/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #if defined(ART_USE_QUICK_COMPILER) #include "object_utils.h" #include #include #include #include #include #include #include #include #include #include static const char* kLabelFormat = "%c0x%x_%d"; static const char kNormalBlock = 'L'; static const char kCatchBlock = 'C'; namespace art { extern const RegLocation badLoc; RegLocation getLoc(CompilationUnit* cUnit, llvm::Value* val); llvm::BasicBlock* getLLVMBlock(CompilationUnit* cUnit, int id) { return cUnit->idToBlockMap.Get(id); } llvm::Value* getLLVMValue(CompilationUnit* cUnit, int sReg) { return (llvm::Value*)oatGrowableListGetElement(&cUnit->llvmValues, sReg); } // Replace the placeholder value with the real definition void defineValue(CompilationUnit* cUnit, llvm::Value* val, int sReg) { llvm::Value* placeholder = getLLVMValue(cUnit, sReg); if (placeholder == NULL) { // This can happen on instruction rewrite on verification failure LOG(WARNING) << "Null placeholder"; return; } placeholder->replaceAllUsesWith(val); val->takeName(placeholder); cUnit->llvmValues.elemList[sReg] = (intptr_t)val; llvm::Instruction* inst = llvm::dyn_cast(placeholder); DCHECK(inst != NULL); inst->eraseFromParent(); } llvm::Type* llvmTypeFromLocRec(CompilationUnit* cUnit, RegLocation loc) { llvm::Type* res = NULL; if (loc.wide) { if (loc.fp) res = cUnit->irb->getDoubleTy(); else res = cUnit->irb->getInt64Ty(); } else { if (loc.fp) { res = cUnit->irb->getFloatTy(); } else { if (loc.ref) res = cUnit->irb->GetJObjectTy(); else res = cUnit->irb->getInt32Ty(); } } return res; } /* Create an in-memory RegLocation from an llvm Value. */ void createLocFromValue(CompilationUnit* cUnit, llvm::Value* val) { // NOTE: llvm takes shortcuts with c_str() - get to std::string firstt std::string s(val->getName().str()); const char* valName = s.c_str(); SafeMap::iterator it = cUnit->locMap.find(val); DCHECK(it == cUnit->locMap.end()) << " - already defined: " << valName; int baseSReg = INVALID_SREG; int subscript = -1; sscanf(valName, "v%d_%d", &baseSReg, &subscript); if ((baseSReg == INVALID_SREG) && (!strcmp(valName, "method"))) { baseSReg = SSA_METHOD_BASEREG; subscript = 0; } DCHECK_NE(baseSReg, INVALID_SREG); DCHECK_NE(subscript, -1); // TODO: redo during C++'ification RegLocation loc = {kLocDalvikFrame, 0, 0, 0, 0, 0, 0, 0, 0, INVALID_REG, INVALID_REG, INVALID_SREG, INVALID_SREG}; llvm::Type* ty = val->getType(); loc.wide = ((ty == cUnit->irb->getInt64Ty()) || (ty == cUnit->irb->getDoubleTy())); loc.defined = true; loc.home = false; // May change during promotion loc.sRegLow = baseSReg; loc.origSReg = cUnit->locMap.size(); PromotionMap pMap = cUnit->promotionMap[baseSReg]; if (ty == cUnit->irb->getFloatTy()) { loc.fp = true; if (pMap.fpLocation == kLocPhysReg) { loc.lowReg = pMap.fpReg; loc.location = kLocPhysReg; loc.home = true; } } else if (ty == cUnit->irb->getDoubleTy()) { loc.fp = true; PromotionMap pMapHigh = cUnit->promotionMap[baseSReg + 1]; if ((pMap.fpLocation == kLocPhysReg) && (pMapHigh.fpLocation == kLocPhysReg) && ((pMap.fpReg & 0x1) == 0) && (pMap.fpReg + 1 == pMapHigh.fpReg)) { loc.lowReg = pMap.fpReg; loc.highReg = pMapHigh.fpReg; loc.location = kLocPhysReg; loc.home = true; } } else if (ty == cUnit->irb->GetJObjectTy()) { loc.ref = true; if (pMap.coreLocation == kLocPhysReg) { loc.lowReg = pMap.coreReg; loc.location = kLocPhysReg; loc.home = true; } } else if (ty == cUnit->irb->getInt64Ty()) { loc.core = true; PromotionMap pMapHigh = cUnit->promotionMap[baseSReg + 1]; if ((pMap.coreLocation == kLocPhysReg) && (pMapHigh.coreLocation == kLocPhysReg)) { loc.lowReg = pMap.coreReg; loc.highReg = pMapHigh.coreReg; loc.location = kLocPhysReg; loc.home = true; } } else { loc.core = true; if (pMap.coreLocation == kLocPhysReg) { loc.lowReg = pMap.coreReg; loc.location = kLocPhysReg; loc.home = true; } } if (cUnit->printMe && loc.home) { if (loc.wide) { LOG(INFO) << "Promoted wide " << s << " to regs " << static_cast(loc.lowReg) << "/" << loc.highReg; } else { LOG(INFO) << "Promoted " << s << " to reg " << static_cast(loc.lowReg); } } cUnit->locMap.Put(val, loc); } void initIR(CompilationUnit* cUnit) { QuickCompiler* quick = cUnit->quick_compiler; cUnit->context = quick->GetLLVMContext(); cUnit->module = quick->GetLLVMModule(); cUnit->intrinsic_helper = quick->GetIntrinsicHelper(); cUnit->irb = quick->GetIRBuilder(); } const char* llvmSSAName(CompilationUnit* cUnit, int ssaReg) { return GET_ELEM_N(cUnit->ssaStrings, char*, ssaReg); } llvm::BasicBlock* findCaseTarget(CompilationUnit* cUnit, uint32_t vaddr) { BasicBlock* bb = oatFindBlock(cUnit, vaddr); DCHECK(bb != NULL); return getLLVMBlock(cUnit, bb->id); } void convertPackedSwitch(CompilationUnit* cUnit, BasicBlock* bb, int32_t tableOffset, RegLocation rlSrc) { const Instruction::PackedSwitchPayload* payload = reinterpret_cast( cUnit->insns + cUnit->currentDalvikOffset + tableOffset); llvm::Value* value = getLLVMValue(cUnit, rlSrc.origSReg); llvm::SwitchInst* sw = cUnit->irb->CreateSwitch(value, getLLVMBlock(cUnit, bb->fallThrough->id), payload->case_count); for (uint16_t i = 0; i < payload->case_count; ++i) { llvm::BasicBlock* llvmBB = findCaseTarget(cUnit, cUnit->currentDalvikOffset + payload->targets[i]); sw->addCase(cUnit->irb->getInt32(payload->first_key + i), llvmBB); } llvm::MDNode* switchNode = llvm::MDNode::get(*cUnit->context, cUnit->irb->getInt32(tableOffset)); sw->setMetadata("SwitchTable", switchNode); bb->taken = NULL; bb->fallThrough = NULL; } void convertSparseSwitch(CompilationUnit* cUnit, BasicBlock* bb, int32_t tableOffset, RegLocation rlSrc) { const Instruction::SparseSwitchPayload* payload = reinterpret_cast( cUnit->insns + cUnit->currentDalvikOffset + tableOffset); const int32_t* keys = payload->GetKeys(); const int32_t* targets = payload->GetTargets(); llvm::Value* value = getLLVMValue(cUnit, rlSrc.origSReg); llvm::SwitchInst* sw = cUnit->irb->CreateSwitch(value, getLLVMBlock(cUnit, bb->fallThrough->id), payload->case_count); for (size_t i = 0; i < payload->case_count; ++i) { llvm::BasicBlock* llvmBB = findCaseTarget(cUnit, cUnit->currentDalvikOffset + targets[i]); sw->addCase(cUnit->irb->getInt32(keys[i]), llvmBB); } llvm::MDNode* switchNode = llvm::MDNode::get(*cUnit->context, cUnit->irb->getInt32(tableOffset)); sw->setMetadata("SwitchTable", switchNode); bb->taken = NULL; bb->fallThrough = NULL; } void convertSget(CompilationUnit* cUnit, int32_t fieldIndex, greenland::IntrinsicHelper::IntrinsicId id, RegLocation rlDest) { llvm::Constant* fieldIdx = cUnit->irb->getInt32(fieldIndex); llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction(id); llvm::Value* res = cUnit->irb->CreateCall(intr, fieldIdx); defineValue(cUnit, res, rlDest.origSReg); } void convertSput(CompilationUnit* cUnit, int32_t fieldIndex, greenland::IntrinsicHelper::IntrinsicId id, RegLocation rlSrc) { llvm::SmallVector args; args.push_back(cUnit->irb->getInt32(fieldIndex)); args.push_back(getLLVMValue(cUnit, rlSrc.origSReg)); llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction(id); cUnit->irb->CreateCall(intr, args); } void convertFillArrayData(CompilationUnit* cUnit, int32_t offset, RegLocation rlArray) { greenland::IntrinsicHelper::IntrinsicId id; id = greenland::IntrinsicHelper::HLFillArrayData; llvm::SmallVector args; args.push_back(cUnit->irb->getInt32(offset)); args.push_back(getLLVMValue(cUnit, rlArray.origSReg)); llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction(id); cUnit->irb->CreateCall(intr, args); } llvm::Value* emitConst(CompilationUnit* cUnit, llvm::ArrayRef src, RegLocation loc) { greenland::IntrinsicHelper::IntrinsicId id; if (loc.wide) { if (loc.fp) { id = greenland::IntrinsicHelper::ConstDouble; } else { id = greenland::IntrinsicHelper::ConstLong; } } else { if (loc.fp) { id = greenland::IntrinsicHelper::ConstFloat; } else if (loc.ref) { id = greenland::IntrinsicHelper::ConstObj; } else { id = greenland::IntrinsicHelper::ConstInt; } } llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction(id); return cUnit->irb->CreateCall(intr, src); } void emitPopShadowFrame(CompilationUnit* cUnit) { llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction( greenland::IntrinsicHelper::PopShadowFrame); cUnit->irb->CreateCall(intr); } llvm::Value* emitCopy(CompilationUnit* cUnit, llvm::ArrayRef src, RegLocation loc) { greenland::IntrinsicHelper::IntrinsicId id; if (loc.wide) { if (loc.fp) { id = greenland::IntrinsicHelper::CopyDouble; } else { id = greenland::IntrinsicHelper::CopyLong; } } else { if (loc.fp) { id = greenland::IntrinsicHelper::CopyFloat; } else if (loc.ref) { id = greenland::IntrinsicHelper::CopyObj; } else { id = greenland::IntrinsicHelper::CopyInt; } } llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction(id); return cUnit->irb->CreateCall(intr, src); } void convertMoveException(CompilationUnit* cUnit, RegLocation rlDest) { llvm::Function* func = cUnit->intrinsic_helper->GetIntrinsicFunction( greenland::IntrinsicHelper::GetException); llvm::Value* res = cUnit->irb->CreateCall(func); defineValue(cUnit, res, rlDest.origSReg); } void convertThrow(CompilationUnit* cUnit, RegLocation rlSrc) { llvm::Value* src = getLLVMValue(cUnit, rlSrc.origSReg); llvm::Function* func = cUnit->intrinsic_helper->GetIntrinsicFunction( greenland::IntrinsicHelper::HLThrowException); cUnit->irb->CreateCall(func, src); } void convertMonitorEnterExit(CompilationUnit* cUnit, int optFlags, greenland::IntrinsicHelper::IntrinsicId id, RegLocation rlSrc) { llvm::SmallVector args; args.push_back(cUnit->irb->getInt32(optFlags)); args.push_back(getLLVMValue(cUnit, rlSrc.origSReg)); llvm::Function* func = cUnit->intrinsic_helper->GetIntrinsicFunction(id); cUnit->irb->CreateCall(func, args); } void convertArrayLength(CompilationUnit* cUnit, int optFlags, RegLocation rlDest, RegLocation rlSrc) { llvm::SmallVector args; args.push_back(cUnit->irb->getInt32(optFlags)); args.push_back(getLLVMValue(cUnit, rlSrc.origSReg)); llvm::Function* func = cUnit->intrinsic_helper->GetIntrinsicFunction( greenland::IntrinsicHelper::OptArrayLength); llvm::Value* res = cUnit->irb->CreateCall(func, args); defineValue(cUnit, res, rlDest.origSReg); } void emitSuspendCheck(CompilationUnit* cUnit) { greenland::IntrinsicHelper::IntrinsicId id = greenland::IntrinsicHelper::CheckSuspend; llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction(id); cUnit->irb->CreateCall(intr); } llvm::Value* convertCompare(CompilationUnit* cUnit, ConditionCode cc, llvm::Value* src1, llvm::Value* src2) { llvm::Value* res = NULL; DCHECK_EQ(src1->getType(), src2->getType()); switch(cc) { case kCondEq: res = cUnit->irb->CreateICmpEQ(src1, src2); break; case kCondNe: res = cUnit->irb->CreateICmpNE(src1, src2); break; case kCondLt: res = cUnit->irb->CreateICmpSLT(src1, src2); break; case kCondGe: res = cUnit->irb->CreateICmpSGE(src1, src2); break; case kCondGt: res = cUnit->irb->CreateICmpSGT(src1, src2); break; case kCondLe: res = cUnit->irb->CreateICmpSLE(src1, src2); break; default: LOG(FATAL) << "Unexpected cc value " << cc; } return res; } void convertCompareAndBranch(CompilationUnit* cUnit, BasicBlock* bb, MIR* mir, ConditionCode cc, RegLocation rlSrc1, RegLocation rlSrc2) { if (bb->taken->startOffset <= mir->offset) { emitSuspendCheck(cUnit); } llvm::Value* src1 = getLLVMValue(cUnit, rlSrc1.origSReg); llvm::Value* src2 = getLLVMValue(cUnit, rlSrc2.origSReg); llvm::Value* condValue = convertCompare(cUnit, cc, src1, src2); condValue->setName(StringPrintf("t%d", cUnit->tempName++)); cUnit->irb->CreateCondBr(condValue, getLLVMBlock(cUnit, bb->taken->id), getLLVMBlock(cUnit, bb->fallThrough->id)); // Don't redo the fallthrough branch in the BB driver bb->fallThrough = NULL; } void