsicId id, RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) { DCHECK_EQ(rl_src1.fp, rl_src2.fp); DCHECK_EQ(rl_src1.wide, rl_src2.wide); llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id); llvm::SmallVector args; args.push_back(GetLLVMValue(cu, rl_src1.orig_sreg)); args.push_back(GetLLVMValue(cu, rl_src2.orig_sreg)); llvm::Value* res = cu->irb->CreateCall(intr, args); DefineValue(cu, res, rl_dest.orig_sreg); } static void ConvertIntNarrowing(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src, greenland::IntrinsicHelper::IntrinsicId id) { llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id); llvm::Value* res = cu->irb->CreateCall(intr, GetLLVMValue(cu, rl_src.orig_sreg)); DefineValue(cu, res, rl_dest.orig_sreg); } static void ConvertNeg(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src) { llvm::Value* res = cu->irb->CreateNeg(GetLLVMValue(cu, rl_src.orig_sreg)); DefineValue(cu, res, rl_dest.orig_sreg); } static void ConvertIntToFP(CompilationUnit* cu, llvm::Type* ty, RegLocation rl_dest, RegLocation rl_src) { llvm::Value* res = cu->irb->CreateSIToFP(GetLLVMValue(cu, rl_src.orig_sreg), ty); DefineValue(cu, res, rl_dest.orig_sreg); } static void ConvertFPToInt(CompilationUnit* cu, greenland::IntrinsicHelper::IntrinsicId id, RegLocation rl_dest, RegLocation rl_src) { llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id); llvm::Value* res = cu->irb->CreateCall(intr, GetLLVMValue(cu, rl_src.orig_sreg)); DefineValue(cu, res, rl_dest.orig_sreg); } static void ConvertNegFP(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src) { llvm::Value* res = cu->irb->CreateFNeg(GetLLVMValue(cu, rl_src.orig_sreg)); DefineValue(cu, res, rl_dest.orig_sreg); } static void ConvertNot(CompilationUnit* cu, RegLocation rl_dest, RegLocation rl_src) { llvm::Value* src = GetLLVMValue(cu, rl_src.orig_sreg); llvm::Value* res = cu->irb->CreateXor(src, static_cast(-1)); DefineValue(cu, res, rl_dest.orig_sreg); } /* * Target-independent code generation. Use only high-level * load/store utilities here, or target-dependent genXX() handlers * when necessary. */ static bool ConvertMIRNode(CompilationUnit* cu, MIR* mir, BasicBlock* bb, llvm::BasicBlock* llvm_bb, LIR* label_list) { bool res = false; // Assume success RegLocation rl_src[3]; RegLocation rl_dest = bad_loc; Instruction::Code opcode = mir->dalvikInsn.opcode; int op_val = opcode; uint32_t vB = mir->dalvikInsn.vB; uint32_t vC = mir->dalvikInsn.vC; int opt_flags = mir->optimization_flags; bool object_definition = false; if (cu->verbose) { if (op_val < kMirOpFirst) { LOG(INFO) << ".. " << Instruction::Name(opcode) << " 0x" << std::hex << op_val; } else { LOG(INFO) << extended_mir_op_names[op_val - kMirOpFirst] << " 0x" << std::hex << op_val; } } /* Prep Src and Dest locations */ int next_sreg = 0; int next_loc = 0; int attrs = oat_data_flow_attributes[opcode]; rl_src[0] = rl_src[1] = rl_src[2] = bad_loc; if (attrs & DF_UA) { if (attrs & DF_A_WIDE) { rl_src[next_loc++] = GetSrcWide(cu, mir, next_sreg); next_sreg+= 2; } else { rl_src[next_loc++] = GetSrc(cu, mir, next_sreg); next_sreg++; } } if (attrs & DF_UB) { if (attrs & DF_B_WIDE) { rl_src[next_loc++] = GetSrcWide(cu, mir, next_sreg); next_sreg+= 2; } else { rl_src[next_loc++] = GetSrc(cu, mir, next_sreg); next_sreg++; } } if (attrs & DF_UC) { if (attrs & DF_C_WIDE) { rl_src[next_loc++] = GetSrcWide(cu, mir, next_sreg); } else { rl_src[next_loc++] = GetSrc(cu, mir, next_sreg); } } if (attrs & DF_DA) { if (attrs & DF_A_WIDE) { rl_dest = GetDestWide(cu, mir); } else { rl_dest = GetDest(cu, mir); if (rl_dest.ref) { object_definition = true; } } } switch (opcode) { case Instruction::NOP: break; case Instruction::MOVE: case Instruction::MOVE_OBJECT: case Instruction::MOVE_16: case Instruction::MOVE_OBJECT_16: case Instruction::MOVE_OBJECT_FROM16: case Instruction::MOVE_FROM16: case Instruction::MOVE_WIDE: case Instruction::MOVE_WIDE_16: case Instruction::MOVE_WIDE_FROM16: { /* * Moves/copies are meaningless in pure SSA register form, * but we need to preserve them for the conversion back into * MIR (at least until we stop using the Dalvik register maps). * Insert a dummy intrinsic copy call, which will be recognized * by the quick path and removed by the portable path. */ llvm::Value* src = GetLLVMValue(cu, rl_src[0].orig_sreg); llvm::Value* res = EmitCopy(cu, src, rl_dest); DefineValue(cu, res, rl_dest.orig_sreg); } break; case Instruction::CONST: case Instruction::CONST_4: case Instruction::CONST_16: { if (vB == 0) { object_definition = true; } llvm::Constant* imm_value = cu->irb->GetJInt(vB); llvm::Value* res = EmitConst(cu, imm_value, rl_dest); DefineValue(cu, res, rl_dest.orig_sreg); } break; case Instruction::CONST_WIDE_16: case Instruction::CONST_WIDE_32: { // Sign extend to 64 bits int64_t imm = static_cast(vB); llvm::Constant* imm_value = cu->irb->GetJLong(imm); llvm::Value* res = EmitConst(cu, imm_value, rl_dest); DefineValue(cu, res, rl_dest.orig_sreg); } break; case Instruction::CONST_HIGH16: { llvm::Constant* imm_value = cu->irb->GetJInt(vB << 16); llvm::Value* res = EmitConst(cu, imm_value, rl_dest); DefineValue(cu, res, rl_dest.orig_sreg); } break; case Instruction::CONST_WIDE: { llvm::Constant* imm_value = cu->irb->GetJLong(mir->dalvikInsn.vB_wide); llvm::Value* res = EmitConst(cu, imm_value, rl_dest); DefineValue(cu, res, rl_dest.orig_sreg); } break; case Instruction::CONST_WIDE_HIGH16: { int64_t imm = static_cast(vB) << 48; llvm::Constant* imm_value = cu->irb->GetJLong(imm); llvm::Value* res = EmitConst(cu, imm_value, rl_dest); DefineValue(cu, res, rl_dest.orig_sreg); } break; case Instruction::SPUT_OBJECT: ConvertSput(cu, vB, greenland::IntrinsicHelper::HLSputObject, rl_src[0]); break; case Instruction::SPUT: if (rl_src[0].fp) { ConvertSput(cu, vB, greenland::IntrinsicHelper::HLSputFloat, rl_src[0]); } else { ConvertSput(cu, vB, greenland::IntrinsicHelper::HLSput, rl_src[0]); } break; case Instruction::SPUT_BOOLEAN: ConvertSput(cu, vB, greenland::IntrinsicHelper::HLSputBoolean, rl_src[0]); break; case Instruction::SPUT_BYTE: ConvertSput(cu, vB, greenland::IntrinsicHelper::HLSputByte, rl_src[0]); break; case Instruction::SPUT_CHAR: ConvertSput(cu, vB, greenland::IntrinsicHelper::HLSputChar, rl_src[0]); break; case Instruction::SPUT_SHORT: ConvertSput(cu, vB, greenland::IntrinsicHelper::HLSputShort, rl_src[0]); break; case Instruction::SPUT_WIDE: if (rl_src[0].fp) { ConvertSput(cu, vB, greenland::IntrinsicHelper::HLSputDouble, rl_src[0]); } else { ConvertSput(cu, vB, greenland::IntrinsicHelper::HLSputWide, rl_src[0]); } break; case Instruction::SGET_OBJECT: ConvertSget(cu, vB, greenland::IntrinsicHelper::HLSgetObject, rl_dest); break; case Instruction::SGET: if (rl_dest.fp) { ConvertSget(cu, vB, greenland::IntrinsicHelper::HLSgetFloat, rl_dest); } else { ConvertSget(cu, vB, greenland::IntrinsicHelper::HLSget, rl_dest); } break; case Instruction::SGET_BOOLEAN: ConvertSget(cu, vB, greenland::IntrinsicHelper::HLSgetBoolean, rl_dest); break; case Instruction::SGET_BYTE: ConvertSget(cu, vB, greenland::IntrinsicHelper::HLSgetByte, rl_dest); break; case Instruction::SGET_CHAR: ConvertSget(cu, vB, greenland::IntrinsicHelper::HLSgetChar, rl_dest); break; case Instruction::SGET_SHORT: ConvertSget(cu, vB, greenland::IntrinsicHelper::HLSgetShort, rl_dest); break; case Instruction::SGET_WIDE: if (rl_dest.fp) { ConvertSget(cu, vB, greenland::IntrinsicHelper::HLSgetDouble, rl_dest); } else { ConvertSget(cu, vB, greenland::IntrinsicHelper::HLSgetWide, rl_dest); } break; case Instruction::RETURN_WIDE: case Instruction::RETURN: case Instruction::RETURN_OBJECT: { if (!(cu->attrs & METHOD_IS_LEAF)) { EmitSuspendCheck(cu); } EmitPopShadowFrame(cu); cu->irb->CreateRet(GetLLVMValue(cu, rl_src[0].orig_sreg)); bb->has_return = true; } break; case Instruction::RETURN_VOID: { if (!(cu->attrs & METHOD_IS_LEAF)) { EmitSuspendCheck(cu); } EmitPopShadowFrame(cu); cu->irb->CreateRetVoid(); bb->has_return = true; } break; case Instruction::IF_EQ: ConvertCompareAndBranch(cu, bb, mir, kCondEq, rl_src[0], rl_src[1]); break; case Instruction::IF_NE: ConvertCompareAndBranch(cu, bb, mir, kCondNe, rl_src[0], rl_src[1]); break; case Instruction::IF_LT: ConvertCompareAndBranch(cu, bb, mir, kCondLt, rl_src[0], rl_src[1]); break; case Instruction::IF_GE: ConvertCompareAndBranch(cu, bb, mir, kCondGe, rl_src[0], rl_src[1]); break; case Instruction::IF_GT: ConvertCompareAndBranch(cu, bb, mir, kCondGt, rl_src[0], rl_src[1]); break; case Instruction::IF_LE: ConvertCompareAndBranch(cu, bb, mir, kCondLe, rl_src[0], rl_src[1]); break; case Instruction::IF_EQZ: ConvertCompareZeroAndBranch(cu, bb, mir, kCondEq, rl_src[0]); break; case Instruction::IF_NEZ: ConvertCompareZeroAndBranch(cu, bb, mir, kCondNe, rl_src[0]); break; case Instruction::IF_LTZ: ConvertCompareZeroAndBranch(cu, bb, mir, kCondLt, rl_src[0]); break; case Instruction::IF_GEZ: ConvertCompareZeroAndBranch(cu, bb, mir, kCondGe, rl_src[0]); break; case Instruction::IF_GTZ: ConvertCompareZeroAndBranch(cu, bb, mir, kCondGt, rl_src[0]); break; case Instruction::IF_LEZ: ConvertCompareZeroAndBranch(cu, bb, mir, kCondLe, rl_src[0]); break; case Instruction::GOTO: case Instruction::GOTO_16: case Instruction::GOTO_32: { if (bb->taken->start_offset <= bb->start_offset) { EmitSuspendCheck(cu); } cu->irb->CreateBr(GetLLVMBlock(cu, bb->taken->id)); } break; case Instruction::ADD_LONG: case Instruction::ADD_LONG_2ADDR: case Instruction::ADD_INT: case Instruction::ADD_INT_2ADDR: ConvertArithOp(cu, kOpAdd, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::SUB_LONG: case Instruction::SUB_LONG_2ADDR: case Instruction::SUB_INT: case Instruction::SUB_INT_2ADDR: ConvertArithOp(cu, kOpSub, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::MUL_LONG: case Instruction::MUL_LONG_2ADDR: case Instruction::MUL_INT: case Instruction::MUL_INT_2ADDR: ConvertArithOp(cu, kOpMul, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::DIV_LONG: case Instruction::DIV_LONG_2ADDR: case Instruction::DIV_INT: case Instruction::DIV_INT_2ADDR: ConvertArithOp(cu, kOpDiv, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::REM_LONG: case Instruction::REM_LONG_2ADDR: case Instruction::REM_INT: case Instruction::REM_INT_2ADDR: ConvertArithOp(cu, kOpRem, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::AND_LONG: case Instruction::AND_LONG_2ADDR: case Instruction::AND_INT: case Instruction::AND_INT_2ADDR: ConvertArithOp(cu, kOpAnd, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::OR_LONG: case Instruction::OR_LONG_2ADDR: case Instruction::OR_INT: case Instruction::OR_INT_2ADDR: