/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "../../CompilerInternals.h" #include "ArmLIR.h" #include "../Ralloc.h" #include namespace art { RegLocation locCReturn() { RegLocation res = ARM_LOC_C_RETURN; return res; } RegLocation locCReturnWide() { RegLocation res = ARM_LOC_C_RETURN_WIDE; return res; } RegLocation locCReturnFloat() { RegLocation res = ARM_LOC_C_RETURN_FLOAT; return res; } RegLocation locCReturnDouble() { RegLocation res = ARM_LOC_C_RETURN_DOUBLE; return res; } // Return a target-dependent special register. int targetReg(SpecialTargetRegister reg) { int res = INVALID_REG; switch (reg) { case kSelf: res = rARM_SELF; break; case kSuspend: res = rARM_SUSPEND; break; case kLr: res = rARM_LR; break; case kPc: res = rARM_PC; break; case kSp: res = rARM_SP; break; case kArg0: res = rARM_ARG0; break; case kArg1: res = rARM_ARG1; break; case kArg2: res = rARM_ARG2; break; case kArg3: res = rARM_ARG3; break; case kFArg0: res = rARM_FARG0; break; case kFArg1: res = rARM_FARG1; break; case kFArg2: res = rARM_FARG2; break; case kFArg3: res = rARM_FARG3; break; case kRet0: res = rARM_RET0; break; case kRet1: res = rARM_RET1; break; case kInvokeTgt: res = rARM_INVOKE_TGT; break; case kCount: res = rARM_COUNT; break; } return res; } // Create a double from a pair of singles. int s2d(int lowReg, int highReg) { return ARM_S2D(lowReg, highReg); } // Is reg a single or double? bool fpReg(int reg) { return ARM_FPREG(reg); } // Is reg a single? bool singleReg(int reg) { return ARM_SINGLEREG(reg); } // Is reg a double? bool doubleReg(int reg) { return ARM_DOUBLEREG(reg); } // Return mask to strip off fp reg flags and bias. uint32_t fpRegMask() { return ARM_FP_REG_MASK; } // True if both regs single, both core or both double. bool sameRegType(int reg1, int reg2) { return (ARM_REGTYPE(reg1) == ARM_REGTYPE(reg2)); } /* * Decode the register id. */ u8 getRegMaskCommon(CompilationUnit* cUnit, int reg) { u8 seed; int shift; int regId; regId = reg & 0x1f; /* Each double register is equal to a pair of single-precision FP registers */ seed = ARM_DOUBLEREG(reg) ? 3 : 1; /* FP register starts at bit position 16 */ shift = ARM_FPREG(reg) ? kArmFPReg0 : 0; /* Expand the double register id into single offset */ shift += regId; return (seed << shift); } uint64_t getPCUseDefEncoding() { return ENCODE_ARM_REG_PC; } void setupTargetResourceMasks(CompilationUnit* cUnit, LIR* lir) { DCHECK_EQ(cUnit->instructionSet, kThumb2); // Thumb2 specific setup uint64_t flags = EncodingMap[lir->opcode].flags; int opcode = lir->opcode; if (flags & REG_DEF_SP) { lir->defMask |= ENCODE_ARM_REG_SP; } if (flags & REG_USE_SP) { lir->useMask |= ENCODE_ARM_REG_SP; } if (flags & REG_DEF_LIST0) { lir->defMask |= ENCODE_ARM_REG_LIST(lir->operands[0]); } if (flags & REG_DEF_LIST1) { lir->defMask |= ENCODE_ARM_REG_LIST(lir->operands[1]); } if (flags & REG_DEF_FPCS_LIST0) { lir->defMask |= ENCODE_ARM_REG_FPCS_LIST(lir->operands[0]); } if (flags & REG_DEF_FPCS_LIST2) { for (int i = 0; i < lir->operands[2]; i++) { oatSetupRegMask(cUnit, &lir->defMask, lir->operands[1] + i); } } if (flags & REG_USE_PC) { lir->useMask |= ENCODE_ARM_REG_PC; } /* Conservatively treat the IT block */ if (flags & IS_IT) { lir->defMask = ENCODE_ALL; } if (flags & REG_USE_LIST0) { lir->useMask |= ENCODE_ARM_REG_LIST(lir->operands[0]); } if (flags & REG_USE_LIST1) { lir->useMask |= ENCODE_ARM_REG_LIST(lir->operands[1]); } if (flags & REG_USE_FPCS_LIST0) { lir->useMask |= ENCODE_ARM_REG_FPCS_LIST(lir->operands[0]); } if (flags & REG_USE_FPCS_LIST2) { for (int i = 0; i < lir->operands[2]; i++) { oatSetupRegMask(cUnit, &lir->useMask, lir->operands[1] + i); } } /* Fixup for kThumbPush/lr and kThumbPop/pc */ if (opcode == kThumbPush || opcode == kThumbPop) { u8 r8Mask = oatGetRegMaskCommon(cUnit, r8); if ((opcode == kThumbPush) && (lir->useMask & r8Mask)) { lir->useMask &= ~r8Mask; lir->useMask |= ENCODE_ARM_REG_LR; } else if ((opcode == kThumbPop) && (lir->defMask & r8Mask)) { lir->defMask &= ~r8Mask; lir->defMask |= ENCODE_ARM_REG_PC; } } if (flags & REG_DEF_LR) { lir->defMask |= ENCODE_ARM_REG_LR; } } ArmConditionCode oatArmConditionEncoding(ConditionCode code) { ArmConditionCode res; switch (code) { case kCondEq: res = kArmCondEq; break; case kCondNe: res = kArmCondNe; break; case kCondCs: res = kArmCondCs; break; case kCondCc: res = kArmCondCc; break; case kCondMi: res = kArmCondMi; break; case kCondPl: res = kArmCondPl; break; case kCondVs: res = kArmCondVs; break; case kCondVc: res = kArmCondVc; break; case kCondHi: res = kArmCondHi; break; case kCondLs: res = kArmCondLs; break; case kCondGe: res = kArmCondGe; break; case kCondLt: res = kArmCondLt; break; case kCondGt: res = kArmCondGt; break; case kCondLe: res = kArmCondLe; break; case kCondAl: res = kArmCondAl; break; case kCondNv: res = kArmCondNv; break; default: LOG(FATAL) << "Bad condition code" << (int)code; res = (ArmConditionCode)0; // Quiet gcc } return res; } static const char* coreRegNames[16] = { "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "rSELF", "r10", "r11", "r12", "sp", "lr", "pc", }; static const char* shiftNames[4] = { "lsl", "lsr", "asr", "ror"}; /* Decode and print a ARM register name */ char* decodeRegList(int opcode, int vector, char* buf) { int i; bool printed = false; buf[0] = 0; for (i = 0; i < 16; i++, vector >>= 1) { if (vector & 0x1) { int regId = i; if (opcode == kThumbPush && i == 8) { regId = r14lr; } else if (opcode == kThumbPop && i == 8) { regId = r15pc; } if (printed) { sprintf(buf + strlen(buf), ", r%d", regId); } else { printed = true; sprintf(buf, "r%d", regId); } } } return buf; } char* decodeFPCSRegList(int count, int base, char* buf) { sprintf(buf, "s%d", base); for (int i = 1; i < count; i++) { sprintf(buf + strlen(buf), ", s%d",base + i); } return buf; } int expandImmediate(int value) { int mode = (value & 0xf00) >> 8; u4 bits = value & 0xff; switch (mode) { case 0: return bits; case 1: return (bits << 16) | bits; case 2: return (bits << 24) | (bits << 8); case 3: return (bits << 24) | (bits << 16) | (bits << 8) | bits; default: break; } bits = (bits | 0x80) << 24; return bits >> (((value & 0xf80) >> 7) - 8); } const char* ccNames[] = {"eq","ne","cs","cc","mi","pl","vs","vc", "hi","ls","ge","lt","gt","le","al","nv"}; /* * Interpret a format string and build a string no longer than size * See format key in Assemble.c. */ std::string buildInsnString(const