convertCompareZeroAndBranch(CompilationUnit* cUnit, BasicBlock* bb, MIR* mir, ConditionCode cc, RegLocation rlSrc1) { if (bb->taken->startOffset <= mir->offset) { emitSuspendCheck(cUnit); } llvm::Value* src1 = getLLVMValue(cUnit, rlSrc1.origSReg); llvm::Value* src2; if (rlSrc1.ref) { src2 = cUnit->irb->GetJNull(); } else { src2 = cUnit->irb->getInt32(0); } llvm::Value* condValue = convertCompare(cUnit, cc, src1, src2); cUnit->irb->CreateCondBr(condValue, getLLVMBlock(cUnit, bb->taken->id), getLLVMBlock(cUnit, bb->fallThrough->id)); // Don't redo the fallthrough branch in the BB driver bb->fallThrough = NULL; } llvm::Value* genDivModOp(CompilationUnit* cUnit, bool isDiv, bool isLong, llvm::Value* src1, llvm::Value* src2) { greenland::IntrinsicHelper::IntrinsicId id; if (isLong) { if (isDiv) { id = greenland::IntrinsicHelper::DivLong; } else { id = greenland::IntrinsicHelper::RemLong; } } else { if (isDiv) { id = greenland::IntrinsicHelper::DivInt; } else { id = greenland::IntrinsicHelper::RemInt; } } llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction(id); llvm::SmallVectorargs; args.push_back(src1); args.push_back(src2); return cUnit->irb->CreateCall(intr, args); } llvm::Value* genArithOp(CompilationUnit* cUnit, OpKind op, bool isLong, llvm::Value* src1, llvm::Value* src2) { llvm::Value* res = NULL; switch(op) { case kOpAdd: res = cUnit->irb->CreateAdd(src1, src2); break; case kOpSub: res = cUnit->irb->CreateSub(src1, src2); break; case kOpRsub: res = cUnit->irb->CreateSub(src2, src1); break; case kOpMul: res = cUnit->irb->CreateMul(src1, src2); break; case kOpOr: res = cUnit->irb->CreateOr(src1, src2); break; case kOpAnd: res = cUnit->irb->CreateAnd(src1, src2); break; case kOpXor: res = cUnit->irb->CreateXor(src1, src2); break; case kOpDiv: res = genDivModOp(cUnit, true, isLong, src1, src2); break; case kOpRem: res = genDivModOp(cUnit, false, isLong, src1, src2); break; case kOpLsl: res = cUnit->irb->CreateShl(src1, src2); break; case kOpLsr: res = cUnit->irb->CreateLShr(src1, src2); break; case kOpAsr: res = cUnit->irb->CreateAShr(src1, src2); break; default: LOG(FATAL) << "Invalid op " << op; } return res; } void convertFPArithOp(CompilationUnit* cUnit, OpKind op, RegLocation rlDest, RegLocation rlSrc1, RegLocation rlSrc2) { llvm::Value* src1 = getLLVMValue(cUnit, rlSrc1.origSReg); llvm::Value* src2 = getLLVMValue(cUnit, rlSrc2.origSReg); llvm::Value* res = NULL; switch(op) { case kOpAdd: res = cUnit->irb->CreateFAdd(src1, src2); break; case kOpSub: res = cUnit->irb->CreateFSub(src1, src2); break; case kOpMul: res = cUnit->irb->CreateFMul(src1, src2); break; case kOpDiv: res = cUnit->irb->CreateFDiv(src1, src2); break; case kOpRem: res = cUnit->irb->CreateFRem(src1, src2); break; default: LOG(FATAL) << "Invalid op " << op; } defineValue(cUnit, res, rlDest.origSReg); } void convertShift(CompilationUnit* cUnit, greenland::IntrinsicHelper::IntrinsicId id, RegLocation rlDest, RegLocation rlSrc1, RegLocation rlSrc2) { llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction(id); llvm::SmallVectorargs; args.push_back(getLLVMValue(cUnit, rlSrc1.origSReg)); args.push_back(getLLVMValue(cUnit, rlSrc2.origSReg)); llvm::Value* res = cUnit->irb->CreateCall(intr, args); defineValue(cUnit, res, rlDest.origSReg); } void convertShiftLit(CompilationUnit* cUnit, greenland::IntrinsicHelper::IntrinsicId id, RegLocation rlDest, RegLocation rlSrc, int shiftAmount) { llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction(id); llvm::SmallVectorargs; args.push_back(getLLVMValue(cUnit, rlSrc.origSReg)); args.push_back(cUnit->irb->getInt32(shiftAmount)); llvm::Value* res = cUnit->irb->CreateCall(intr, args); defineValue(cUnit, res, rlDest.origSReg); } void convertArithOp(CompilationUnit* cUnit, OpKind op, RegLocation rlDest, RegLocation rlSrc1, RegLocation rlSrc2) { llvm::Value* src1 = getLLVMValue(cUnit, rlSrc1.origSReg); llvm::Value* src2 = getLLVMValue(cUnit, rlSrc2.origSReg); DCHECK_EQ(src1->getType(), src2->getType()); llvm::Value* res = genArithOp(cUnit, op, rlDest.wide, src1, src2); defineValue(cUnit, res, rlDest.origSReg); } void setShadowFrameEntry(CompilationUnit* cUnit, llvm::Value* newVal) { int index = -1; DCHECK(newVal != NULL); int vReg = SRegToVReg(cUnit, getLoc(cUnit, newVal).origSReg); for (int i = 0; i < cUnit->numShadowFrameEntries; i++) { if (cUnit->shadowMap[i] == vReg) { index = i; break; } } if (index == -1) { return; } greenland::IntrinsicHelper::IntrinsicId id = greenland::IntrinsicHelper::SetShadowFrameEntry; llvm::Function* func = cUnit->intrinsic_helper->GetIntrinsicFunction(id); llvm::Value* tableSlot = cUnit->irb->getInt32(index); llvm::Value* args[] = { newVal, tableSlot }; cUnit->irb->CreateCall(func, args); } void convertArithOpLit(CompilationUnit* cUnit, OpKind op, RegLocation rlDest, RegLocation rlSrc1, int32_t imm) { llvm::Value* src1 = getLLVMValue(cUnit, rlSrc1.origSReg); llvm::Value* src2 = cUnit->irb->getInt32(imm); llvm::Value* res = genArithOp(cUnit, op, rlDest.wide, src1, src2); defineValue(cUnit, res, rlDest.origSReg); } /* * Process arguments for invoke. Note: this code is also used to * collect and process arguments for NEW_FILLED_ARRAY and NEW_FILLED_ARRAY_RANGE. * The requirements are similar. */ void convertInvoke(CompilationUnit* cUnit, BasicBlock* bb, MIR* mir, InvokeType invokeType, bool isRange, bool isFilledNewArray) { CallInfo* info = oatNewCallInfo(cUnit, bb, mir, invokeType, isRange); llvm::SmallVector args; // Insert the invokeType args.push_back(cUnit->irb->getInt32(static_cast(invokeType))); // Insert the method_idx args.push_back(cUnit->irb->getInt32(info->index)); // Insert the optimization flags args.push_back(cUnit->irb->getInt32(info->optFlags)); // Now, insert the actual arguments for (int i = 0; i < info->numArgWords;) { llvm::Value* val = getLLVMValue(cUnit, info->args[i].origSReg); args.push_back(val); i += info->args[i].wide ? 