ConvertArithOp(cu, kOpOr, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::XOR_LONG: case Instruction::XOR_LONG_2ADDR: case Instruction::XOR_INT: case Instruction::XOR_INT_2ADDR: ConvertArithOp(cu, kOpXor, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::SHL_LONG: case Instruction::SHL_LONG_2ADDR: ConvertShift(cu, greenland::IntrinsicHelper::SHLLong, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::SHL_INT: case Instruction::SHL_INT_2ADDR: ConvertShift(cu, greenland::IntrinsicHelper::SHLInt, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::SHR_LONG: case Instruction::SHR_LONG_2ADDR: ConvertShift(cu, greenland::IntrinsicHelper::SHRLong, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::SHR_INT: case Instruction::SHR_INT_2ADDR: ConvertShift(cu, greenland::IntrinsicHelper::SHRInt, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::USHR_LONG: case Instruction::USHR_LONG_2ADDR: ConvertShift(cu, greenland::IntrinsicHelper::USHRLong, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::USHR_INT: case Instruction::USHR_INT_2ADDR: ConvertShift(cu, greenland::IntrinsicHelper::USHRInt, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::ADD_INT_LIT16: case Instruction::ADD_INT_LIT8: ConvertArithOpLit(cu, kOpAdd, rl_dest, rl_src[0], vC); break; case Instruction::RSUB_INT: case Instruction::RSUB_INT_LIT8: ConvertArithOpLit(cu, kOpRsub, rl_dest, rl_src[0], vC); break; case Instruction::MUL_INT_LIT16: case Instruction::MUL_INT_LIT8: ConvertArithOpLit(cu, kOpMul, rl_dest, rl_src[0], vC); break; case Instruction::DIV_INT_LIT16: case Instruction::DIV_INT_LIT8: ConvertArithOpLit(cu, kOpDiv, rl_dest, rl_src[0], vC); break; case Instruction::REM_INT_LIT16: case Instruction::REM_INT_LIT8: ConvertArithOpLit(cu, kOpRem, rl_dest, rl_src[0], vC); break; case Instruction::AND_INT_LIT16: case Instruction::AND_INT_LIT8: ConvertArithOpLit(cu, kOpAnd, rl_dest, rl_src[0], vC); break; case Instruction::OR_INT_LIT16: case Instruction::OR_INT_LIT8: ConvertArithOpLit(cu, kOpOr, rl_dest, rl_src[0], vC); break; case Instruction::XOR_INT_LIT16: case Instruction::XOR_INT_LIT8: ConvertArithOpLit(cu, kOpXor, rl_dest, rl_src[0], vC); break; case Instruction::SHL_INT_LIT8: ConvertShiftLit(cu, greenland::IntrinsicHelper::SHLInt, rl_dest, rl_src[0], vC & 0x1f); break; case Instruction::SHR_INT_LIT8: ConvertShiftLit(cu, greenland::IntrinsicHelper::SHRInt, rl_dest, rl_src[0], vC & 0x1f); break; case Instruction::USHR_INT_LIT8: ConvertShiftLit(cu, greenland::IntrinsicHelper::USHRInt, rl_dest, rl_src[0], vC & 0x1f); break; case Instruction::ADD_FLOAT: case Instruction::ADD_FLOAT_2ADDR: case Instruction::ADD_DOUBLE: case Instruction::ADD_DOUBLE_2ADDR: ConvertFPArithOp(cu, kOpAdd, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::SUB_FLOAT: case Instruction::SUB_FLOAT_2ADDR: case Instruction::SUB_DOUBLE: case Instruction::SUB_DOUBLE_2ADDR: ConvertFPArithOp(cu, kOpSub, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::MUL_FLOAT: case Instruction::MUL_FLOAT_2ADDR: case Instruction::MUL_DOUBLE: case Instruction::MUL_DOUBLE_2ADDR: ConvertFPArithOp(cu, kOpMul, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::DIV_FLOAT: case Instruction::DIV_FLOAT_2ADDR: case Instruction::DIV_DOUBLE: case Instruction::DIV_DOUBLE_2ADDR: ConvertFPArithOp(cu, kOpDiv, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::REM_FLOAT: case Instruction::REM_FLOAT_2ADDR: case Instruction::REM_DOUBLE: case Instruction::REM_DOUBLE_2ADDR: ConvertFPArithOp(cu, kOpRem, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::INVOKE_STATIC: ConvertInvoke(cu, bb, mir, kStatic, false /*range*/, false /* NewFilledArray */); break; case Instruction::INVOKE_STATIC_RANGE: ConvertInvoke(cu, bb, mir, kStatic, true /*range*/, false /* NewFilledArray */); break; case Instruction::INVOKE_DIRECT: ConvertInvoke(cu, bb, mir, kDirect, false /*range*/, false /* NewFilledArray */); break; case Instruction::INVOKE_DIRECT_RANGE: ConvertInvoke(cu, bb, mir, kDirect, true /*range*/, false /* NewFilledArray */); break; case Instruction::INVOKE_VIRTUAL: ConvertInvoke(cu, bb, mir, kVirtual, false /*range*/, false /* NewFilledArray */); break; case Instruction::INVOKE_VIRTUAL_RANGE: ConvertInvoke(cu, bb, mir, kVirtual, true /*range*/, false /* NewFilledArray */); break; case Instruction::INVOKE_SUPER: ConvertInvoke(cu, bb, mir, kSuper, false /*range*/, false /* NewFilledArray */); break; case Instruction::INVOKE_SUPER_RANGE: ConvertInvoke(cu, bb, mir, kSuper, true /*range*/, false /* NewFilledArray */); break; case Instruction::INVOKE_INTERFACE: ConvertInvoke(cu, bb, mir, kInterface, false /*range*/, false /* NewFilledArray */); break; case Instruction::INVOKE_INTERFACE_RANGE: ConvertInvoke(cu, bb, mir, kInterface, true /*range*/, false /* NewFilledArray */); break; case Instruction::FILLED_NEW_ARRAY: ConvertInvoke(cu, bb, mir, kInterface, false /*range*/, true /* NewFilledArray */); break; case Instruction::FILLED_NEW_ARRAY_RANGE: ConvertInvoke(cu, bb, mir, kInterface, true /*range*/, true /* NewFilledArray */); break; case Instruction::CONST_STRING: case Instruction::CONST_STRING_JUMBO: ConvertConstObject(cu, vB, greenland::IntrinsicHelper::ConstString, rl_dest); break; case Instruction::CONST_CLASS: ConvertConstObject(cu, vB, greenland::IntrinsicHelper::ConstClass, rl_dest); break; case Instruction::CHECK_CAST: ConvertCheckCast(cu, vB, rl_src[0]); break; case Instruction::NEW_INSTANCE: ConvertNewInstance(cu, vB, rl_dest); break; case Instruction::MOVE_EXCEPTION: ConvertMoveException(cu, rl_dest); break; case Instruction::THROW: ConvertThrow(cu, rl_src[0]); /* * If this throw is standalone, terminate. * If it might rethrow, force termination * of the following block. */ if (bb->fall_through == NULL) { cu->irb->CreateUnreachable(); } else { bb->fall_through->fall_through = NULL; bb->fall_through->taken = NULL; } break; case Instruction::MOVE_RESULT_WIDE: case Instruction::MOVE_RESULT: case Instruction::MOVE_RESULT_OBJECT: /* * All move_results should have been folded into the preceeding invoke. */ LOG(FATAL) << "Unexpected move_result"; break; case Instruction::MONITOR_ENTER: ConvertMonitorEnterExit(cu, opt_flags, greenland::IntrinsicHelper::MonitorEnter, rl_src[0]); break; case Instruction::MONITOR_EXIT: ConvertMonitorEnterExit(cu, opt_flags, greenland::IntrinsicHelper::MonitorExit, rl_src[0]); break; case Instruction::ARRAY_LENGTH: ConvertArrayLength(cu, opt_flags, rl_dest, rl_src[0]); break; case Instruction::NEW_ARRAY: ConvertNewArray(cu, vC, rl_dest, rl_src[0]); break; case Instruction::INSTANCE_OF: ConvertInstanceOf(cu, vC, rl_dest, rl_src[0]); break; case Instruction::AGET: if (rl_dest.fp) { ConvertAget(cu, opt_flags, greenland::IntrinsicHelper::HLArrayGetFloat, rl_dest, rl_src[0], rl_src[1]); } else { ConvertAget(cu, opt_flags, greenland::IntrinsicHelper::HLArrayGet, rl_dest, rl_src[0], rl_src[1]); } break; case Instruction::AGET_OBJECT: ConvertAget(cu, opt_flags, greenland::IntrinsicHelper::HLArrayGetObject, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::AGET_BOOLEAN: ConvertAget(cu, opt_flags, greenland::IntrinsicHelper::HLArrayGetBoolean, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::AGET_BYTE: ConvertAget(cu, opt_flags, greenland::IntrinsicHelper::HLArrayGetByte, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::AGET_CHAR: ConvertAget(cu, opt_flags, greenland::IntrinsicHelper::HLArrayGetChar, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::AGET_SHORT: ConvertAget(cu, opt_flags, greenland::IntrinsicHelper::HLArrayGetShort, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::AGET_WIDE: if (rl_dest.fp) { ConvertAget(cu, opt_flags, greenland::IntrinsicHelper::HLArrayGetDouble, rl_dest, rl_src[0], rl_src[1]); } else { ConvertAget(cu, opt_flags, greenland::IntrinsicHelper::HLArrayGetWide, rl_dest, rl_src[0], rl_src[1]); } break; case Instruction::APUT: if (rl_src[0].fp) { ConvertAput(cu, opt_flags, greenland::IntrinsicHelper::HLArrayPutFloat, rl_src[0], rl_src[1], rl_src[2]); } else { ConvertAput(cu, opt_flags, greenland::IntrinsicHelper::HLArrayPut, rl_src[0], rl_src[1], rl_src[2]); } break; case Instruction::APUT_OBJECT: ConvertAput(cu, opt_flags, greenland::IntrinsicHelper::HLArrayPutObject, rl_src[0], rl_src[1], rl_src[2]); break; case Instruction::APUT_BOOLEAN: ConvertAput(cu, opt_flags, greenland::IntrinsicHelper::HLArrayPutBoolean, rl_src[0], rl_src[1], rl_src[2]); break; case Instruction::APUT_BYTE: ConvertAput(cu, opt_flags, greenland::IntrinsicHelper::HLArrayPutByte, rl_src[0], rl_src[1], rl_src[2]); break; case Instruction::APUT_CHAR: ConvertAput(cu, opt_flags, greenland::IntrinsicHelper::HLArrayPutChar, rl_src[0], rl_src[1], rl_src[2]); break; case Instruction::APUT_SHORT: ConvertAput(cu, opt_flags, greenland::IntrinsicHelper::HLArrayPutShort, rl_src[0], rl_src[1], rl_src[2]); break; case Instruction::APUT_WIDE: if (rl_src[0].fp) { ConvertAput(cu, opt_flags, greenland::IntrinsicHelper::HLArrayPutDouble, rl_src[0], rl_src[1], rl_src[2]); } else { ConvertAput(cu, opt_flags, greenland::IntrinsicHelper::HLArrayPutWide, rl_src[0], rl_src[1], rl_src[2]); } break; case Instruction::IGET: if (rl_dest.fp) { ConvertIget(cu, opt_flags, greenland::IntrinsicHelper::HLIGetFloat, rl_dest, rl_src[0], vC); } else { ConvertIget(cu, opt_flags, greenland::IntrinsicHelper::HLIGet, rl_dest, rl_src[0], vC); } break; case Instruction::IGET_OBJECT: ConvertIget(cu, opt_flags, greenland::IntrinsicHelper::HLIGetObject, rl_dest, rl_src[0], vC); break; case Instruction::IGET_BOOLEAN: ConvertIget(cu, opt_flags, greenland::IntrinsicHelper::HLIGetBoolean, rl_dest, rl_src[0], vC); break; case Instruction::IGET_BYTE: ConvertIget(cu, opt_flags, greenland::IntrinsicHelper::HLIGetByte, rl_dest, rl_src[0], vC); break; case Instruction::IGET_CHAR: ConvertIget(cu, opt_flags, greenland::IntrinsicHelper::HLIGetChar, rl_dest, rl_src[0], vC); break; case Instruction::IGET_SHORT: ConvertIget(cu, opt_flags, greenland::IntrinsicHelper::HLIGetShort, rl_dest, rl_src[0], vC); break; case Instruction::IGET_WIDE: if (rl_dest.fp) { ConvertIget(cu, opt_flags, greenland::IntrinsicHelper::HLIGetDouble, rl_dest, rl_src[0], vC); } else { ConvertIget(cu, opt_flags, greenland::IntrinsicHelper::HLIGetWide, rl_dest, rl_src[0], vC); } break; case Instruction::IPUT: if (rl_src[0].fp) { ConvertIput(cu, opt_flags, greenland::IntrinsicHelper::HLIPutFloat, rl_src[0], rl_src[1], vC); } else { ConvertIput(cu, opt_flags, greenland::IntrinsicHelper::HLIPut, rl_src[0], rl_src[1], vC); } break; case Instruction::IPUT_OBJECT: ConvertIput(cu, opt_flags, greenland::IntrinsicHelper::HLIPutObject, rl_src[0], rl_src[1], vC); break; case Instruction::IPUT_BOOLEAN: ConvertIput(cu, opt_flags, greenland::IntrinsicHelper::HLIPutBoolean, rl_src[0], rl_src[1], vC); break; case Instruction::IPUT_BYTE: ConvertIput(cu, opt_flags, greenland::IntrinsicHelper::HLIPutByte, rl_src[0], rl_src[1], vC); break; case Instruction::IPUT_CHAR: ConvertIput(cu, opt_flags, greenland::IntrinsicHelper::HLIPutChar, rl_src[0], rl_src[1], vC); break; case Instruction::IPUT_SHORT: ConvertIput(cu, opt_flags, greenland::IntrinsicHelper::HLIPutShort, rl_src[0], rl_src[1], vC); break; case Instruction::IPUT_WIDE: if (rl_src[0].fp) { ConvertIput(cu, opt_flags, greenland::IntrinsicHelper::HLIPutDouble, rl_src[0], rl_src[1], vC); } else { ConvertIput(cu, opt_flags, greenland::IntrinsicHelper::HLIPutWide, rl_src[0], rl_src[1], vC); } break; case Instruction::FILL_ARRAY_DATA: ConvertFillArrayData(cu, vB, rl_src[0]); break; case Instruction::LONG_TO_INT: ConvertLongToInt(cu, rl_dest, rl_src[0]); break; case Instruction::INT_TO_LONG: ConvertIntToLong(cu, rl_dest, rl_src[0]); break; case Instruction::INT_TO_CHAR: ConvertIntNarrowing(cu, rl_dest, rl_src[0], greenland::IntrinsicHelper::IntToChar); break; case Instruction::INT_TO_BYTE: ConvertIntNarrowing(cu, rl_dest, rl_src[0], greenland::IntrinsicHelper::IntToByte); break; case Instruction::INT_TO_SHORT: ConvertIntNarrowing(cu, rl_dest, rl_src[0], greenland::IntrinsicHelper::IntToShort); break; case Instruction::INT_TO_FLOAT: case Instruction::LONG_TO_FLOAT: ConvertIntToFP(cu, cu->irb->getFloatTy(), rl_dest, rl_src[0]); break; case Instruction::INT_TO_DOUBLE: case Instruction::LONG_TO_DOUBLE: ConvertIntToFP(cu, cu->irb->getDoubleTy(), rl_dest, rl_src[0]); break; case Instruction::FLOAT_TO_DOUBLE: ConvertFloatToDouble(cu, rl_dest, rl_src[0]); break; case Instruction::DOUBLE_TO_FLOAT: ConvertDoubleToFloat(cu, rl_dest, rl_src[0]); break; case Instruction::NEG_LONG: case Instruction::NEG_INT: ConvertNeg(cu, rl_dest, rl_src[0]); break; case Instruction::NEG_FLOAT: case Instruction::NEG_DOUBLE: ConvertNegFP(cu, rl_dest, rl_src[0]); break; case Instruction::NOT_LONG: case Instruction::NOT_INT: ConvertNot(cu, rl_dest, rl_src[0]); break; case Instruction::FLOAT_TO_INT: ConvertFPToInt(cu, greenland::IntrinsicHelper::F2I, rl_dest, rl_src[0]); break; case Instruction::DOUBLE_TO_INT: ConvertFPToInt(cu, greenland::IntrinsicHelper::D2I, rl_dest, rl_src[0]); break; case Instruction::FLOAT_TO_LONG: ConvertFPToInt(cu, greenland::IntrinsicHelper::F2L, rl_dest, rl_src[0]); break; case Instruction::DOUBLE_TO_LONG: ConvertFPToInt(cu, greenland::IntrinsicHelper::D2L, rl_dest, rl_src[0]); break; case Instruction::CMPL_FLOAT: ConvertWideComparison(cu, greenland::IntrinsicHelper::CmplFloat, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::CMPG_FLOAT: ConvertWideComparison(cu, greenland::IntrinsicHelper::CmpgFloat, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::CMPL_DOUBLE: ConvertWideComparison(cu, greenland::IntrinsicHelper::CmplDouble, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::CMPG_DOUBLE: ConvertWideComparison(cu, greenland::IntrinsicHelper::CmpgDouble, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::CMP_LONG: ConvertWideComparison(cu, greenland::IntrinsicHelper::CmpLong, rl_dest, rl_src[0], rl_src[1]); break; case Instruction::PACKED_SWITCH: ConvertPackedSwitch(cu, bb, vB, rl_src[0]); break; case Instruction::SPARSE_SWITCH: ConvertSparseSwitch(cu, bb, vB, rl_src[0]); break; default: UNIMPLEMENTED(FATAL) << "Unsupported Dex opcode 0x" << std::hex << opcode; res = true; } if (object_definition) { SetShadowFrameEntry(cu, reinterpret_cast (cu->llvm_values.elem_list[rl_dest.orig_sreg])); } return res; } /* Extended MIR instructions like PHI */ static void ConvertExtendedMIR(CompilationUnit* cu, BasicBlock* bb, MIR* mir, llvm::BasicBlock* llvm_bb) { switch (static_cast(mir->dalvikInsn.opcode)) { case kMirOpPhi: { RegLocation rl_dest = cu->reg_location[mir->ssa_rep->defs[0]]; /* * The Art compiler's Phi nodes only handle 32-bit operands, * representing wide values using a matched set of Phi nodes * for the lower and upper halves. In the llvm world, we only * want a single Phi for wides. Here we will simply discard * the Phi node representing the high word. */ if (rl_dest.high_word) { return; // No Phi node - handled via low word } int* incoming = reinterpret_cast(mir->dalvikInsn.vB); llvm::Type* phi_type = LlvmTypeFromLocRec(cu, rl_dest); llvm::PHINode* phi = cu->irb->CreatePHI(phi_type, mir->ssa_rep->num_uses); for (int i = 0; i < mir->ssa_rep->num_uses; i++) { RegLocation loc; // Don't check width here. loc = GetRawSrc(cu, mir, i); DCHECK_EQ(rl_dest.wide, loc.wide); DCHECK_EQ(rl_dest.wide & rl_dest.high_word, loc.wide & loc.high_word); DCHECK_EQ(rl_dest.fp, loc.fp); DCHECK_EQ(rl_dest.core, loc.core); DCHECK_EQ(rl_dest.ref, loc.ref); SafeMap::iterator it; it = cu->block_id_map.find(incoming[i]); DCHECK(it != cu->block_id_map.end()); phi->addIncoming(GetLLVMValue(cu, loc.orig_sreg), GetLLVMBlock(cu, it->second)); } DefineValue(cu, phi, rl_dest.orig_sreg); break; } case kMirOpCopy: { UNIMPLEMENTED(WARNING) << "unimp kMirOpPhi"; break; } case kMirOpNop: if ((mir == bb->last_mir_insn) && (bb->taken == NULL) && (bb->fall_through == NULL)) { cu->irb->CreateUnreachable(); } break; // TODO: need GBC intrinsic to take advantage of fused operations case kMirOpFusedCmplFloat: UNIMPLEMENTED(FATAL) << "kMirOpFusedCmpFloat unsupported"; break; case kMirOpFusedCmpgFloat: UNIMPLEMENTED(FATAL) << "kMirOpFusedCmgFloat unsupported"; break; case kMirOpFusedCmplDouble: UNIMPLEMENTED(FATAL) << "kMirOpFusedCmplDouble unsupported"; break; case kMirOpFusedCmpgDouble: UNIMPLEMENTED(FATAL) << "kMirOpFusedCmpgDouble unsupported"; break; case kMirOpFusedCmpLong: UNIMPLEMENTED(FATAL) << "kMirOpLongCmpBranch unsupported"; break; default: break; } } static void SetDexOffset(CompilationUnit* cu, int32_t offset) { cu->current_dalvik_offset = offset; llvm::SmallVector array_ref; array_ref.push_back(cu->irb->getInt32(offset)); llvm::MDNode* node = llvm::MDNode::get(*cu->context, array_ref); cu->irb->SetDexOffset(node); } // Attach method info as metadata to special intrinsic static void SetMethodInfo(CompilationUnit* cu) { // We don't want dex offset on this cu->irb->SetDexOffset(NULL); greenland::IntrinsicHelper::IntrinsicId id; id = greenland::IntrinsicHelper::MethodInfo; llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction(id); llvm::Instruction* inst = cu->irb->CreateCall(intr); llvm::SmallVector reg_info; reg_info.push_back(cu->irb->getInt32(cu->num_ins)); reg_info.push_back(cu->irb->getInt32(cu->num_regs)); reg_info.push_back(cu->irb->getInt32(cu->num_outs)); reg_info.push_back(cu->irb->getInt32(cu->num_compiler_temps)); reg_info.push_back(cu->irb->getInt32(cu->num_ssa_regs)); llvm::MDNode* reg_info_node = llvm::MDNode::get(*cu->context, reg_info); inst->setMetadata("RegInfo", reg_info_node); int promo_size = cu->num_dalvik_registers + cu->num_compiler_temps + 1; llvm::SmallVector pmap; for (int i = 0; i < promo_size; i++) { PromotionMap* p = &cu->promotion_map[i]; int32_t map_data = ((p->first_in_pair & 0xff) << 24) | ((p->FpReg & 0xff) << 16) | ((p->core_reg & 0xff) << 8) | ((p->fp_location & 0xf) << 4) | (p->core_location & 0xf); pmap.push_back(cu->irb->getInt32(map_data)); } llvm::MDNode* map_node = llvm::MDNode::get(*cu->context, pmap); inst->setMetadata("PromotionMap", map_node); SetDexOffset(cu, cu->current_dalvik_offset); } /* Handle the content in each basic block */ static bool BlockBitcodeConversion(CompilationUnit* cu, BasicBlock* bb) { if (bb->block_type == kDead) return false; llvm::BasicBlock* llvm_bb = GetLLVMBlock(cu, bb->id); if (llvm_bb == NULL) { CHECK(bb->block_type == kExitBlock); } else { cu->irb->SetInsertPoint(llvm_bb); SetDexOffset(cu, bb->start_offset); } if (cu->verbose) { LOG(INFO) << "................................"; LOG(INFO) << "Block id " << bb->id; if (llvm_bb != NULL) { LOG(INFO) << "label " << llvm_bb->getName().str().c_str(); } else { LOG(INFO) << "llvm_bb is NULL"; } } if (bb->block_type == kEntryBlock) { SetMethodInfo(cu); bool *can_be_ref = static_cast(NewMem(cu, sizeof(bool) * cu->num_dalvik_registers, true, kAllocMisc)); for (int i = 0; i < cu->num_ssa_regs; i++) { int v_reg = SRegToVReg(cu, i); if (v_reg > SSA_METHOD_BASEREG) { can_be_ref[SRegToVReg(cu, i)] |= cu->reg_location[i].ref; } } for (int i = 0; i < cu->num_dalvik_registers; i++) { if (can_be_ref[i]) { cu->num_shadow_frame_entries++; } } if (cu->num_shadow_frame_entries > 0) { cu->shadow_map = static_cast(NewMem(cu, sizeof(int) * cu->num_shadow_frame_entries, true, kAllocMisc)); for (int i = 0, j = 0; i < cu->num_dalvik_registers; i++) { if (can_be_ref[i]) { cu->shadow_map[j++] = i; } } } greenland::IntrinsicHelper::IntrinsicId id = greenland::IntrinsicHelper::AllocaShadowFrame; llvm::Function* func = cu->intrinsic_helper->GetIntrinsicFunction(id); llvm::Value* entries = cu->irb->getInt32(cu->num_shadow_frame_entries); llvm::Value* dalvik_regs = cu->irb->getInt32(cu->num_dalvik_registers); llvm::Value* args[] = { entries, dalvik_regs }; cu->irb->CreateCall(func, args); } else if (bb->block_type == kExitBlock) { /* * Because of the differences between how MIR/LIR and llvm handle exit * blocks, we won't explicitly covert them. On the llvm-to-lir * path, it will need to be regenereated. */ return false; } else if (bb->block_type == kExceptionHandling) { /* * Because we're deferring null checking, delete the associated empty * exception block. */ llvm_bb->eraseFromParent(); return false; } for (MIR* mir = bb->first_mir_insn; mir; mir = mir->next) { SetDexOffset(cu, mir->offset); int opcode = mir->dalvikInsn.opcode; Instruction::Format dalvik_format = Instruction::FormatOf(mir->dalvikInsn.opcode); if (opcode == kMirOpCheck) { // Combine check and work halves of throwing instruction. MIR* work_half = mir->meta.throw_insn; mir->dalvikInsn.opcode = work_half->dalvikInsn.opcode; opcode = mir->dalvikInsn.opcode; SSARepresentation* ssa_rep = work_half->ssa_rep; work_half->ssa_rep = mir->ssa_rep; mir->ssa_rep = ssa_rep; work_half->dalvikInsn.opcode = static_cast(kMirOpNop); if (bb->successor_block_list.block_list_type == kCatch) { llvm::Function* intr = cu->intrinsic_helper->GetIntrinsicFunction( greenland::IntrinsicHelper::CatchTargets); llvm::Value* switch_key = cu->irb->CreateCall(intr, cu->irb->getInt32(mir->offset)); GrowableListIterator iter; GrowableListIteratorInit(&bb->successor_block_list.blocks, &iter); // New basic block to use for work half llvm::BasicBlock* work_bb = llvm::BasicBlock::Create(*cu->context, "", cu->func); llvm::SwitchInst* sw = cu->irb->CreateSwitch(switch_key, work_bb, bb->successor_block_list.blocks.num_used); while (true) { SuccessorBlockInfo *successor_block_info = reinterpret_cast(GrowableListIteratorNext(&iter)); if (successor_block_info == NULL) break; llvm::BasicBlock *target = GetLLVMBlock(cu, successor_block_info->block->id); int type_index = successor_block_info->key; sw->addCase(cu->irb->getInt32(type_index), target); } llvm_bb = work_bb; cu->irb->SetInsertPoint(llvm_bb); } } if (opcode >= kMirOpFirst) { ConvertExtendedMIR(cu, bb, mir, llvm_bb); continue; } bool not_handled = ConvertMIRNode(cu, mir, bb, llvm_bb, NULL /* label_list */); if (not_handled) { Instruction::Code dalvik_opcode = static_cast(opcode); LOG(WARNING) << StringPrintf("%#06x: Op %#x (%s) / Fmt %d not handled", mir->offset, opcode, Instruction::Name(dalvik_opcode), dalvik_format); } } if (bb->block_type == kEntryBlock) { cu->entryTarget_bb = GetLLVMBlock(cu, bb->fall_through->id); } else if ((bb->fall_through != NULL) && !bb->has_return) { cu->irb->CreateBr(GetLLVMBlock(cu, bb->fall_through->id)); } return false; } char RemapShorty(char shorty_type) { /* * TODO: might want to revisit this. Dalvik registers are 32-bits wide, * and longs/doubles are represented as a pair of registers. When sub-word * arguments (and method results) are passed, they are extended to Dalvik * virtual register containers. Because llvm is picky about type consistency, * we must either cast the "real" type to 32-bit container multiple Dalvik * register types, or always use the expanded values. * Here, we're doing the latter. We map the shorty signature to container * types (which is valid so long as we always do a real expansion of passed * arguments and field loads). */ switch(shorty_type) { case 'Z' : shorty_type = 'I'; break; case 'B' : shorty_type = 'I'; break; case 'S' : shorty_type = 'I'; break; case 'C' : shorty_type = 'I'; break; default: break; } return shorty_type; } static llvm::FunctionType* GetFunctionType(CompilationUnit* cu) { // Get return type llvm::Type* ret_type = cu->irb->GetJType(RemapShorty(cu->shorty[0]), greenland::kAccurate); // Get argument type std::vector args_type; // method object args_type.push_back(cu->irb->GetJMethodTy()); // Do we have a "this"? if ((cu->access_flags & kAccStatic) == 0) { args_type.push_back(cu->irb->GetJObjectTy()); } for (uint32_t i = 1; i < strlen(cu->shorty); ++i) { args_type.push_back(cu->irb->GetJType(RemapShorty(cu->shorty[i]), greenland::kAccurate)); } return llvm::FunctionType::get(ret_type, args_type, false); } static bool CreateFunction(CompilationUnit* cu) { std::string func_name(PrettyMethod(cu->method_idx, *cu->dex_file, /* with_signature */ false)); llvm::FunctionType* func_type = GetFunctionType(cu); if (func_type == NULL) { return false; } cu->func = llvm::Function::Create(func_type, llvm::Function::ExternalLinkage, func_name, cu->module); llvm::Function::arg_iterator arg_iter(cu->func->arg_begin()); llvm::Function::arg_iterator arg_end(cu->func->arg_end()); arg_iter->setName("method"); ++arg_iter; int start_sreg = cu->num_regs; for (unsigned i = 0; arg_iter != arg_end; ++i, ++arg_iter) { arg_iter->setName(StringPrintf("v%i_0", start_sreg)); start_sreg += cu->reg_location[start_sreg].wide ? 2 : 1; } return true; } static bool CreateLLVMBasicBlock(CompilationUnit* cu, BasicBlock* bb) { // Skip the exit block if ((bb->block_type == kDead) ||(bb->block_type == kExitBlock)) { cu->id_to_block_map.Put(bb->id, NULL); } else { int offset = bb->start_offset; bool entry_block = (bb->block_type == kEntryBlock); llvm::BasicBlock* llvm_bb = llvm::BasicBlock::Create(*cu->context, entry_block ? "entry" : StringPrintf(kLabelFormat, bb->catch_entry ? kCatchBlock : kNormalBlock, offset, bb->id), cu->func); if (entry_block) { cu->entry_bb = llvm_bb; cu->placeholder_bb = llvm::BasicBlock::Create(*cu->context, "placeholder", cu->func); } cu->id_to_block_map.Put(bb->id, llvm_bb); } return false; } /* * Convert MIR to LLVM_IR * o For each ssa name, create LLVM named value. Type these * appropriately, and ignore high half of wide and double operands. * o For each MIR basic block, create an LLVM basic block. * o Iterate through the MIR a basic block at a time, setting arguments * to recovered ssa name. */ void MethodMIR2Bitcode(CompilationUnit* cu) { InitIR(cu); CompilerInitGrowableList(cu, &cu->llvm_values, cu->num_ssa_regs); // Create the function CreateFunction(cu); // Create an LLVM basic block for each MIR block in dfs preorder DataFlowAnalysisDispatcher(cu, CreateLLVMBasicBlock, kPreOrderDFSTraversal, false /* is_iterative */); /* * Create an llvm named value for each MIR SSA name. Note: we'll use * placeholders for all non-argument values (because we haven't seen * the definition yet). */ cu->irb->SetInsertPoint(cu->placeholder_bb); llvm::Function::arg_iterator arg_iter(cu->func->arg_begin()); arg_iter++; /* Skip path method */ for (int i = 0; i < cu->num_ssa_regs; i++) { llvm::Value* val; RegLocation rl_temp = cu->reg_location[i]; if ((SRegToVReg(cu, i) < 0) || rl_temp.high_word) { InsertGrowableList(cu, &cu->llvm_values, 0); } else if ((i < cu->num_regs) || (i >= (cu->num_regs + cu->num_ins))) { llvm::Constant* imm_value = cu->reg_location[i].wide ? cu->irb->GetJLong(0) : cu->irb->GetJInt(0); val = EmitConst(cu, imm_value, cu->reg_location[i]); val->setName(LlvmSSAName(cu, i)); InsertGrowableList(cu, &cu->llvm_values, reinterpret_cast(val)); } else { // Recover previously-created argument values llvm::Value* arg_val = arg_iter++; InsertGrowableList(cu, &cu->llvm_values, reinterpret_cast(arg_val)); } } DataFlowAnalysisDispatcher(cu, BlockBitcodeConversion, kPreOrderDFSTraversal, false /* Iterative */); /* * In a few rare cases of verification failure, the verifier will * replace one or more Dalvik opcodes with the special * throw-verification-failure opcode. This can leave the SSA graph * in an invalid state, as definitions may be lost, while uses retained. * To work around this problem, we insert placeholder definitions for * all Dalvik SSA regs in the "placeholder" block. Here, after * bitcode conversion is complete, we examine those placeholder definitions * and delete any with no references (which normally is all of them). * * If any definitions remain, we link the placeholder block into the * CFG. Otherwise, it is deleted. */ for (llvm::BasicBlock::iterator it = cu->placeholder_bb->begin(), it_end = cu->placeholder_bb->end(); it != it_end;) { llvm::Instruction* inst = llvm::dyn_cast(it++); DCHECK(inst != NULL); llvm::Value* val = llvm::dyn_cast(inst); DCHECK(val != NULL); if (val->getNumUses() == 0) { inst->eraseFromParent(); } } SetDexOffset(cu, 0); if (cu->placeholder_bb->empty()) { cu->placeholder_bb->eraseFromParent(); } else { cu->irb->SetInsertPoint(cu->placeholder_bb); cu->irb->CreateBr(cu->entryTarget_bb); cu->entryTarget_bb = cu->placeholder_bb; } cu->irb->SetInsertPoint(cu->entry_bb); cu->irb->CreateBr(cu->entryTarget_bb); if (cu->enable_debug & (1 << kDebugVerifyBitcode)) { if (llvm::verifyFunction(*cu->func, llvm::PrintMessageAction)) { LOG(INFO) << "Bitcode verification FAILED for " << PrettyMethod(cu->method_idx, *cu->dex_file) << " of size " << cu->insns_size; cu->enable_debug |= (1 << kDebugDumpBitcodeFile); } } if (cu->enable_debug & (1 << kDebugDumpBitcodeFile)) { // Write bitcode to file std::string errmsg; std::string fname(PrettyMethod(cu->method_idx, *cu->dex_file)); ReplaceSpecialChars(fname); // TODO: make configurable change naming mechanism to avoid fname length issues. fname = StringPrintf("/sdcard/Bitcode/%s.bc", fname.c_str()); if (fname.size() > 240) { LOG(INFO) << "Warning: bitcode filename too long. Truncated."; fname.resize(240); } llvm::OwningPtr out_file( new llvm::tool_output_file(fname.c_str(), errmsg, llvm::raw_fd_ostream::F_Binary)); if (!errmsg.empty()) { LOG(ERROR) << "Failed to create bitcode output file: " << errmsg; } llvm::WriteBitcodeToFile(cu->module, out_file->os()); out_file->keep(); } } static RegLocation GetLoc(CompilationUnit* cu, llvm::Value* val) { RegLocation res; DCHECK(val != NULL); SafeMap::iterator it = cu->loc_map.find(val); if (it == cu->loc_map.end()) { std::string val_name = val->getName().str(); if (val_name.empty()) { // FIXME: need to be more robust, handle FP and be in a position to // manage unnamed temps whose lifetimes span basic block boundaries UNIMPLEMENTED(WARNING) << "Need to handle unnamed llvm temps"; memset(&res, 0, sizeof(res)); res.location = kLocPhysReg; res.low_reg = AllocTemp(cu); res.home = true; res.s_reg_low = INVALID_SREG; res.orig_sreg = INVALID_SREG; llvm::Type* ty = val->getType(); res.wide = ((ty == cu->irb->getInt64Ty()) || (ty == cu->irb->getDoubleTy())); if (res.wide) { res.high_reg = AllocTemp(cu); } cu->loc_map.Put(val, res); } else { DCHECK_EQ(val_name[0], 'v'); int base_sreg = INVALID_SREG; sscanf(val_name.c_str(), "v%d_", &base_sreg); res = cu->reg_location[base_sreg]; cu->loc_map.Put(val, res); } } else { res = it->second; } return res; } static Instruction::Code GetDalvikOpcode(OpKind op, bool is_const, bool is_wide) { Instruction::Code res = Instruction::NOP; if (is_wide) { switch(op) { case kOpAdd: res = Instruction::ADD_LONG; break; case kOpSub: res = Instruction::SUB_LONG; break; case kOpMul: res = Instruction::MUL_LONG; break; case kOpDiv: res = Instruction::DIV_LONG; break; case kOpRem: res = Instruction::REM_LONG; break; case kOpAnd: res = Instruction::AND_LONG; break; case kOpOr: res = Instruction::OR_LONG; break; case kOpXor: res = Instruction::XOR_LONG; break; case kOpLsl: res = Instruction::SHL_LONG; break; case kOpLsr: res = Instruction::USHR_LONG; break; case kOpAsr: res = Instruction::SHR_LONG; break; default: LOG(FATAL) << "Unexpected OpKind " << op; } } else if (is_const){ switch(op) { case kOpAdd: res = Instruction::ADD_INT_LIT16; break; case kOpSub: res = Instruction::RSUB_INT_LIT8; break; case kOpMul: res = Instruction::MUL_INT_LIT16; break; case kOpDiv: res = Instruction::DIV_INT_LIT16; break; case kOpRem: res = Instruction::REM_INT_LIT16; break; case kOpAnd: res = Instruction::AND_INT_LIT16; break; case kOpOr: res = Instruction::OR_INT_LIT16; break; case kOpXor: res = Instruction::XOR_INT_LIT16; break; case kOpLsl: res = Instruction::SHL_INT_LIT8; break; case kOpLsr: res = Instruction::USHR_INT_LIT8; break; case kOpAsr: res = Instruction::SHR_INT_LIT8; break; default: LOG(FATAL) << "Unexpected OpKind " << op; } } else { switch(op) { case kOpAdd: res = Instruction::ADD_INT; break; case kOpSub: res = Instruction::SUB_INT; break; case kOpMul: res = Instruction::MUL_INT; break; case kOpDiv: res = Instruction::DIV_INT; break; case kOpRem: res = Instruction::REM_INT; break; case kOpAnd: res = Instruction::AND_INT; break; case kOpOr: res = Instruction::OR_INT; break; case kOpXor: res = Instruction::XOR_INT; break; case kOpLsl: res = Instruction::SHL_INT; break; case kOpLsr: res = Instruction::USHR_INT; break; case kOpAsr: res = Instruction::SHR_INT; break; default: LOG(FATAL) << "Unexpected OpKind " << op; } } return res; } static Instruction::Code GetDalvikFPOpcode(OpKind op, bool is_const, bool is_wide) { Instruction::Code res = Instruction::NOP; if (is_wide) { switch(op) { case kOpAdd: res = Instruction::ADD_DOUBLE; break; case kOpSub: res = Instruction::SUB_DOUBLE; break; case kOpMul: res = Instruction::MUL_DOUBLE; break; case kOpDiv: res = Instruction::DIV_DOUBLE; break; case kOpRem: res = Instruction::REM_DOUBLE; break; default: LOG(FATAL) << "Unexpected OpKind " << op; } } else { switch(op) { case kOpAdd: res = Instruction::ADD_FLOAT; break; case kOpSub: res = Instruction::SUB_FLOAT; break; case kOpMul: res = Instruction::MUL_FLOAT; break; case kOpDiv: res = Instruction::DIV_FLOAT; break; case kOpRem: res = Instruction::REM_FLOAT; break; default: LOG(FATAL) << "Unexpected OpKind " << op; } } return res; } static void CvtBinFPOp(CompilationUnit* cu, OpKind op, llvm::Instruction* inst) { RegLocation rl_dest = GetLoc(cu, inst); /* * Normally, we won't ever generate an FP operation with an immediate * operand (not supported in Dex instruction set). However, the IR builder * may insert them - in particular for create_neg_fp. Recognize this case * and deal with it. */ llvm::ConstantFP* op1C = llvm::dyn_cast(inst->getOperand(0)); llvm::ConstantFP* op2C = llvm::dyn_cast(inst->getOperand(1)); DCHECK(op2C == NULL); if ((op1C != NULL) && (op == kOpSub)) { RegLocation rl_src = GetLoc(cu, inst->getOperand(1)); if (rl_dest.wide) { GenArithOpDouble(cu, Instruction::NEG_DOUBLE, rl_dest, rl_src, rl_src); } else { GenArithOpFloat(cu, Instruction::NEG_FLOAT, rl_dest, rl_src, rl_src); } } else { DCHECK(op1C == NULL); RegLocation rl_src1 = GetLoc(cu, inst->getOperand(0)); RegLocation rl_src2 = GetLoc(cu, inst->getOperand(1)); Instruction::Code dalvik_op = GetDalvikFPOpcode(op, false, rl_dest.wide); if (rl_dest.wide) { GenArithOpDouble(cu, dalvik_op, rl_dest, rl_src1, rl_src2); } else { GenArithOpFloat(cu, dalvik_op, rl_dest, rl_src1, rl_src2); } } } static void CvtIntNarrowing(CompilationUnit* cu, llvm::Instruction* inst, Instruction::Code opcode) { RegLocation rl_dest = GetLoc(cu, inst); RegLocation rl_src = GetLoc(cu, inst->getOperand(0)); GenIntNarrowing(cu, opcode, rl_dest, rl_src); } static void CvtIntToFP(CompilationUnit* cu, llvm::Instruction* inst) { RegLocation rl_dest = GetLoc(cu, inst); RegLocation rl_src = GetLoc(cu, inst->getOperand(0)); Instruction::Code opcode; if (rl_dest.wide) { if (rl_src.wide) { opcode = Instruction::LONG_TO_DOUBLE; } else { opcode = Instruction::INT_TO_DOUBLE; } } else { if (rl_src.wide) { opcode = Instruction::LONG_TO_FLOAT; } else { opcode = Instruction::INT_TO_FLOAT; } } GenConversion(cu, opcode, rl_dest, rl_src); } static void CvtFPToInt(CompilationUnit* cu, llvm::CallInst* call_inst) { RegLocation rl_dest = GetLoc(cu, call_inst); RegLocation rl_src = GetLoc(cu, call_inst->getOperand(0)); Instruction::Code opcode; if (rl_dest.wide) { if (rl_src.wide) { opcode = Instruction::DOUBLE_TO_LONG; } else { opcode = Instruction::FLOAT_TO_LONG; } } else { if (rl_src.wide) { opcode = Instruction::DOUBLE_TO_INT; } else { opcode = Instruction::FLOAT_TO_INT; } } GenConversion(cu, opcode, rl_dest, rl_src); } static void CvtFloatToDouble(CompilationUnit* cu, llvm::Instruction* inst) { RegLocation rl_dest = GetLoc(cu, inst); RegLocation rl_src = GetLoc(cu, inst->getOperand(0)); GenConversion(cu, Instruction::FLOAT_TO_DOUBLE, rl_dest, rl_src); } static void CvtTrunc(CompilationUnit* cu, llvm::Instruction* inst) { RegLocation rl_dest = GetLoc(cu, inst); RegLocation rl_src = GetLoc(cu, inst->getOperand(0)); rl_src = UpdateLocWide(cu, rl_src); rl_src = WideToNarrow(cu, rl_src); StoreValue(cu, rl_dest, rl_src); } static void CvtDoubleToFloat(CompilationUnit* cu, llvm::Instruction* inst) { RegLocation rl_dest = GetLoc(cu, inst); RegLocation rl_src = GetLoc(cu, inst->getOperand(0)); GenConversion(cu, Instruction::DOUBLE_TO_FLOAT, rl_dest, rl_src); } static void CvtIntExt(CompilationUnit* cu, llvm::Instruction* inst, bool is_signed) { // TODO: evaluate src/tgt types and add general support for more than int to long RegLocation rl_dest = GetLoc(cu, inst); RegLocation rl_src = GetLoc(cu, inst->getOperand(0)); DCHECK(rl_dest.wide); DCHECK(!rl_src.wide); DCHECK(!rl_dest.fp); DCHECK(!rl_src.fp); RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true); if (rl_src.location == kLocPhysReg) { OpRegCopy(cu, rl_result.low_reg, rl_src.low_reg); } else { LoadValueDirect(cu, rl_src, rl_result.low_reg); } if (is_signed) { OpRegRegImm(cu, kOpAsr, rl_result.high_reg, rl_result.low_reg, 31); } else { LoadConstant(cu, rl_result.high_reg, 0); } StoreValueWide(cu, rl_dest, rl_result); } static void CvtBinOp(CompilationUnit* cu, OpKind op, llvm::Instruction* inst) { RegLocation rl_dest = GetLoc(cu, inst); llvm::Value* lhs = inst->getOperand(0); // Special-case RSUB/NEG llvm::ConstantInt* lhs_imm = llvm::dyn_cast(lhs); if ((op == kOpSub) && (lhs_imm != NULL)) { RegLocation rl_src1 = GetLoc(cu, inst->getOperand(1)); if (rl_src1.wide) { DCHECK_EQ(lhs_imm->getSExtValue(), 0); GenArithOpLong(cu, Instruction::NEG_LONG, rl_dest, rl_src1, rl_src1); } else { GenArithOpIntLit(cu, Instruction::RSUB_INT, rl_dest, rl_src1, lhs_imm->getSExtValue()); } return; } DCHECK(lhs_imm == NULL); RegLocation rl_src1 = GetLoc(cu, inst->getOperand(0)); llvm::Value* rhs = inst->getOperand(1); llvm::ConstantInt* const_rhs = llvm::dyn_cast(rhs); if (!rl_dest.wide && (const_rhs != NULL)) { Instruction::Code dalvik_op = GetDalvikOpcode(op, true, false); GenArithOpIntLit(cu, dalvik_op, rl_dest, rl_src1, const_rhs->getSExtValue()); } else { Instruction::Code dalvik_op = GetDalvikOpcode(op, false, rl_dest.wide); RegLocation rl_src2; if (const_rhs != NULL) { // ir_builder converts NOT_LONG to xor src, -1. Restore DCHECK_EQ(dalvik_op, Instruction::XOR_LONG); DCHECK_EQ(-1L, const_rhs->getSExtValue()); dalvik_op = Instruction::NOT_LONG; rl_src2 = rl_src1; } else { rl_src2 = GetLoc(cu, rhs); } if (rl_dest.wide) { GenArithOpLong(cu, dalvik_op, rl_dest, rl_src1, rl_src2); } else { GenArithOpInt(cu, dalvik_op, rl_dest, rl_src1, rl_src2); } } } static void CvtShiftOp(CompilationUnit* cu, Instruction::Code opcode, llvm::CallInst* call_inst) { DCHECK_EQ(call_inst->getNumArgOperands(), 2U); RegLocation rl_dest = GetLoc(cu, call_inst); RegLocation rl_src = GetLoc(cu, call_inst->getArgOperand(0)); llvm::Value* rhs = call_inst->getArgOperand(1); if (llvm::ConstantInt* src2 = llvm::dyn_cast(rhs)) { DCHECK(!rl_dest.wide); GenArithOpIntLit(cu, opcode, rl_dest, rl_src, src2->getSExtValue()); } else { RegLocation rl_shift = GetLoc(cu, rhs); if (call_inst->getType() == cu->irb->getInt64Ty()) { GenShiftOpLong(cu, opcode, rl_dest, rl_src, rl_shift); } else { GenArithOpInt(cu, opcode, rl_dest, rl_src, rl_shift); } } } static void CvtBr(CompilationUnit* cu, llvm::Instruction* inst) { llvm::BranchInst* br_inst = llvm::dyn_cast(inst); DCHECK(br_inst != NULL); DCHECK(br_inst->isUnconditional()); // May change - but this is all we use now llvm::BasicBlock* target_bb = br_inst->getSuccessor(0); OpUnconditionalBranch(cu, cu->block_to_label_map.Get(target_bb)); } static void CvtPhi(CompilationUnit* cu, llvm::Instruction* inst) { // Nop - these have already been processed } static void CvtRet(CompilationUnit* cu, llvm::Instruction* inst) { llvm::ReturnInst* ret_inst = llvm::dyn_cast(inst); llvm::Value* ret_val = ret_inst->getReturnValue(); if (ret_val != NULL) { RegLocation rl_src = GetLoc(cu, ret_val); if (rl_src.wide) { StoreValueWide(cu, GetReturnWide(cu, rl_src.fp), rl_src); } else { StoreValue(cu, GetReturn(cu, rl_src.fp), rl_src); } } GenExitSequence(cu); } static ConditionCode GetCond(llvm::ICmpInst::Predicate llvm_cond) { ConditionCode res = kCondAl; switch(llvm_cond) { case llvm::ICmpInst::ICMP_EQ: res = kCondEq; break; case llvm::ICmpInst::ICMP_NE: res = kCondNe; break; case llvm::ICmpInst::ICMP_SLT: res = kCondLt; break; case llvm::ICmpInst::ICMP_SGE: res = kCondGe; break; case llvm::ICmpInst::ICMP_SGT: res = kCondGt; break; case llvm::ICmpInst::ICMP_SLE: res = kCondLe; break; default: LOG(FATAL) << "Unexpected llvm condition"; } return res; } static void CvtICmp(CompilationUnit* cu, llvm::Instruction* inst) { // GenCmpLong(cu, rl_dest, rl_src1, rl_src2) UNIMPLEMENTED(FATAL); } static void CvtICmpBr(CompilationUnit* cu, llvm::Instruction* inst, llvm::BranchInst* br_inst) { // Get targets llvm::BasicBlock* taken_bb = br_inst->getSuccessor(0); LIR* taken = cu->block_to_label_map.Get(taken_bb); llvm::BasicBlock* fallthrough_bb = br_inst->getSuccessor(1); LIR* fall_through = cu->block_to_label_map.Get(fallthrough_bb); // Get comparison operands llvm::ICmpInst* i_cmp_inst = llvm::dyn_cast(inst); ConditionCode cond = GetCond(i_cmp_inst->getPredicate()); llvm::Value* lhs = i_cmp_inst->getOperand(0); // Not expecting a constant as 1st operand DCHECK(llvm::dyn_cast(lhs) == NULL); RegLocation rl_src1 = GetLoc(cu, inst->getOperand(0)); rl_src1 = LoadValue(cu, rl_src1, kCoreReg); llvm::Value* rhs = inst->getOperand(1); if (cu->instruction_set == kMips) { // Compare and branch in one shot UNIMPLEMENTED(FATAL); } //Compare, then branch // TODO: handle fused CMP_LONG/IF_xxZ case if (llvm::ConstantInt* src2 = llvm::dyn_cast(rhs)) { OpRegImm(cu, kOpCmp, rl_src1.low_reg, src2->getSExtValue()); } else if (llvm::dyn_cast(rhs) != NULL) { OpRegImm(cu, kOpCmp, rl_src1.low_reg, 0); } else { RegLocation rl_src2 = GetLoc(cu, rhs); rl_src2 = LoadValue(cu, rl_src2, kCoreReg); OpRegReg(cu, kOpCmp, rl_src1.low_reg, rl_src2.low_reg); } OpCondBranch(cu, cond, taken); // Fallthrough OpUnconditionalBranch(cu, fall_through); } static void CvtCopy(CompilationUnit* cu, llvm::CallInst* call_inst) { DCHECK_EQ(call_inst->getNumArgOperands(), 1U); RegLocation rl_src = GetLoc(cu, call_inst->getArgOperand(0)); RegLocation rl_dest = GetLoc(cu, call_inst); DCHECK_EQ(rl_src.wide, rl_dest.wide); DCHECK_EQ(rl_src.fp, rl_dest.fp); if (rl_src.wide) { StoreValueWide(cu, rl_dest, rl_src); } else { StoreValue(cu, rl_dest, rl_src); } } // Note: Immediate arg is a ConstantInt regardless of result type static void CvtConst(CompilationUnit* cu, llvm::CallInst* call_inst) { DCHECK_EQ(call_inst->getNumArgOperands(), 1U); llvm::ConstantInt* src = llvm::dyn_cast(call_inst->getArgOperand(0)); uint64_t