char* fmt, LIR* lir, unsigned char* baseAddr) { std::string buf; int i; const char* fmtEnd = &fmt[strlen(fmt)]; char tbuf[256]; const char* name; char nc; while (fmt < fmtEnd) { int operand; if (*fmt == '!') { fmt++; DCHECK_LT(fmt, fmtEnd); nc = *fmt++; if (nc=='!') { strcpy(tbuf, "!"); } else { DCHECK_LT(fmt, fmtEnd); DCHECK_LT((unsigned)(nc-'0'), 4U); operand = lir->operands[nc-'0']; switch (*fmt++) { case 'H': if (operand != 0) { sprintf(tbuf, ", %s %d",shiftNames[operand & 0x3], operand >> 2); } else { strcpy(tbuf,""); } break; case 'B': switch (operand) { case kSY: name = "sy"; break; case kST: name = "st"; break; case kISH: name = "ish"; break; case kISHST: name = "ishst"; break; case kNSH: name = "nsh"; break; case kNSHST: name = "shst"; break; default: name = "DecodeError2"; break; } strcpy(tbuf, name); break; case 'b': strcpy(tbuf,"0000"); for (i=3; i>= 0; i--) { tbuf[i] += operand & 1; operand >>= 1; } break; case 'n': operand = ~expandImmediate(operand); sprintf(tbuf,"%d [%#x]", operand, operand); break; case 'm': operand = expandImmediate(operand); sprintf(tbuf,"%d [%#x]", operand, operand); break; case 's': sprintf(tbuf,"s%d",operand & ARM_FP_REG_MASK); break; case 'S': sprintf(tbuf,"d%d",(operand & ARM_FP_REG_MASK) >> 1); break; case 'h': sprintf(tbuf,"%04x", operand); break; case 'M': case 'd': sprintf(tbuf,"%d", operand); break; case 'C': DCHECK_LT(operand, static_cast( sizeof(coreRegNames)/sizeof(coreRegNames[0]))); sprintf(tbuf,"%s",coreRegNames[operand]); break; case 'E': sprintf(tbuf,"%d", operand*4); break; case 'F': sprintf(tbuf,"%d", operand*2); break; case 'c': strcpy(tbuf, ccNames[operand]); break; case 't': sprintf(tbuf,"0x%08x (L%p)", (int) baseAddr + lir->offset + 4 + (operand << 1), lir->target); break; case 'u': { int offset_1 = lir->operands[0]; int offset_2 = NEXT_LIR(lir)->operands[0]; intptr_t target = ((((intptr_t) baseAddr + lir->offset + 4) & ~3) + (offset_1 << 21 >> 9) + (offset_2 << 1)) & 0xfffffffc; sprintf(tbuf, "%p", (void *) target); break; } /* Nothing to print for BLX_2 */ case 'v': strcpy(tbuf, "see above"); break; case 'R': decodeRegList(lir->opcode, operand, tbuf); break; case 'P': decodeFPCSRegList(operand, 16, tbuf); break; case 'Q': decodeFPCSRegList(operand, 0, tbuf); break; default: strcpy(tbuf,"DecodeError1"); break; } buf += tbuf; } } else { buf += *fmt++; } } return buf; } void oatDumpResourceMask(LIR* lir, u8 mask, const char* prefix) { char buf[256]; buf[0] = 0; LIR* armLIR = (LIR*) lir; if (mask == ENCODE_ALL) { strcpy(buf, "all"); } else { char num[8]; int i; for (i = 0; i < kArmRegEnd; i++) { if (mask & (1ULL << i)) { sprintf(num, "%d ", i); strcat(buf, num); } } if (mask & ENCODE_CCODE) { strcat(buf, "cc "); } if (mask & ENCODE_FP_STATUS) { strcat(buf, "fpcc "); } /* Memory bits */ if (armLIR && (mask & ENCODE_DALVIK_REG)) { sprintf(buf + strlen(buf), "dr%d%s", armLIR->aliasInfo & 0xffff, (armLIR->aliasInfo & 0x80000000) ? "(+1)" : ""); } if (mask & ENCODE_LITERAL) { strcat(buf, "lit "); } if (mask & ENCODE_HEAP_REF) { strcat(buf, "heap "); } if (mask & ENCODE_MUST_NOT_ALIAS) { strcat(buf, "noalias "); } } if (buf[0]) { LOG(INFO) << prefix << ": " << buf; } } } // namespace art