2 : 1; } /* * Choose the invoke return type based on actual usage. Note: may * be different than shorty. For example, if a function return value * is not used, we'll treat this as a void invoke. */ greenland::IntrinsicHelper::IntrinsicId id; if (isFilledNewArray) { id = greenland::IntrinsicHelper::HLFilledNewArray; } else if (info->result.location == kLocInvalid) { id = greenland::IntrinsicHelper::HLInvokeVoid; } else { if (info->result.wide) { if (info->result.fp) { id = greenland::IntrinsicHelper::HLInvokeDouble; } else { id = greenland::IntrinsicHelper::HLInvokeLong; } } else if (info->result.ref) { id = greenland::IntrinsicHelper::HLInvokeObj; } else if (info->result.fp) { id = greenland::IntrinsicHelper::HLInvokeFloat; } else { id = greenland::IntrinsicHelper::HLInvokeInt; } } llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction(id); llvm::Value* res = cUnit->irb->CreateCall(intr, args); if (info->result.location != kLocInvalid) { defineValue(cUnit, res, info->result.origSReg); if (info->result.ref) { setShadowFrameEntry(cUnit, (llvm::Value*) cUnit->llvmValues.elemList[info->result.origSReg]); } } } void convertConstObject(CompilationUnit* cUnit, uint32_t idx, greenland::IntrinsicHelper::IntrinsicId id, RegLocation rlDest) { llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction(id); llvm::Value* index = cUnit->irb->getInt32(idx); llvm::Value* res = cUnit->irb->CreateCall(intr, index); defineValue(cUnit, res, rlDest.origSReg); } void convertCheckCast(CompilationUnit* cUnit, uint32_t type_idx, RegLocation rlSrc) { greenland::IntrinsicHelper::IntrinsicId id; id = greenland::IntrinsicHelper::HLCheckCast; llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction(id); llvm::SmallVector args; args.push_back(cUnit->irb->getInt32(type_idx)); args.push_back(getLLVMValue(cUnit, rlSrc.origSReg)); cUnit->irb->CreateCall(intr, args); } void convertNewInstance(CompilationUnit* cUnit, uint32_t type_idx, RegLocation rlDest) { greenland::IntrinsicHelper::IntrinsicId id; id = greenland::IntrinsicHelper::NewInstance; llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction(id); llvm::Value* index = cUnit->irb->getInt32(type_idx); llvm::Value* res = cUnit->irb->CreateCall(intr, index); defineValue(cUnit, res, rlDest.origSReg); } void convertNewArray(CompilationUnit* cUnit, uint32_t type_idx, RegLocation rlDest, RegLocation rlSrc) { greenland::IntrinsicHelper::IntrinsicId id; id = greenland::IntrinsicHelper::NewArray; llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction(id); llvm::SmallVector args; args.push_back(cUnit->irb->getInt32(type_idx)); args.push_back(getLLVMValue(cUnit, rlSrc.origSReg)); llvm::Value* res = cUnit->irb->CreateCall(intr, args); defineValue(cUnit, res, rlDest.origSReg); } void convertAget(CompilationUnit* cUnit, int optFlags, greenland::IntrinsicHelper::IntrinsicId id, RegLocation rlDest, RegLocation rlArray, RegLocation rlIndex) { llvm::SmallVector args; args.push_back(cUnit->irb->getInt32(optFlags)); args.push_back(getLLVMValue(cUnit, rlArray.origSReg)); args.push_back(getLLVMValue(cUnit, rlIndex.origSReg)); llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction(id); llvm::Value* res = cUnit->irb->CreateCall(intr, args); defineValue(cUnit, res, rlDest.origSReg); } void convertAput(CompilationUnit* cUnit, int optFlags, greenland::IntrinsicHelper::IntrinsicId id, RegLocation rlSrc, RegLocation rlArray, RegLocation rlIndex) { llvm::SmallVector args; args.push_back(cUnit->irb->getInt32(optFlags)); args.push_back(getLLVMValue(cUnit, rlSrc.origSReg)); args.push_back(getLLVMValue(cUnit, rlArray.origSReg)); args.push_back(getLLVMValue(cUnit, rlIndex.origSReg)); llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction(id); cUnit->irb->CreateCall(intr, args); } void convertIget(CompilationUnit* cUnit, int optFlags, greenland::IntrinsicHelper::IntrinsicId id, RegLocation rlDest, RegLocation rlObj, int fieldIndex) { llvm::SmallVector args; args.push_back(cUnit->irb->getInt32(optFlags)); args.push_back(getLLVMValue(cUnit, rlObj.origSReg)); args.push_back(cUnit->irb->getInt32(fieldIndex)); llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction(id); llvm::Value* res = cUnit->irb->CreateCall(intr, args); defineValue(cUnit, res, rlDest.origSReg); } void convertIput(CompilationUnit* cUnit, int optFlags, greenland::IntrinsicHelper::IntrinsicId id, RegLocation rlSrc, RegLocation rlObj, int fieldIndex) { llvm::SmallVector args; args.push_back(cUnit->irb->getInt32(optFlags)); args.push_back(getLLVMValue(cUnit, rlSrc.origSReg)); args.push_back(getLLVMValue(cUnit, rlObj.origSReg)); args.push_back(cUnit->irb->getInt32(fieldIndex)); llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction(id); cUnit->irb->CreateCall(intr, args); } void convertInstanceOf(CompilationUnit* cUnit, uint32_t type_idx, RegLocation rlDest, RegLocation rlSrc) { greenland::IntrinsicHelper::IntrinsicId id; id = greenland::IntrinsicHelper::InstanceOf; llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction(id); llvm::SmallVector args; args.push_back(cUnit->irb->getInt32(type_idx)); args.push_back(getLLVMValue(cUnit, rlSrc.origSReg)); llvm::Value* res = cUnit->irb->CreateCall(intr, args); defineValue(cUnit, res, rlDest.origSReg); } void convertIntToLong(CompilationUnit* cUnit, RegLocation rlDest, RegLocation rlSrc) { llvm::Value* res = cUnit->irb->CreateSExt(getLLVMValue(cUnit, rlSrc.origSReg), cUnit->irb->getInt64Ty()); defineValue(cUnit, res, rlDest.origSReg); } void convertLongToInt(CompilationUnit* cUnit, RegLocation rlDest, RegLocation rlSrc) { llvm::Value* src = getLLVMValue(cUnit, rlSrc.origSReg); llvm::Value* res = cUnit->irb->CreateTrunc(src, cUnit->irb->getInt32Ty()); defineValue(cUnit, res, rlDest.origSReg); } void convertFloatToDouble(CompilationUnit* cUnit, RegLocation