/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * This file contains codegen and support common to all supported * ARM variants. It is included by: * * Codegen-$(TARGET_ARCH_VARIANT).c * * which combines this common code with specific support found in the * applicable directory below this one. */ /* Track exercised opcodes */ static int opcodeCoverage[kNumPackedOpcodes]; STATIC void setMemRefType(ArmLIR* lir, bool isLoad, int memType) { u8 *maskPtr; u8 mask = ENCODE_MEM;; DCHECK(EncodingMap[lir->opcode].flags & (IS_LOAD | IS_STORE)); if (isLoad) { maskPtr = &lir->useMask; } else { maskPtr = &lir->defMask; } /* Clear out the memref flags */ *maskPtr &= ~mask; /* ..and then add back the one we need */ switch(memType) { case kLiteral: DCHECK(isLoad); *maskPtr |= ENCODE_LITERAL; break; case kDalvikReg: *maskPtr |= ENCODE_DALVIK_REG; break; case kHeapRef: *maskPtr |= ENCODE_HEAP_REF; break; case kMustNotAlias: /* Currently only loads can be marked as kMustNotAlias */ DCHECK(!(EncodingMap[lir->opcode].flags & IS_STORE)); *maskPtr |= ENCODE_MUST_NOT_ALIAS; break; default: LOG(FATAL) << "Oat: invalid memref kind - " << memType; } } /* * Mark load/store instructions that access Dalvik registers through r5FP + * offset. */ STATIC void annotateDalvikRegAccess(ArmLIR* lir, int regId, bool isLoad) { setMemRefType(lir, isLoad, kDalvikReg); /* * Store the Dalvik register id in aliasInfo. Mark he MSB if it is a 64-bit * access. */ lir->aliasInfo = regId; if (DOUBLEREG(lir->operands[0])) { lir->aliasInfo |= 0x80000000; } } /* * Decode the register id. */ STATIC inline u8 getRegMaskCommon(int reg) { u8 seed; int shift; int regId = reg & 0x1f; /* * Each double register is equal to a pair of single-precision FP registers */ seed = DOUBLEREG(reg) ? 3 : 1; /* FP register starts at bit position 16 */ shift = FPREG(reg) ? kFPReg0 : 0; /* Expand the double register id into single offset */ shift += regId; return (seed << shift); } /* * Mark the corresponding bit(s). */ STATIC inline void setupRegMask(u8* mask, int reg) { *mask |= getRegMaskCommon(reg); } /* * Set up the proper fields in the resource mask */ STATIC void setupResourceMasks(ArmLIR* lir) { int opcode = lir->opcode; int flags; if (opcode <= 0) { lir->useMask = lir->defMask = 0; return; } flags = EncodingMap[lir->opcode].flags; /* Set up the mask for resources that are updated */ if (flags & (IS_LOAD | IS_STORE)) { /* Default to heap - will catch specialized classes later */ setMemRefType(lir, flags & IS_LOAD, kHeapRef); } /* * Conservatively assume the branch here will call out a function that in * turn will trash everything. */ if (flags & IS_BRANCH) { lir->defMask = lir->useMask = ENCODE_ALL; return; } if (flags & REG_DEF0) { setupRegMask(&lir->defMask, lir->operands[0]); } if (flags & REG_DEF1) { setupRegMask(&lir->defMask, lir->operands[1]); } if (flags & REG_DEF_SP) { lir->defMask |= ENCODE_REG_SP; } if (flags & REG_DEF_LR) { lir->defMask |= ENCODE_REG_LR; } if (flags & REG_DEF_LIST0) { lir->defMask |= ENCODE_REG_LIST(lir->operands[0]); } if (flags & REG_DEF_LIST1) { lir->defMask |= ENCODE_REG_LIST(lir->operands[1]); } if (flags & REG_DEF_FPCS_LIST0) { lir->defMask |= ENCODE_REG_FPCS_LIST(lir->operands[0]); } if (flags & REG_DEF_FPCS_LIST2) { for (int i = 0; i < lir->operands[2]; i++) { setupRegMask(&lir->defMask, lir->operands[1] + i); } } if (flags & SETS_CCODES) { lir->defMask |= ENCODE_CCODE; } /* Conservatively treat the IT block */ if (flags & IS_IT) { lir->defMask = ENCODE_ALL; } if (flags & (REG_USE0 | REG_USE1 | REG_USE2 | REG_USE3)) { int i; for (i = 0; i < 4; i++) { if (flags & (1 << (kRegUse0 + i))) { setupRegMask(&lir->useMask, lir->operands[i]); } } } if (flags & REG_USE_PC) { lir->useMask |= ENCODE_REG_PC; } if (flags & REG_USE_SP) { lir->useMask |= ENCODE_REG_SP; } if (flags & REG_USE_LIST0) { lir->useMask |= ENCODE_REG_LIST(lir->operands[0]); } if (flags & REG_USE_LIST1) { lir->useMask |= ENCODE_REG_LIST(lir->operands[1]); } if (flags & REG_USE_FPCS_LIST0) { lir->useMask |= ENCODE_REG_FPCS_LIST(lir->operands[0]); } if (flags & REG_USE_FPCS_LIST2) { for (int i = 0; i < lir->operands[2]; i++) { setupRegMask(&lir->useMask, lir->operands[1] + i); } } if (flags & USES_CCODES) { lir->useMask |= ENCODE_CCODE; } /* Fixup for kThumbPush/lr and kThumbPop/pc */ if (opcode == kThumbPush || opcode == kThumbPop) { u8 r8Mask = getRegMaskCommon(r8); if ((opcode == kThumbPush) && (lir->useMask & r8Mask)) { lir->useMask &= ~r8Mask; lir->useMask |= ENCODE_REG_LR; } else if ((opcode == kThumbPop) && (lir->defMask & r8Mask)) { lir->defMask &= ~r8Mask; lir->defMask |= ENCODE_REG_PC; } } } /* * The following are building blocks to construct low-level IRs with 0 - 4 * operands. */ STATIC ArmLIR* newLIR0(CompilationUnit* cUnit, ArmOpcode opcode) { ArmLIR* insn = (ArmLIR* ) oatNew(sizeof(ArmLIR), true); DCHECK(isPseudoOpcode(opcode) || (EncodingMap[opcode].flags & NO_OPERAND)); insn->opcode = opcode; setupResourceMasks(insn); insn->generic.dalvikOffset = cUnit->currentDalvikOffset; oatAppendLIR(cUnit, (LIR*) insn); return insn; } STATIC ArmLIR* newLIR1(CompilationUnit* cUnit, ArmOpcode opcode, int dest) { ArmLIR* insn = (ArmLIR* ) oatNew(sizeof(ArmLIR), true); DCHECK(isPseudoOpcode(opcode) || (EncodingMap[opcode].flags & IS_UNARY_OP)); insn->opcode = opcode; insn->operands[0] = dest; setupResourceMasks(insn); insn->generic.dalvikOffset = cUnit->currentDalvikOffset; oatAppendLIR(cUnit, (LIR*) insn); return insn; } STATIC ArmLIR* newLIR2(CompilationUnit* cUnit, ArmOpcode opcode, int dest, int src1) { ArmLIR* insn = (ArmLIR* ) oatNew(sizeof(ArmLIR), true); DCHECK(isPseudoOpcode(opcode) || (EncodingMap[opcode].flags & IS_BINARY_OP)); insn->opcode = opcode; insn->operands[0] = dest; insn->operands[1] = src1; setupResourceMasks(insn); insn->generic.dalvikOffset = cUnit->currentDalvikOffset; oatAppendLIR(cUnit, (LIR*) insn); return insn; } STATIC ArmLIR* newLIR3(CompilationUnit* cUnit, ArmOpcode opcode, int dest, int src1, int src2) { ArmLIR* insn = (ArmLIR* ) oatNew(sizeof(ArmLIR), true); DCHECK(isPseudoOpcode(opcode) || (EncodingMap[opcode].flags & IS_TERTIARY_OP)) << (int)opcode << " " << PrettyMethod(cUnit->method_idx, *cUnit->dex_file) << " " << cUnit->currentDalvikOffset; insn->opcode = opcode; insn->operands[0] = dest; insn->operands[1] = src1; insn->operands[2] = src2; setupResourceMasks(insn); insn->generic.dalvikOffset = cUnit->currentDalvikOffset; oatAppendLIR(cUnit, (LIR*) insn); return insn; } #if defined(_ARMV7_A) || defined(_ARMV7_A_NEON) STATIC ArmLIR* newLIR4(CompilationUnit* cUnit, ArmOpcode opcode, int dest, int src1, int src2, int info) { ArmLIR* insn = (ArmLIR* ) oatNew(sizeof(ArmLIR), true); DCHECK(isPseudoOpcode(opcode) || (EncodingMap[opcode].flags & IS_QUAD_OP)); insn->opcode = opcode; insn->operands[0] = dest; insn->operands[1] = src1; insn->operands[2] = src2; insn->operands[3] = info; setupResourceMasks(insn); insn->generic.dalvikOffset = cUnit->currentDalvikOffset; oatAppendLIR(cUnit, (LIR*) insn); return insn; } #endif /* * Search the existing constants in the literal pool for an exact or close match * within specified delta (greater or equal to 0). */ STATIC ArmLIR* scanLiteralPool(LIR* dataTarget, int value, unsigned int delta) { while (dataTarget) { if (((unsigned) (value - ((ArmLIR* ) dataTarget)->operands[0])) <= delta) return (ArmLIR* ) dataTarget; dataTarget = dataTarget->next; } return NULL; } /* Search the existing constants in the literal pool for an exact wide match */ STATIC ArmLIR* scanLiteralPoolWide(LIR* dataTarget, int valLo, int valHi) { bool loMatch = false; LIR* loTarget = NULL; while (dataTarget) { if (loMatch && (((ArmLIR*)dataTarget)->operands[0] == valHi)) { return (ArmLIR*)loTarget; } loMatch = false; if (((ArmLIR*)dataTarget)->operands[0] == valLo) { loMatch = true; loTarget = dataTarget; } dataTarget = dataTarget->next; } return NULL; } /* * The following are building blocks to insert constants into the pool or * instruction streams. */ /* Add a 32-bit constant either in the constant pool or mixed with code */ STATIC ArmLIR* addWordData(CompilationUnit* cUnit, LIR* *constantListP, int value) { /* Add the constant to the literal pool */ if (constantListP) { ArmLIR* newValue = (ArmLIR* ) oatNew(sizeof(ArmLIR), true); newValue->operands[0] = value; newValue->generic.next = *constantListP; *constantListP = (LIR*) newValue; return newValue; } else { /* Add the constant in the middle of code stream */ newLIR1(cUnit, kArm16BitData, (value & 0xffff)); newLIR1(cUnit, kArm16BitData, (value >> 16)); } return NULL; } /* Add a 64-bit constant to the constant pool or mixed with code */ STATIC ArmLIR* addWideData(CompilationUnit* cUnit, LIR* *constantListP, int valLo, int valHi) { ArmLIR* res; //NOTE: hard-coded little endian if (constantListP == NULL) { res = addWordData(cUnit, NULL, valLo); addWordData(cUnit, NULL, valHi); } else { // Insert high word into list first addWordData(cUnit, constantListP, valHi); res = addWordData(cUnit, constantListP, valLo); } return res; } /* * Generate an kArmPseudoBarrier marker to indicate the boundary of special * blocks. */ STATIC void genBarrier(CompilationUnit* cUnit) { ArmLIR* barrier = newLIR0(cUnit, kArmPseudoBarrier); /* Mark all resources as being clobbered */ barrier->defMask = -1; }