immval = src->getZExtValue(); RegLocation rl_dest = GetLoc(cu, call_inst); RegLocation rl_result = EvalLoc(cu, rl_dest, kAnyReg, true); if (rl_dest.wide) { LoadConstantValueWide(cu, rl_result.low_reg, rl_result.high_reg, (immval) & 0xffffffff, (immval >> 32) & 0xffffffff); StoreValueWide(cu, rl_dest, rl_result); } else { LoadConstantNoClobber(cu, rl_result.low_reg, immval & 0xffffffff); StoreValue(cu, rl_dest, rl_result); } } static void CvtConstObject(CompilationUnit* cu, llvm::CallInst* call_inst, bool is_string) { DCHECK_EQ(call_inst->getNumArgOperands(), 1U); llvm::ConstantInt* idx_val = llvm::dyn_cast(call_inst->getArgOperand(0)); uint32_t index = idx_val->getZExtValue(); RegLocation rl_dest = GetLoc(cu, call_inst); if (is_string) { GenConstString(cu, index, rl_dest); } else { GenConstClass(cu, index, rl_dest); } } static void CvtFillArrayData(CompilationUnit* cu, llvm::CallInst* call_inst) { DCHECK_EQ(call_inst->getNumArgOperands(), 2U); llvm::ConstantInt* offset_val = llvm::dyn_cast(call_inst->getArgOperand(0)); RegLocation rl_src = GetLoc(cu, call_inst->getArgOperand(1)); GenFillArrayData(cu, offset_val->getSExtValue(), rl_src); } static void CvtNewInstance(CompilationUnit* cu, llvm::CallInst* call_inst) { DCHECK_EQ(call_inst->getNumArgOperands(), 1U); llvm::ConstantInt* type_idx_val = llvm::dyn_cast(call_inst->getArgOperand(0)); uint32_t type_idx = type_idx_val->getZExtValue(); RegLocation rl_dest = GetLoc(cu, call_inst); GenNewInstance(cu, type_idx, rl_dest); } static void CvtNewArray(CompilationUnit* cu, llvm::CallInst* call_inst) { DCHECK_EQ(call_inst->getNumArgOperands(), 2U); llvm::ConstantInt* type_idx_val = llvm::dyn_cast(call_inst->getArgOperand(0)); uint32_t type_idx = type_idx_val->getZExtValue(); llvm::Value* len = call_inst->getArgOperand(1); RegLocation rl_len = GetLoc(cu, len); RegLocation rl_dest = GetLoc(cu, call_inst); GenNewArray(cu, type_idx, rl_dest, rl_len); } static void CvtInstanceOf(CompilationUnit* cu, llvm::CallInst* call_inst) { DCHECK_EQ(call_inst->getNumArgOperands(), 2U); llvm::ConstantInt* type_idx_val = llvm::dyn_cast(call_inst->getArgOperand(0)); uint32_t type_idx = type_idx_val->getZExtValue(); llvm::Value* src = call_inst->getArgOperand(1); RegLocation rl_src = GetLoc(cu, src); RegLocation rl_dest = GetLoc(cu, call_inst); GenInstanceof(cu, type_idx, rl_dest, rl_src); } static void CvtThrow(CompilationUnit* cu, llvm::CallInst* call_inst) { DCHECK_EQ(call_inst->getNumArgOperands(), 1U); llvm::Value* src = call_inst->getArgOperand(0); RegLocation rl_src = GetLoc(cu, src); GenThrow(cu, rl_src); } static void CvtMonitorEnterExit(CompilationUnit* cu, bool is_enter, llvm::CallInst* call_inst) { DCHECK_EQ(call_inst->getNumArgOperands(), 2U); llvm::ConstantInt* opt_flags = llvm::dyn_cast(call_inst->getArgOperand(0)); llvm::Value* src = call_inst->getArgOperand(1); RegLocation rl_src = GetLoc(cu, src); if (is_enter) { GenMonitorEnter(cu, opt_flags->getZExtValue(), rl_src); } else { GenMonitorExit(cu, opt_flags->getZExtValue(), rl_src); } } static void CvtArrayLength(CompilationUnit* cu, llvm::CallInst* call_inst) { DCHECK_EQ(call_inst->getNumArgOperands(), 2U); llvm::ConstantInt* opt_flags = llvm::dyn_cast(call_inst->getArgOperand(0)); llvm::Value* src = call_inst->getArgOperand(1); RegLocation rl_src = GetLoc(cu, src); rl_src = LoadValue(cu, rl_src, kCoreReg); GenNullCheck(cu, rl_src.s_reg_low, rl_src.low_reg, opt_flags->getZExtValue()); RegLocation rl_dest = GetLoc(cu, call_inst); RegLocation rl_result = EvalLoc(cu, rl_dest, kCoreReg, true); int len_offset = Array::LengthOffset().Int32Value(); LoadWordDisp(cu, rl_src.low_reg, len_offset, rl_result.low_reg); StoreValue(cu, rl_dest, rl_result); } static void CvtMoveException(CompilationUnit* cu, llvm::CallInst* call_inst) { RegLocation rl_dest = GetLoc(cu, call_inst); GenMoveException(cu, rl_dest); } static void CvtSget(CompilationUnit* cu, llvm::CallInst* call_inst, bool is_wide, bool is_object) { DCHECK_EQ(call_inst->getNumArgOperands(), 1U); llvm::ConstantInt* type_idx_val = llvm::dyn_cast(call_inst->getArgOperand(0)); uint32_t type_idx = type_idx_val->getZExtValue(); RegLocation rl_dest = GetLoc(cu, call_inst); GenSget(cu, type_idx, rl_dest, is_wide, is_object); } static void CvtSput(CompilationUnit* cu, llvm::CallInst* call_inst, bool is_wide, bool is_object) { DCHECK_EQ(call_inst->getNumArgOperands(), 2U); llvm::ConstantInt* type_idx_val = llvm::dyn_cast(call_inst->getArgOperand(0)); uint32_t type_idx = type_idx_val->getZExtValue(); llvm::Value* src = call_inst->getArgOperand(1); RegLocation rl_src = GetLoc(cu, src); GenSput(cu, type_idx, rl_src, is_wide, is_object); } static void CvtAget(CompilationUnit* cu, llvm::CallInst* call_inst, OpSize size, int scale) { DCHECK_EQ(call_inst->getNumArgOperands(), 3U); llvm::ConstantInt* opt_flags = llvm::dyn_cast(call_inst->getArgOperand(0)); RegLocation rl_array = GetLoc(cu, call_inst->getArgOperand(1)); RegLocation rl_index = GetLoc(cu, call_inst->getArgOperand(2)); RegLocation rl_dest = GetLoc(cu, call_inst); GenArrayGet(cu, opt_flags->getZExtValue(), size, rl_array, rl_index, rl_dest, scale); } static void CvtAput(CompilationUnit* cu, llvm::CallInst* call_inst, OpSize size, int scale, bool is_object) { DCHECK_EQ(call_inst->getNumArgOperands(), 4U); llvm::ConstantInt* opt_flags = llvm::dyn_cast(call_inst->getArgOperand(0)); RegLocation rl_src = GetLoc(cu, call_inst->getArgOperand(1)); RegLocation rl_array = GetLoc(cu, call_inst->getArgOperand(2)); RegLocation rl_index = GetLoc(cu, call_inst->getArgOperand(3)); if (is_object) { GenArrayObjPut(cu, opt_flags->getZExtValue(), rl_array, rl_index, rl_src, scale); } else { GenArrayPut(cu, opt_flags->getZExtValue(), size, rl_array, rl_index, rl_src, scale); } } static void CvtAputObj(CompilationUnit* cu, llvm::CallInst* call_inst) { CvtAput(cu, call_inst, kWord, 2, true /* is_object */); } static void CvtAputPrimitive(CompilationUnit* cu, llvm::CallInst* call_inst, OpSize size, int scale) { CvtAput(cu, call_inst, size, scale, false /* is_object */); } static void CvtIget(CompilationUnit* cu, llvm::CallInst* call_inst, OpSize size, bool is_wide, bool is_obj) { DCHECK_EQ(call_inst->getNumArgOperands(), 3U); llvm::ConstantInt* opt_flags = llvm::dyn_cast(call_inst->getArgOperand(0)); RegLocation rl_obj = GetLoc(cu, call_inst->getArgOperand(1)); llvm::ConstantInt* field_idx = llvm::dyn_cast(call_inst->getArgOperand(2)); RegLocation rl_dest = GetLoc(cu, call_inst); GenIGet(cu, field_idx->getZExtValue(), opt_flags->getZExtValue(), size, rl_dest, rl_obj, is_wide, is_obj); } static void CvtIput(CompilationUnit* cu, llvm::CallInst* call_inst, OpSize size, bool is_wide, bool is_obj) { DCHECK_EQ(call_inst->getNumArgOperands(), 4U); llvm::ConstantInt* opt_flags = llvm::dyn_cast(call_inst->getArgOperand(0)); RegLocation rl_src = GetLoc(cu, call_inst->getArgOperand(1)); RegLocation rl_obj = GetLoc(cu, call_inst->getArgOperand(2)); llvm::ConstantInt* field_idx = llvm::dyn_cast(call_inst->getArgOperand(3)); GenIPut(cu, field_idx->getZExtValue(), opt_flags->getZExtValue(), size, rl_src, rl_obj, is_wide, is_obj); } static void CvtCheckCast(CompilationUnit* cu, llvm::CallInst* call_inst) { DCHECK_EQ(call_inst->getNumArgOperands(), 2U); llvm::ConstantInt* type_idx = llvm::dyn_cast(call_inst->getArgOperand(0)); RegLocation rl_src = GetLoc(cu, call_inst->getArgOperand(1)); GenCheckCast(cu, type_idx->getZExtValue(), rl_src); } static void CvtFPCompare(CompilationUnit* cu, llvm::CallInst* call_inst, Instruction::Code opcode) { RegLocation rl_src1 = GetLoc(cu, call_inst->getArgOperand(0)); RegLocation rl_src2 = GetLoc(cu, call_inst->getArgOperand(1)); RegLocation rl_dest = GetLoc(cu, call_inst); GenCmpFP(cu, opcode, rl_dest, rl_src1, rl_src2); } static void CvtLongCompare(CompilationUnit* cu, llvm::CallInst* call_inst) { RegLocation rl_src1 = GetLoc(cu, call_inst->getArgOperand(0)); RegLocation rl_src2 = GetLoc(cu, call_inst->getArgOperand(1)); RegLocation rl_dest = GetLoc(cu, call_inst); GenCmpLong(cu, rl_dest, rl_src1, rl_src2); } static void CvtSwitch(CompilationUnit* cu, llvm::Instruction* inst) { llvm::SwitchInst* sw_inst = llvm::dyn_cast(inst); DCHECK(sw_inst != NULL); llvm::Value* test_val = sw_inst->getCondition(); llvm::MDNode* table_offset_node = sw_inst->getMetadata("SwitchTable"); DCHECK(table_offset_node != NULL); llvm::ConstantInt* table_offset_value = static_cast(table_offset_node->getOperand(0)); int32_t table_offset = table_offset_value->getSExtValue(); RegLocation rl_src = GetLoc(cu, test_val); const uint16_t* table = cu->insns + cu->current_dalvik_offset + table_offset; uint16_t table_magic = *table; if (table_magic == 0x100) { GenPackedSwitch(cu, table_offset, rl_src); } else { DCHECK_EQ(table_magic, 0x200); GenSparseSwitch(cu, table_offset, rl_src); } } static void CvtInvoke(CompilationUnit* cu, llvm::CallInst* call_inst, bool is_void, bool is_filled_new_array) { CallInfo* info = static_cast(NewMem(cu, sizeof(CallInfo), true, kAllocMisc)); if (is_void) { info->result.location = kLocInvalid; } else { info->result = GetLoc(cu, call_inst); } llvm::ConstantInt* invoke_type_val = llvm::dyn_cast(call_inst->getArgOperand(0)); llvm::ConstantInt* method_index_val = llvm::dyn_cast(call_inst->getArgOperand(1)); llvm::ConstantInt* opt_flags_val = llvm::dyn_cast(call_inst->getArgOperand(2)); info->type = static_cast(invoke_type_val->getZExtValue()); info->index = method_index_val->getZExtValue(); info->opt_flags = opt_flags_val->getZExtValue(); info->offset = cu->current_dalvik_offset; // Count the argument words, and then build argument array. info->num_arg_words = 0; for (unsigned int i = 3; i < call_inst->getNumArgOperands(); i++) { RegLocation t_loc = GetLoc(cu, call_inst->getArgOperand(i)); info->num_arg_words += t_loc.wide ? 