rlDest, RegLocation rlSrc) { llvm::Value* src = getLLVMValue(cUnit, rlSrc.origSReg); llvm::Value* res = cUnit->irb->CreateFPExt(src, cUnit->irb->getDoubleTy()); defineValue(cUnit, res, rlDest.origSReg); } void convertDoubleToFloat(CompilationUnit* cUnit, RegLocation rlDest, RegLocation rlSrc) { llvm::Value* src = getLLVMValue(cUnit, rlSrc.origSReg); llvm::Value* res = cUnit->irb->CreateFPTrunc(src, cUnit->irb->getFloatTy()); defineValue(cUnit, res, rlDest.origSReg); } void convertWideComparison(CompilationUnit* cUnit, greenland::IntrinsicHelper::IntrinsicId id, RegLocation rlDest, RegLocation rlSrc1, RegLocation rlSrc2) { DCHECK_EQ(rlSrc1.fp, rlSrc2.fp); DCHECK_EQ(rlSrc1.wide, rlSrc2.wide); llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction(id); llvm::SmallVector args; args.push_back(getLLVMValue(cUnit, rlSrc1.origSReg)); args.push_back(getLLVMValue(cUnit, rlSrc2.origSReg)); llvm::Value* res = cUnit->irb->CreateCall(intr, args); defineValue(cUnit, res, rlDest.origSReg); } void convertIntNarrowing(CompilationUnit* cUnit, RegLocation rlDest, RegLocation rlSrc, greenland::IntrinsicHelper::IntrinsicId id) { llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction(id); llvm::Value* res = cUnit->irb->CreateCall(intr, getLLVMValue(cUnit, rlSrc.origSReg)); defineValue(cUnit, res, rlDest.origSReg); } void convertNeg(CompilationUnit* cUnit, RegLocation rlDest, RegLocation rlSrc) { llvm::Value* res = cUnit->irb->CreateNeg(getLLVMValue(cUnit, rlSrc.origSReg)); defineValue(cUnit, res, rlDest.origSReg); } void convertIntToFP(CompilationUnit* cUnit, llvm::Type* ty, RegLocation rlDest, RegLocation rlSrc) { llvm::Value* res = cUnit->irb->CreateSIToFP(getLLVMValue(cUnit, rlSrc.origSReg), ty); defineValue(cUnit, res, rlDest.origSReg); } void convertFPToInt(CompilationUnit* cUnit, greenland::IntrinsicHelper::IntrinsicId id, RegLocation rlDest, RegLocation rlSrc) { llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction(id); llvm::Value* res = cUnit->irb->CreateCall(intr, getLLVMValue(cUnit, rlSrc.origSReg)); defineValue(cUnit, res, rlDest.origSReg); } void convertNegFP(CompilationUnit* cUnit, RegLocation rlDest, RegLocation rlSrc) { llvm::Value* res = cUnit->irb->CreateFNeg(getLLVMValue(cUnit, rlSrc.origSReg)); defineValue(cUnit, res, rlDest.origSReg); } void convertNot(CompilationUnit* cUnit, RegLocation rlDest, RegLocation rlSrc) { llvm::Value* src = getLLVMValue(cUnit, rlSrc.origSReg); llvm::Value* res = cUnit->irb->CreateXor(src, static_cast(-1)); defineValue(cUnit, res, rlDest.origSReg); } /* * Target-independent code generation. Use only high-level * load/store utilities here, or target-dependent genXX() handlers * when necessary. */ bool convertMIRNode(CompilationUnit* cUnit, MIR* mir, BasicBlock* bb, llvm::BasicBlock* llvmBB, LIR* labelList) { bool res = false; // Assume success RegLocation rlSrc[3]; RegLocation rlDest = badLoc; Instruction::Code opcode = mir->dalvikInsn.opcode; uint32_t vB = mir->dalvikInsn.vB; uint32_t vC = mir->dalvikInsn.vC; int optFlags = mir->optimizationFlags; bool objectDefinition = false; if (cUnit->printMe) { if ((int)opcode < kMirOpFirst) { LOG(INFO) << ".. " << Instruction::Name(opcode) << " 0x" << std::hex << (int)opcode; } else { LOG(INFO) << ".. opcode 0x" << std::hex << (int)opcode; } } /* Prep Src and Dest locations */ int nextSreg = 0; int nextLoc = 0; int attrs = oatDataFlowAttributes[opcode]; rlSrc[0] = rlSrc[1] = rlSrc[2] = badLoc; if (attrs & DF_UA) { if (attrs & DF_A_WIDE) { rlSrc[nextLoc++] = oatGetSrcWide(cUnit, mir, nextSreg); nextSreg+= 2; } else { rlSrc[nextLoc++] = oatGetSrc(cUnit, mir, nextSreg); nextSreg++; } } if (attrs & DF_UB) { if (attrs & DF_B_WIDE) { rlSrc[nextLoc++] = oatGetSrcWide(cUnit, mir, nextSreg); nextSreg+= 2; } else { rlSrc[nextLoc++] = oatGetSrc(cUnit, mir, nextSreg); nextSreg++; } } if (attrs & DF_UC) { if (attrs & DF_C_WIDE) { rlSrc[nextLoc++] = oatGetSrcWide(cUnit, mir, nextSreg); } else { rlSrc[nextLoc++] = oatGetSrc(cUnit, mir, nextSreg); } } if (attrs & DF_DA) { if (attrs & DF_A_WIDE) { rlDest = oatGetDestWide(cUnit, mir); } else { rlDest = oatGetDest(cUnit, mir); if (rlDest.ref) { objectDefinition = true; } } } switch (opcode) { case Instruction::NOP: break; case Instruction::MOVE: case Instruction::MOVE_OBJECT: case Instruction::MOVE_16: case Instruction::MOVE_OBJECT_16: case Instruction::MOVE_OBJECT_FROM16: case Instruction::MOVE_FROM16: case Instruction::MOVE_WIDE: case Instruction::MOVE_WIDE_16: case Instruction::MOVE_WIDE_FROM16: { /* * Moves/copies are meaningless in pure SSA register form, * but we need to preserve them for the conversion back into * MIR (at least until we stop using the Dalvik register maps). * Insert a dummy intrinsic copy call, which will be recognized * by the quick path and removed by the portable path. */ llvm::Value* src = getLLVMValue(cUnit, rlSrc[0].origSReg); llvm::Value* res = emitCopy(cUnit, src, rlDest); defineValue(cUnit, res, rlDest.origSReg); } break; case Instruction::CONST: case Instruction::CONST_4: case Instruction::CONST_16: { if (vB == 0) { objectDefinition = true; } llvm::Constant* immValue = cUnit->irb->GetJInt(vB); llvm::Value* res = emitConst(cUnit, immValue, rlDest); defineValue(cUnit, res, rlDest.origSReg); } break; case Instruction::CONST_WIDE_16: case Instruction::CONST_WIDE_32: { // Sign extend to 64 bits int64_t imm = static_cast(vB); llvm::Constant* immValue = cUnit->irb->GetJLong(imm); llvm::Value* res = emitConst(cUnit, immValue, rlDest); defineValue(cUnit, res, rlDest.origSReg); } break; case Instruction::CONST_HIGH16: { llvm::Constant* immValue = cUnit->irb->GetJInt(vB << 16); llvm::Value* res = emitConst(cUnit, immValue, rlDest); defineValue(cUnit, res, rlDest.origSReg); } break; case Instruction::CONST_WIDE: { llvm::Constant* immValue = cUnit->irb->GetJLong(mir->dalvikInsn.vB_wide); llvm::Value* res = emitConst(cUnit, immValue, rlDest); defineValue(cUnit, res, rlDest.origSReg); } break; case Instruction::CONST_WIDE_HIGH16: { int64_t imm = static_cast(vB) << 48; llvm::Constant* immValue = cUnit->irb->GetJLong(imm); llvm::Value* res = emitConst(cUnit, immValue, rlDest); defineValue(cUnit, res, rlDest.origSReg); } break; case Instruction::SPUT_OBJECT: convertSput(cUnit, vB, greenland::IntrinsicHelper::HLSputObject, rlSrc[0]); break; case Instruction::SPUT: if (rlSrc[0].fp) { convertSput(cUnit, vB, greenland::IntrinsicHelper::HLSputFloat, rlSrc[0]); } else { convertSput(cUnit, vB, greenland::IntrinsicHelper::HLSput, rlSrc[0]); } break; case Instruction::SPUT_BOOLEAN: convertSput(cUnit, vB, greenland::IntrinsicHelper::HLSputBoolean, rlSrc[0]); break; case Instruction::SPUT_BYTE: convertSput(cUnit, vB, greenland::IntrinsicHelper::HLSputByte, rlSrc[0]); break; case Instruction::SPUT_CHAR: convertSput(cUnit, vB, greenland::IntrinsicHelper::HLSputChar, rlSrc[0]); break; case Instruction::SPUT_SHORT: convertSput(cUnit, vB, greenland::IntrinsicHelper::HLSputShort, rlSrc[0]); break; case Instruction::SPUT_WIDE: if (rlSrc[0].fp) { convertSput(cUnit, vB, greenland::IntrinsicHelper::HLSputDouble, rlSrc[0]); } else { convertSput(cUnit, vB, greenland::IntrinsicHelper::HLSputWide, rlSrc[0]); } break; case Instruction::SGET_OBJECT: convertSget(cUnit, vB, greenland::IntrinsicHelper::HLSgetObject, rlDest); break; case Instruction::SGET: if (rlDest.fp) { convertSget(cUnit, vB, greenland::IntrinsicHelper::HLSgetFloat, rlDest); } else { convertSget(cUnit, vB, greenland::IntrinsicHelper::HLSget, rlDest); } break; case Instruction::SGET_BOOLEAN: convertSget(cUnit, vB, greenland::IntrinsicHelper::HLSgetBoolean, rlDest); break; case Instruction::SGET_BYTE: convertSget(cUnit, vB, greenland::IntrinsicHelper::HLSgetByte, rlDest); break; case Instruction::SGET_CHAR: convertSget(cUnit, vB, greenland::IntrinsicHelper::HLSgetChar, rlDest); break; case Instruction::SGET_SHORT: convertSget(cUnit, vB, greenland::IntrinsicHelper::HLSgetShort, rlDest); break; case Instruction::SGET_WIDE: if (rlDest.fp) { convertSget(cUnit, vB, greenland::IntrinsicHelper::HLSgetDouble, rlDest); } else { convertSget(cUnit, vB, greenland::IntrinsicHelper::HLSgetWide, rlDest); } break; case Instruction::RETURN_WIDE: case Instruction::RETURN: case Instruction::RETURN_OBJECT: { if (!(cUnit->attrs & METHOD_IS_LEAF)) { emitSuspendCheck(cUnit); } emitPopShadowFrame(cUnit); cUnit->irb->CreateRet(getLLVMValue(cUnit, rlSrc[0].origSReg)); bb->hasReturn = true; } break; case Instruction::RETURN_VOID: { if (!(cUnit->attrs & METHOD_IS_LEAF)) { emitSuspendCheck(cUnit); } emitPopShadowFrame(cUnit); cUnit->irb->CreateRetVoid(); bb->hasReturn = true; } break; case Instruction::IF_EQ: convertCompareAndBranch(cUnit, bb, mir, kCondEq, rlSrc[0], rlSrc[1]); break; case Instruction::IF_NE: convertCompareAndBranch(cUnit, bb, mir, kCondNe, rlSrc[0], rlSrc[1]); break; case Instruction::IF_LT: convertCompareAndBranch(cUnit, bb, mir, kCondLt, rlSrc[0], rlSrc[1]); break; case Instruction::IF_GE: convertCompareAndBranch(cUnit, bb, mir, kCondGe, rlSrc[0], rlSrc[1]); break; case Instruction::IF_GT: convertCompareAndBranch(cUnit, bb, mir, kCondGt, rlSrc[0], rlSrc[1]); break; case Instruction::IF_LE: convertCompareAndBranch(cUnit, bb, mir, kCondLe, rlSrc[0], rlSrc[1]); break; case Instruction::IF_EQZ: convertCompareZeroAndBranch(cUnit, bb, mir, kCondEq, rlSrc[0]); break; case Instruction::IF_NEZ: convertCompareZeroAndBranch(cUnit, bb, mir, kCondNe, rlSrc[0]); break; case Instruction::IF_LTZ: convertCompareZeroAndBranch(cUnit, bb, mir, kCondLt, rlSrc[0]); break; case Instruction::IF_GEZ: convertCompareZeroAndBranch(cUnit, bb, mir, kCondGe, rlSrc[0]); break; case Instruction::IF_GTZ: convertCompareZeroAndBranch(cUnit, bb, mir, kCondGt, rlSrc[0]); break; case Instruction::IF_LEZ: convertCompareZeroAndBranch(cUnit, bb, mir, kCondLe, rlSrc[0]); break; case Instruction::GOTO: case Instruction::GOTO_16: case Instruction::GOTO_32: { if (bb->taken->startOffset <= bb->startOffset) { emitSuspendCheck(cUnit); } cUnit->irb->CreateBr(getLLVMBlock(cUnit, bb->taken->id)); } break; case Instruction::ADD_LONG: case Instruction::ADD_LONG_2ADDR: case Instruction::ADD_INT: case Instruction::ADD_INT_2ADDR: convertArithOp(cUnit, kOpAdd, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::SUB_LONG: case Instruction::SUB_LONG_2ADDR: case Instruction::SUB_INT: case Instruction::SUB_INT_2ADDR: convertArithOp(cUnit, kOpSub, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::MUL_LONG: case Instruction::MUL_LONG_2ADDR: case Instruction::MUL_INT: case Instruction::MUL_INT_2ADDR: convertArithOp(cUnit, kOpMul, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::DIV_LONG: case Instruction::DIV_LONG_2ADDR: case Instruction::DIV_INT: case Instruction::DIV_INT_2ADDR: convertArithOp(cUnit, kOpDiv, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::REM_LONG: case Instruction::REM_LONG_2ADDR: case Instruction::REM_INT: case Instruction::REM_INT_2ADDR: convertArithOp(cUnit, kOpRem, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::AND_LONG: case Instruction::AND_LONG_2ADDR: case Instruction::AND_INT: case Instruction::AND_INT_2ADDR: convertArithOp(cUnit, kOpAnd, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::OR_LONG: case Instruction::OR_LONG_2ADDR: case Instruction::OR_INT: case Instruction::OR_INT_2ADDR: convertArithOp(cUnit, kOpOr, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::XOR_LONG: case Instruction::XOR_LONG_2ADDR: case Instruction::XOR_INT: case Instruction::XOR_INT_2ADDR: convertArithOp(cUnit, kOpXor, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::SHL_LONG: case Instruction::SHL_LONG_2ADDR: convertShift(cUnit, greenland::IntrinsicHelper::SHLLong, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::SHL_INT: case Instruction::SHL_INT_2ADDR: convertShift(cUnit, greenland::IntrinsicHelper::SHLInt, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::SHR_LONG: case Instruction::SHR_LONG_2ADDR: convertShift(cUnit, greenland::IntrinsicHelper::SHRLong, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::SHR_INT: case Instruction::SHR_INT_2ADDR: convertShift(cUnit, greenland::IntrinsicHelper::SHRInt, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::USHR_LONG: case Instruction::USHR_LONG_2ADDR: convertShift(cUnit, greenland::IntrinsicHelper::USHRLong, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::USHR_INT: case Instruction::USHR_INT_2ADDR: convertShift(cUnit, greenland::IntrinsicHelper::USHRInt, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::ADD_INT_LIT16: case Instruction::ADD_INT_LIT8: convertArithOpLit(cUnit, kOpAdd, rlDest, rlSrc[0], vC); break; case Instruction::RSUB_INT: case Instruction::RSUB_INT_LIT8: convertArithOpLit(cUnit, kOpRsub, rlDest, rlSrc[0], vC); break; case Instruction::MUL_INT_LIT16: case Instruction::MUL_INT_LIT8: convertArithOpLit(cUnit, kOpMul, rlDest, rlSrc[0], vC); break; case Instruction::DIV_INT_LIT16: case Instruction::DIV_INT_LIT8: convertArithOpLit(cUnit, kOpDiv, rlDest, rlSrc[0], vC); break; case Instruction::REM_INT_LIT16: case Instruction::REM_INT_LIT8: convertArithOpLit(cUnit, kOpRem, rlDest, rlSrc[0], vC); break; case Instruction::AND_INT_LIT16: case Instruction::AND_INT_LIT8: convertArithOpLit(cUnit, kOpAnd, rlDest, rlSrc[0], vC); break; case Instruction::OR_INT_LIT16: case Instruction::OR_INT_LIT8: convertArithOpLit(cUnit, kOpOr, rlDest, rlSrc[0], vC); break; case Instruction::XOR_INT_LIT16: case Instruction::XOR_INT_LIT8: convertArithOpLit(cUnit, kOpXor, rlDest, rlSrc[0], vC); break; case Instruction::SHL_INT_LIT8: convertShiftLit(cUnit, greenland::IntrinsicHelper::SHLInt, rlDest, rlSrc[0], vC & 0x1f); break; case Instruction::SHR_INT_LIT8: convertShiftLit(cUnit, greenland::IntrinsicHelper::SHRInt, rlDest, rlSrc[0], vC & 0x1f); break; case Instruction::USHR_INT_LIT8: convertShiftLit(cUnit, greenland::IntrinsicHelper::USHRInt, rlDest, rlSrc[0], vC & 0x1f); break; case Instruction::ADD_FLOAT: case Instruction::ADD_FLOAT_2ADDR: case Instruction::ADD_DOUBLE: case Instruction::ADD_DOUBLE_2ADDR: convertFPArithOp(cUnit, kOpAdd, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::SUB_FLOAT: case Instruction::SUB_FLOAT_2ADDR: case Instruction::SUB_DOUBLE: case Instruction::SUB_DOUBLE_2ADDR: convertFPArithOp(cUnit, kOpSub, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::MUL_FLOAT: case Instruction::MUL_FLOAT_2ADDR: case Instruction::MUL_DOUBLE: case Instruction::MUL_DOUBLE_2ADDR: convertFPArithOp(cUnit, kOpMul, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::DIV_FLOAT: case Instruction::DIV_FLOAT_2ADDR: case Instruction::DIV_DOUBLE: case Instruction::DIV_DOUBLE_2ADDR: convertFPArithOp(cUnit, kOpDiv, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::REM_FLOAT: case Instruction::REM_FLOAT_2ADDR: case Instruction::REM_DOUBLE: case Instruction::REM_DOUBLE_2ADDR: convertFPArithOp(cUnit, kOpRem, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::INVOKE_STATIC: convertInvoke(cUnit, bb, mir, kStatic, false /*range*/, false /* NewFilledArray */); break; case Instruction::INVOKE_STATIC_RANGE: convertInvoke(cUnit, bb, mir, kStatic, true /*range*/, false /* NewFilledArray */); break; case Instruction::INVOKE_DIRECT: convertInvoke(cUnit, bb, mir, kDirect, false /*range*/, false /* NewFilledArray */); break; case Instruction::INVOKE_DIRECT_RANGE: convertInvoke(cUnit, bb, mir, kDirect, true /*range*/, false /* NewFilledArray */); break; case Instruction::INVOKE_VIRTUAL: convertInvoke(cUnit, bb, mir, kVirtual, false /*range*/, false /* NewFilledArray */); break; case Instruction::INVOKE_VIRTUAL_RANGE: convertInvoke(cUnit, bb, mir, kVirtual, true /*range*/, false /* NewFilledArray */); break; case Instruction::INVOKE_SUPER: convertInvoke(cUnit, bb, mir, kSuper, false /*range*/, false /* NewFilledArray */); break; case Instruction::INVOKE_SUPER_RANGE: convertInvoke(cUnit, bb, mir, kSuper, true /*range*/, false /* NewFilledArray */); break; case Instruction::INVOKE_INTERFACE: convertInvoke(cUnit, bb, mir, kInterface, false /*range*/, false /* NewFilledArray */); break; case Instruction::INVOKE_INTERFACE_RANGE: convertInvoke(cUnit, bb, mir, kInterface, true /*range*/, false /* NewFilledArray */); break; case Instruction::FILLED_NEW_ARRAY: convertInvoke(cUnit, bb, mir, kInterface, false /*range*/, true /* NewFilledArray */); break; case Instruction::FILLED_NEW_ARRAY_RANGE: convertInvoke(cUnit, bb, mir, kInterface, true /*range*/, true /* NewFilledArray */); break; case Instruction::CONST_STRING: case Instruction::CONST_STRING_JUMBO: convertConstObject(cUnit, vB, greenland::IntrinsicHelper::ConstString, rlDest); break; case Instruction::CONST_CLASS: convertConstObject(cUnit, vB, greenland::IntrinsicHelper::ConstClass, rlDest); break; case Instruction::CHECK_CAST: convertCheckCast(cUnit, vB, rlSrc[0]); break; case Instruction::NEW_INSTANCE: convertNewInstance(cUnit, vB, rlDest); break; case Instruction::MOVE_EXCEPTION: convertMoveException(cUnit, rlDest); break; case Instruction::THROW: convertThrow(cUnit, rlSrc[0]); /* * If this throw is standalone, terminate. * If it might rethrow, force termination * of the following block. */ if (bb->fallThrough == NULL) { cUnit->irb->CreateUnreachable(); } else { bb->fallThrough->fallThrough = NULL; bb->fallThrough->taken = NULL; } break; case Instruction::MOVE_RESULT_WIDE: case Instruction::MOVE_RESULT: case Instruction::MOVE_RESULT_OBJECT: /* * All move_results should have been folded into the preceeding invoke. */ LOG(FATAL) << "Unexpected move_result"; break; case Instruction::MONITOR_ENTER: convertMonitorEnterExit(cUnit, optFlags, greenland::IntrinsicHelper::MonitorEnter, rlSrc[0]); break; case