2 : 1; } info->args = (info->num_arg_words == 0) ? NULL : static_cast (NewMem(cu, sizeof(RegLocation) * info->num_arg_words, false, kAllocMisc)); // Now, fill in the location records, synthesizing high loc of wide vals for (int i = 3, next = 0; next < info->num_arg_words;) { info->args[next] = GetLoc(cu, call_inst->getArgOperand(i++)); if (info->args[next].wide) { next++; // TODO: Might make sense to mark this as an invalid loc info->args[next].orig_sreg = info->args[next-1].orig_sreg+1; info->args[next].s_reg_low = info->args[next-1].s_reg_low+1; } next++; } // TODO - rework such that we no longer need is_range info->is_range = (info->num_arg_words > 5); if (is_filled_new_array) { GenFilledNewArray(cu, info); } else { GenInvoke(cu, info); } } /* Look up the RegLocation associated with a Value. Must already be defined */ static RegLocation ValToLoc(CompilationUnit* cu, llvm::Value* val) { SafeMap::iterator it = cu->loc_map.find(val); DCHECK(it != cu->loc_map.end()) << "Missing definition"; return it->second; } static bool BitcodeBlockCodeGen(CompilationUnit* cu, llvm::BasicBlock* bb) { while (cu->llvm_blocks.find(bb) == cu->llvm_blocks.end()) { llvm::BasicBlock* next_bb = NULL; cu->llvm_blocks.insert(bb); bool is_entry = (bb == &cu->func->getEntryBlock()); // Define the starting label LIR* block_label = cu->block_to_label_map.Get(bb); // Extract the type and starting offset from the block's name char block_type = kInvalidBlock; if (is_entry) { block_type = kNormalBlock; block_label->operands[0] = 0; } else if (!bb->hasName()) { block_type = kNormalBlock; block_label->operands[0] = DexFile::kDexNoIndex; } else { std::string block_name = bb->getName().str(); int dummy; sscanf(block_name.c_str(), kLabelFormat, &block_type, &block_label->operands[0], &dummy); cu->current_dalvik_offset = block_label->operands[0]; } DCHECK((block_type == kNormalBlock) || (block_type == kCatchBlock)); cu->current_dalvik_offset = block_label->operands[0]; // Set the label kind block_label->opcode = kPseudoNormalBlockLabel; // Insert the label AppendLIR(cu, block_label); LIR* head_lir = NULL; if (block_type == kCatchBlock) { head_lir = NewLIR0(cu, kPseudoExportedPC); } // Free temp registers and reset redundant store tracking */ ResetRegPool(cu); ResetDefTracking(cu); //TODO: restore oat incoming liveness optimization ClobberAllRegs(cu); if (is_entry) { RegLocation* ArgLocs = static_cast (NewMem(cu, sizeof(RegLocation) * cu->num_ins, true, kAllocMisc)); llvm::Function::arg_iterator it(cu->func->arg_begin()); llvm::Function::arg_iterator it_end(cu->func->arg_end()); // Skip past Method* it++; for (unsigned i = 0; it != it_end; ++it) { llvm::Value* val = it; ArgLocs[i++] = ValToLoc(cu, val); llvm::Type* ty = val->getType(); if ((ty == cu->irb->getInt64Ty()) || (ty == cu->irb->getDoubleTy())) { ArgLocs[i] = ArgLocs[i-1]; ArgLocs[i].low_reg = ArgLocs[i].high_reg; ArgLocs[i].orig_sreg++; ArgLocs[i].s_reg_low = INVALID_SREG; ArgLocs[i].high_word = true; i++; } } GenEntrySequence(cu, ArgLocs, cu->method_loc); } // Visit all of the instructions in the block for (llvm::BasicBlock::iterator it = bb->begin(), e = bb->end(); it != e;) { llvm::Instruction* inst = it; llvm::BasicBlock::iterator next_it = ++it; // Extract the Dalvik offset from the instruction uint32_t opcode = inst->getOpcode(); llvm::MDNode* dex_offset_node = inst->getMetadata("DexOff"); if (dex_offset_node != NULL) { llvm::ConstantInt* dex_offset_value = static_cast(dex_offset_node->getOperand(0)); cu->current_dalvik_offset = dex_offset_value->getZExtValue(); } ResetRegPool(cu); if (cu->disable_opt & (1 << kTrackLiveTemps)) { ClobberAllRegs(cu); } if (cu->disable_opt & (1 << kSuppressLoads)) { ResetDefTracking(cu); } #ifndef NDEBUG /* Reset temp tracking sanity check */ cu->live_sreg = INVALID_SREG; #endif // TODO: use llvm opcode name here instead of "boundary" if verbose LIR* boundary_lir = MarkBoundary(cu, cu->current_dalvik_offset, "boundary"); /* Remember the first LIR for thisl block*/ if (head_lir == NULL) { head_lir = boundary_lir; head_lir->def_mask = ENCODE_ALL; } switch(opcode) { case llvm::Instruction::ICmp: { llvm::Instruction* next_inst = next_it; llvm::BranchInst* br_inst = llvm::dyn_cast(next_inst); if (br_inst != NULL /* and... */) { CvtICmpBr(cu, inst, br_inst); ++it; } else { CvtICmp(cu, inst); } } break; case llvm::Instruction::Call: { llvm::CallInst* call_inst = llvm::dyn_cast(inst); llvm::Function* callee = call_inst->getCalledFunction(); greenland::IntrinsicHelper::IntrinsicId id = cu->intrinsic_helper->GetIntrinsicId(callee); switch (id) { case greenland::IntrinsicHelper::AllocaShadowFrame: case greenland::IntrinsicHelper::SetShadowFrameEntry: case greenland::IntrinsicHelper::PopShadowFrame: case greenland::IntrinsicHelper::SetVReg: // Ignore shadow frame stuff for quick compiler break; case greenland::IntrinsicHelper::CopyInt: case greenland::IntrinsicHelper::CopyObj: case greenland::IntrinsicHelper::CopyFloat: case greenland::IntrinsicHelper::CopyLong: case greenland::IntrinsicHelper::CopyDouble: CvtCopy(cu, call_inst); break; case greenland::IntrinsicHelper::ConstInt: case greenland::IntrinsicHelper::ConstObj: case greenland::IntrinsicHelper::ConstLong: case greenland::IntrinsicHelper::ConstFloat: case greenland::IntrinsicHelper::ConstDouble: CvtConst(cu, call_inst); break; case greenland::IntrinsicHelper::DivInt: case greenland::IntrinsicHelper::DivLong: CvtBinOp(cu, kOpDiv, inst); break; case greenland::IntrinsicHelper::RemInt: case greenland::IntrinsicHelper::RemLong: CvtBinOp(cu, kOpRem, inst); break; case greenland::IntrinsicHelper::MethodInfo: // Already dealt with - just ignore it here. break; case greenland::IntrinsicHelper::CheckSuspend: GenSuspendTest(cu, 0 /* opt_flags already applied */); break; case greenland::IntrinsicHelper::HLInvokeObj: case greenland::IntrinsicHelper::HLInvokeFloat: case greenland::IntrinsicHelper::HLInvokeDouble: case greenland::IntrinsicHelper::HLInvokeLong: case greenland::IntrinsicHelper::HLInvokeInt: CvtInvoke(cu, call_inst, false /* is_void */, false /* new_array */); break; case greenland::IntrinsicHelper::HLInvokeVoid: CvtInvoke(cu, call_inst, true /* is_void */, false /* new_array */); break; case greenland::IntrinsicHelper::HLFilledNewArray: CvtInvoke(cu, call_inst, false /* is_void */, true /* new_array */); break; case greenland::IntrinsicHelper::HLFillArrayData: CvtFillArrayData(cu, call_inst); break; case greenland::IntrinsicHelper::ConstString: CvtConstObject(cu, call_inst, true /* is_string */); break; case greenland::IntrinsicHelper::ConstClass: CvtConstObject(cu, call_inst, false /* is_string */); break; case greenland::IntrinsicHelper::HLCheckCast: CvtCheckCast(cu, call_inst); break; case greenland::IntrinsicHelper::NewInstance: CvtNewInstance(cu, call_inst); break; case greenland::IntrinsicHelper::HLSgetObject: CvtSget(cu, call_inst, false /* wide */, true /* Object */); break; case greenland::IntrinsicHelper::HLSget: case greenland::IntrinsicHelper::HLSgetFloat: case greenland::IntrinsicHelper::HLSgetBoolean: case greenland::IntrinsicHelper::HLSgetByte: case greenland::IntrinsicHelper::HLSgetChar: case greenland::IntrinsicHelper::HLSgetShort: CvtSget(cu, call_inst, false /* wide */, false /* Object */); break; case greenland::IntrinsicHelper::HLSgetWide: case greenland::IntrinsicHelper::HLSgetDouble: CvtSget(cu, call_inst, true /* wide */, false /* Object */); break; case greenland::IntrinsicHelper::HLSput: case greenland::IntrinsicHelper::HLSputFloat: case greenland::IntrinsicHelper::HLSputBoolean: case greenland::IntrinsicHelper::HLSputByte: case greenland::IntrinsicHelper::HLSputChar: case greenland::IntrinsicHelper::HLSputShort: CvtSput(cu, call_inst, false /* wide */, false /* Object */); break; case greenland::IntrinsicHelper::HLSputWide: case greenland::IntrinsicHelper::HLSputDouble: CvtSput(cu, call_inst, true /* wide */, false /* Object */); break; case greenland::IntrinsicHelper::HLSputObject: CvtSput(cu, call_inst, false /* wide */, true /* Object */); break; case greenland::IntrinsicHelper::GetException: CvtMoveException(cu, call_inst); break; case greenland::IntrinsicHelper::HLThrowException: CvtThrow(cu, call_inst); break; case greenland::IntrinsicHelper::MonitorEnter: CvtMonitorEnterExit(cu, true /* is_enter */, call_inst); break; case greenland::IntrinsicHelper::MonitorExit: CvtMonitorEnterExit(cu, false /* is_enter */, call_inst); break; case greenland::IntrinsicHelper::OptArrayLength: CvtArrayLength(cu, call_inst); break; case greenland::IntrinsicHelper::NewArray: CvtNewArray(cu, call_inst); break; case greenland::IntrinsicHelper::InstanceOf: CvtInstanceOf(cu, call_inst); break; case greenland::IntrinsicHelper::HLArrayGet: case greenland::IntrinsicHelper::HLArrayGetObject: case greenland::IntrinsicHelper::HLArrayGetFloat: CvtAget(cu, call_inst, kWord, 2); break; case greenland::IntrinsicHelper::HLArrayGetWide: case greenland::IntrinsicHelper::HLArrayGetDouble: CvtAget(cu, call_inst, kLong, 3); break; case greenland::IntrinsicHelper::HLArrayGetBoolean: CvtAget(cu, call_inst, kUnsignedByte, 0); break; case greenland::IntrinsicHelper::HLArrayGetByte: CvtAget(cu, call_inst, kSignedByte, 0); break; case greenland::IntrinsicHelper::HLArrayGetChar: CvtAget(cu, call_inst, kUnsignedHalf, 1); break; case greenland::IntrinsicHelper::HLArrayGetShort: CvtAget(cu, call_inst, kSignedHalf, 1); break; case greenland::IntrinsicHelper::HLArrayPut: case greenland::IntrinsicHelper::HLArrayPutFloat: CvtAputPrimitive(cu, call_inst, kWord, 2); break; case greenland::IntrinsicHelper::HLArrayPutObject: CvtAputObj(cu, call_inst); break; case greenland::IntrinsicHelper::HLArrayPutWide: case greenland::IntrinsicHelper::HLArrayPutDouble: CvtAputPrimitive(cu, call_inst, kLong, 3); break; case greenland::IntrinsicHelper::HLArrayPutBoolean: CvtAputPrimitive(cu, call_inst, kUnsignedByte, 0); break; case greenland::IntrinsicHelper::HLArrayPutByte: CvtAputPrimitive(cu, call_inst, kSignedByte, 0); break; case greenland::IntrinsicHelper::HLArrayPutChar: CvtAputPrimitive(cu, call_inst, kUnsignedHalf, 1); break; case greenland::IntrinsicHelper::HLArrayPutShort: CvtAputPrimitive(cu, call_inst, kSignedHalf, 1); break; case greenland::IntrinsicHelper::HLIGet: case greenland::IntrinsicHelper::HLIGetFloat: CvtIget(cu, call_inst, kWord, false /* is_wide */, false /* obj */); break; case greenland::IntrinsicHelper::HLIGetObject: CvtIget(cu, call_inst, kWord, false /* is_wide */, true /* obj */); break; case greenland::IntrinsicHelper::HLIGetWide: case greenland::IntrinsicHelper::HLIGetDouble: CvtIget(cu, call_inst, kLong, true /* is_wide */, false /* obj */); break; case greenland::IntrinsicHelper::HLIGetBoolean: CvtIget(cu, call_inst, kUnsignedByte, false /* is_wide */, false /* obj */); break; case greenland::IntrinsicHelper::HLIGetByte: CvtIget(cu, call_inst, kSignedByte, false /* is_wide */, false /* obj */); break; case greenland::IntrinsicHelper::HLIGetChar: CvtIget(cu, call_inst, kUnsignedHalf, false /* is_wide */, false /* obj */); break; case greenland::IntrinsicHelper::HLIGetShort: CvtIget(cu, call_inst, kSignedHalf, false /* is_wide */, false /* obj */); break; case greenland::IntrinsicHelper::HLIPut: case greenland::IntrinsicHelper::HLIPutFloat: CvtIput(cu, call_inst, kWord, false /* is_wide */, false /* obj */); break; case greenland::IntrinsicHelper::HLIPutObject: CvtIput(cu, call_inst, kWord, false /* is_wide */, true /* obj */); break; case greenland::IntrinsicHelper::HLIPutWide: case greenland::IntrinsicHelper::HLIPutDouble: CvtIput(cu, call_inst, kLong, true /* is_wide */, false /* obj */); break; case greenland::IntrinsicHelper::HLIPutBoolean: CvtIput(cu, call_inst, kUnsignedByte, false /* is_wide */, false /* obj */); break; case greenland::IntrinsicHelper::HLIPutByte: CvtIput(cu, call_inst, kSignedByte, false /* is_wide */, false /* obj */); break; case greenland::IntrinsicHelper::HLIPutChar: CvtIput(cu, call_inst, kUnsignedHalf, false /* is_wide */, false /* obj */); break; case greenland::IntrinsicHelper::HLIPutShort: CvtIput(cu, call_inst, kSignedHalf, false /* is_wide */, false /* obj */); break; case greenland::IntrinsicHelper::IntToChar: CvtIntNarrowing(cu, call_inst, Instruction::INT_TO_CHAR); break; case greenland::IntrinsicHelper::IntToShort: CvtIntNarrowing(cu, call_inst, Instruction::INT_TO_SHORT); break; case greenland::IntrinsicHelper::IntToByte: CvtIntNarrowing(cu, call_inst, Instruction::INT_TO_BYTE); break; case greenland::IntrinsicHelper::F2I: case greenland::IntrinsicHelper::D2I: case greenland::IntrinsicHelper::F2L: case greenland::IntrinsicHelper::D2L: CvtFPToInt(cu, call_inst); break; case greenland::IntrinsicHelper::CmplFloat: CvtFPCompare(cu, call_inst, Instruction::CMPL_FLOAT); break; case greenland::IntrinsicHelper::CmpgFloat: CvtFPCompare(cu, call_inst, Instruction::CMPG_FLOAT); break; case greenland::IntrinsicHelper::CmplDouble: CvtFPCompare(cu, call_inst, Instruction::CMPL_DOUBLE); break; case greenland::IntrinsicHelper::CmpgDouble: CvtFPCompare(cu, call_inst, Instruction::CMPG_DOUBLE); break; case greenland::IntrinsicHelper::CmpLong: CvtLongCompare(cu, call_inst); break; case greenland::IntrinsicHelper::SHLLong: CvtShiftOp(cu, Instruction::SHL_LONG, call_inst); break; case greenland::IntrinsicHelper::SHRLong: CvtShiftOp(cu, Instruction::SHR_LONG, call_inst); break; case greenland::IntrinsicHelper::USHRLong: CvtShiftOp(cu, Instruction::USHR_LONG, call_inst); break; case greenland::IntrinsicHelper::SHLInt: CvtShiftOp(cu, Instruction::SHL_INT, call_inst); break; case greenland::IntrinsicHelper::SHRInt: CvtShiftOp(cu, Instruction::SHR_INT, call_inst); break; case greenland::IntrinsicHelper::USHRInt: CvtShiftOp(cu, Instruction::USHR_INT, call_inst); break; case greenland::IntrinsicHelper::CatchTargets: { llvm::SwitchInst* sw_inst = llvm::dyn_cast(next_it); DCHECK(sw_inst != NULL); /* * Discard the edges and the following conditional branch. * Do a direct branch to the default target (which is the * "work" portion of the pair. * TODO: awful code layout - rework */ llvm::BasicBlock* target_bb = sw_inst->getDefaultDest(); DCHECK(target_bb != NULL); OpUnconditionalBranch(cu, cu->block_to_label_map.Get(target_bb)); ++it; // Set next bb to default target - improves code layout next_bb = target_bb; } break; default: LOG(FATAL) << "Unexpected intrinsic " << cu->intrinsic_helper->GetName(id); } } break; case llvm::Instruction::Br: CvtBr(cu, inst); break; case llvm::Instruction::Add: CvtBinOp(cu, kOpAdd, inst); break; case llvm::Instruction::Sub: CvtBinOp(cu, kOpSub, inst); break; case llvm::Instruction::Mul: CvtBinOp(cu, kOpMul, inst); break; case llvm::Instruction::SDiv: CvtBinOp(cu, kOpDiv, inst); break; case llvm::Instruction::SRem: CvtBinOp(cu, kOpRem, inst); break; case llvm::Instruction::And: CvtBinOp(cu, kOpAnd, inst); break; case llvm::Instruction::Or: CvtBinOp(cu, kOpOr, inst); break; case llvm::Instruction::Xor: CvtBinOp(cu, kOpXor, inst); break; case llvm::Instruction::PHI: CvtPhi(cu, inst); break; case llvm::Instruction::Ret: CvtRet(cu, inst); break; case llvm::Instruction::FAdd: CvtBinFPOp(cu, kOpAdd, inst); break; case llvm::Instruction::FSub: CvtBinFPOp(cu, kOpSub, inst); break; case llvm::Instruction::FMul: CvtBinFPOp(cu, kOpMul, inst); break; case llvm::Instruction::FDiv: CvtBinFPOp(cu, kOpDiv, inst); break; case llvm::Instruction::FRem: CvtBinFPOp(cu, kOpRem, inst); break; case llvm::Instruction::SIToFP: CvtIntToFP(cu, inst); break; case llvm::Instruction::FPTrunc: CvtDoubleToFloat(cu, inst); break; case llvm::Instruction::FPExt: CvtFloatToDouble(cu, inst); break; case llvm::Instruction::Trunc: CvtTrunc(cu, inst); break; case llvm::Instruction::ZExt: CvtIntExt(cu, inst, false /* signed */); break; case llvm::Instruction::SExt: CvtIntExt(cu, inst, true /* signed */); break; case llvm::Instruction::Switch: CvtSwitch(cu, inst); break; case llvm::Instruction::Unreachable: break; // FIXME: can we really ignore these? case llvm::Instruction::Shl: case llvm::Instruction::LShr: case llvm::Instruction::AShr: case llvm::Instruction::Invoke: case llvm::Instruction::FPToUI: case llvm::Instruction::FPToSI: case llvm::Instruction::UIToFP: case llvm::Instruction::PtrToInt: case llvm::Instruction::IntToPtr: case llvm::Instruction::FCmp: case llvm::Instruction::URem: case llvm::Instruction::UDiv: case llvm::Instruction::Resume: case llvm::Instruction::Alloca: case llvm::Instruction::GetElementPtr: case llvm::Instruction::Fence: case llvm::Instruction::AtomicCmpXchg: case llvm::Instruction::AtomicRMW: case llvm::Instruction::BitCast: case llvm::Instruction::VAArg: case llvm::Instruction::Select: case llvm::Instruction::UserOp1: case llvm::Instruction::UserOp2: case llvm::Instruction::ExtractElement: case llvm::Instruction::InsertElement: case llvm::Instruction::ShuffleVector: case llvm::Instruction::ExtractValue: case llvm::Instruction::InsertValue: case llvm::Instruction::LandingPad: case llvm::Instruction::IndirectBr: case llvm::Instruction::Load: case llvm::Instruction::Store: LOG(FATAL) << "Unexpected llvm opcode: " << opcode; break; default: LOG(FATAL) << "Unknown llvm opcode: " << inst->getOpcodeName(); break; } } if (head_lir != NULL) { ApplyLocalOptimizations(cu, head_lir, cu->last_lir_insn); } if (next_bb != NULL) { bb = next_bb; next_bb = NULL; } } return false; } /* * Convert LLVM_IR to MIR: * o Iterate through the LLVM_IR and construct a graph using * standard MIR building blocks. * o Perform a basic-block optimization pass to remove unnecessary * store/load sequences. * o Convert the LLVM Value operands into RegLocations where applicable. * o Create ssa_rep def/use operand arrays for each converted LLVM opcode * o Perform register promotion * o Iterate through the graph a basic block at a time, generating * LIR. * o Assemble LIR as usual. * o Profit. */ void MethodBitcode2LIR(CompilationUnit* cu) { llvm::Function* func = cu->func; int num_basic_blocks = func->getBasicBlockList().size(); // Allocate a list for LIR basic block labels cu->block_label_list = static_cast(NewMem(cu, sizeof(LIR) * num_basic_blocks, true, kAllocLIR)); LIR* label_list = cu->block_label_list; int next_label = 0; for (llvm::Function::iterator i = func->begin(), e = func->end(); i != e; ++i) { cu->block_to_label_map.Put(static_cast(i), &label_list[next_label++]); } /* * Keep honest - clear reg_locations, Value => RegLocation, * promotion map and VmapTables. */ cu->loc_map.clear(); // Start fresh cu->reg_location = NULL; for (int i = 0; i < cu->num_dalvik_registers + cu->num_compiler_temps + 1; i++) { cu->promotion_map[i].core_location = kLocDalvikFrame; cu->promotion_map[i].fp_location = kLocDalvikFrame; } cu->core_spill_mask = 0; cu->num_core_spills = 0; cu->fp_spill_mask = 0; cu->num_fp_spills = 0; cu->core_vmap_table.clear(); cu->fp_vmap_table.clear(); /* * At this point, we've lost all knowledge of register promotion. * Rebuild that info from the MethodInfo intrinsic (if it * exists - not required for correctness). Normally, this will * be the first instruction we encounter, so we won't have to iterate * through everything. */ for (llvm::inst_iterator i = llvm::inst_begin(func), e = llvm::inst_end(func); i != e; ++i) { llvm::CallInst* call_inst = llvm::dyn_cast(&*i); if (call_inst != NULL) { llvm::Function* callee = call_inst->getCalledFunction(); greenland::IntrinsicHelper::IntrinsicId id = cu->intrinsic_helper->GetIntrinsicId(callee); if (id == greenland::IntrinsicHelper::MethodInfo) { if (cu->verbose) { LOG(INFO) << "Found MethodInfo"; } llvm::MDNode* reg_info_node = call_inst->getMetadata("RegInfo"); if (reg_info_node != NULL) { llvm::ConstantInt* num_ins_value = static_cast(reg_info_node->getOperand(0)); llvm::ConstantInt* num_regs_value = static_cast(reg_info_node->getOperand(1)); llvm::ConstantInt* num_outs_value = static_cast(reg_info_node->getOperand(2)); llvm::ConstantInt* num_compiler_temps_value = static_cast(reg_info_node->getOperand(3)); llvm::ConstantInt* num_ssa_regs_value = static_cast(reg_info_node->getOperand(4)); if (cu->verbose) { LOG(INFO) << "RegInfo - Ins:" << num_ins_value->getZExtValue() << ", Regs:" << num_regs_value->getZExtValue() << ", Outs:" << num_outs_value->getZExtValue() << ", CTemps:" << num_compiler_temps_value->getZExtValue() << ", SSARegs:" << num_ssa_regs_value->getZExtValue(); } } llvm::MDNode* pmap_info_node = call_inst->getMetadata("PromotionMap"); if (pmap_info_node != NULL) { int elems = pmap_info_node->getNumOperands(); if (cu->verbose) { LOG(INFO) << "PMap size: " << elems; } for (int i = 0; i < elems; i++) { llvm::ConstantInt* raw_map_data = static_cast(pmap_info_node->getOperand(i)); uint32_t map_data = raw_map_data->getZExtValue(); PromotionMap* p = &cu->promotion_map[i]; p->first_in_pair = (map_data >> 24) & 0xff; p->FpReg = (map_data >> 16) & 0xff; p->core_reg = (map_data >> 8) & 0xff; p->fp_location = static_cast((map_data >> 4) & 0xf); if (p->fp_location == kLocPhysReg) { RecordFpPromotion(cu, p->FpReg, i); } p->core_location = static_cast(map_data & 0xf); if (p->core_location == kLocPhysReg) { RecordCorePromotion(cu, p->core_reg, i); } } if (cu->verbose) { DumpPromotionMap(cu); } } break; } } } AdjustSpillMask(cu); cu->frame_size = ComputeFrameSize(cu); // Create RegLocations for arguments llvm::Function::arg_iterator it(cu->func->arg_begin()); llvm::Function::arg_iterator it_end(cu->func->arg_end()); for (; it != it_end; ++it) { llvm::Value* val = it; CreateLocFromValue(cu, val); } // Create RegLocations for all non-argument defintions for (llvm::inst_iterator i = llvm::inst_begin(func), e = llvm::inst_end(func); i != e; ++i) { llvm::Value* val = &*i; if (val->hasName() && (val->getName().str().c_str()[0] == 'v')) { CreateLocFromValue(cu, val); } } // Walk the blocks, generating code. for (llvm::Function::iterator i = cu->func->begin(), e = cu->func->end(); i != e; ++i) { BitcodeBlockCodeGen(cu, static_cast(i)); } HandleSuspendLaunchPads(cu); HandleThrowLaunchPads(cu); HandleIntrinsicLaunchPads(cu); cu->func->eraseFromParent(); cu->func = NULL; } } // namespace art