Instruction::MONITOR_EXIT: convertMonitorEnterExit(cUnit, optFlags, greenland::IntrinsicHelper::MonitorExit, rlSrc[0]); break; case Instruction::ARRAY_LENGTH: convertArrayLength(cUnit, optFlags, rlDest, rlSrc[0]); break; case Instruction::NEW_ARRAY: convertNewArray(cUnit, vC, rlDest, rlSrc[0]); break; case Instruction::INSTANCE_OF: convertInstanceOf(cUnit, vC, rlDest, rlSrc[0]); break; case Instruction::AGET: if (rlDest.fp) { convertAget(cUnit, optFlags, greenland::IntrinsicHelper::HLArrayGetFloat, rlDest, rlSrc[0], rlSrc[1]); } else { convertAget(cUnit, optFlags, greenland::IntrinsicHelper::HLArrayGet, rlDest, rlSrc[0], rlSrc[1]); } break; case Instruction::AGET_OBJECT: convertAget(cUnit, optFlags, greenland::IntrinsicHelper::HLArrayGetObject, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::AGET_BOOLEAN: convertAget(cUnit, optFlags, greenland::IntrinsicHelper::HLArrayGetBoolean, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::AGET_BYTE: convertAget(cUnit, optFlags, greenland::IntrinsicHelper::HLArrayGetByte, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::AGET_CHAR: convertAget(cUnit, optFlags, greenland::IntrinsicHelper::HLArrayGetChar, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::AGET_SHORT: convertAget(cUnit, optFlags, greenland::IntrinsicHelper::HLArrayGetShort, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::AGET_WIDE: if (rlDest.fp) { convertAget(cUnit, optFlags, greenland::IntrinsicHelper::HLArrayGetDouble, rlDest, rlSrc[0], rlSrc[1]); } else { convertAget(cUnit, optFlags, greenland::IntrinsicHelper::HLArrayGetWide, rlDest, rlSrc[0], rlSrc[1]); } break; case Instruction::APUT: if (rlSrc[0].fp) { convertAput(cUnit, optFlags, greenland::IntrinsicHelper::HLArrayPutFloat, rlSrc[0], rlSrc[1], rlSrc[2]); } else { convertAput(cUnit, optFlags, greenland::IntrinsicHelper::HLArrayPut, rlSrc[0], rlSrc[1], rlSrc[2]); } break; case Instruction::APUT_OBJECT: convertAput(cUnit, optFlags, greenland::IntrinsicHelper::HLArrayPutObject, rlSrc[0], rlSrc[1], rlSrc[2]); break; case Instruction::APUT_BOOLEAN: convertAput(cUnit, optFlags, greenland::IntrinsicHelper::HLArrayPutBoolean, rlSrc[0], rlSrc[1], rlSrc[2]); break; case Instruction::APUT_BYTE: convertAput(cUnit, optFlags, greenland::IntrinsicHelper::HLArrayPutByte, rlSrc[0], rlSrc[1], rlSrc[2]); break; case Instruction::APUT_CHAR: convertAput(cUnit, optFlags, greenland::IntrinsicHelper::HLArrayPutChar, rlSrc[0], rlSrc[1], rlSrc[2]); break; case Instruction::APUT_SHORT: convertAput(cUnit, optFlags, greenland::IntrinsicHelper::HLArrayPutShort, rlSrc[0], rlSrc[1], rlSrc[2]); break; case Instruction::APUT_WIDE: if (rlSrc[0].fp) { convertAput(cUnit, optFlags, greenland::IntrinsicHelper::HLArrayPutDouble, rlSrc[0], rlSrc[1], rlSrc[2]); } else { convertAput(cUnit, optFlags, greenland::IntrinsicHelper::HLArrayPutWide, rlSrc[0], rlSrc[1], rlSrc[2]); } break; case Instruction::IGET: if (rlDest.fp) { convertIget(cUnit, optFlags, greenland::IntrinsicHelper::HLIGetFloat, rlDest, rlSrc[0], vC); } else { convertIget(cUnit, optFlags, greenland::IntrinsicHelper::HLIGet, rlDest, rlSrc[0], vC); } break; case Instruction::IGET_OBJECT: convertIget(cUnit, optFlags, greenland::IntrinsicHelper::HLIGetObject, rlDest, rlSrc[0], vC); break; case Instruction::IGET_BOOLEAN: convertIget(cUnit, optFlags, greenland::IntrinsicHelper::HLIGetBoolean, rlDest, rlSrc[0], vC); break; case Instruction::IGET_BYTE: convertIget(cUnit, optFlags, greenland::IntrinsicHelper::HLIGetByte, rlDest, rlSrc[0], vC); break; case Instruction::IGET_CHAR: convertIget(cUnit, optFlags, greenland::IntrinsicHelper::HLIGetChar, rlDest, rlSrc[0], vC); break; case Instruction::IGET_SHORT: convertIget(cUnit, optFlags, greenland::IntrinsicHelper::HLIGetShort, rlDest, rlSrc[0], vC); break; case Instruction::IGET_WIDE: if (rlDest.fp) { convertIget(cUnit, optFlags, greenland::IntrinsicHelper::HLIGetDouble, rlDest, rlSrc[0], vC); } else { convertIget(cUnit, optFlags, greenland::IntrinsicHelper::HLIGetWide, rlDest, rlSrc[0], vC); } break; case Instruction::IPUT: if (rlSrc[0].fp) { convertIput(cUnit, optFlags, greenland::IntrinsicHelper::HLIPutFloat, rlSrc[0], rlSrc[1], vC); } else { convertIput(cUnit, optFlags, greenland::IntrinsicHelper::HLIPut, rlSrc[0], rlSrc[1], vC); } break; case Instruction::IPUT_OBJECT: convertIput(cUnit, optFlags, greenland::IntrinsicHelper::HLIPutObject, rlSrc[0], rlSrc[1], vC); break; case Instruction::IPUT_BOOLEAN: convertIput(cUnit, optFlags, greenland::IntrinsicHelper::HLIPutBoolean, rlSrc[0], rlSrc[1], vC); break; case Instruction::IPUT_BYTE: convertIput(cUnit, optFlags, greenland::IntrinsicHelper::HLIPutByte, rlSrc[0], rlSrc[1], vC); break; case Instruction::IPUT_CHAR: convertIput(cUnit, optFlags, greenland::IntrinsicHelper::HLIPutChar, rlSrc[0], rlSrc[1], vC); break; case Instruction::IPUT_SHORT: convertIput(cUnit, optFlags, greenland::IntrinsicHelper::HLIPutShort, rlSrc[0], rlSrc[1], vC); break; case Instruction::IPUT_WIDE: if (rlSrc[0].fp) { convertIput(cUnit, optFlags, greenland::IntrinsicHelper::HLIPutDouble, rlSrc[0], rlSrc[1], vC); } else { convertIput(cUnit, optFlags, greenland::IntrinsicHelper::HLIPutWide, rlSrc[0], rlSrc[1], vC); } break; case Instruction::FILL_ARRAY_DATA: convertFillArrayData(cUnit, vB, rlSrc[0]); break; case Instruction::LONG_TO_INT: convertLongToInt(cUnit, rlDest, rlSrc[0]); break; case Instruction::INT_TO_LONG: convertIntToLong(cUnit, rlDest, rlSrc[0]); break; case Instruction::INT_TO_CHAR: convertIntNarrowing(cUnit, rlDest, rlSrc[0], greenland::IntrinsicHelper::IntToChar); break; case Instruction::INT_TO_BYTE: convertIntNarrowing(cUnit, rlDest, rlSrc[0], greenland::IntrinsicHelper::IntToByte); break; case Instruction::INT_TO_SHORT: convertIntNarrowing(cUnit, rlDest, rlSrc[0], greenland::IntrinsicHelper::IntToShort); break; case Instruction::INT_TO_FLOAT: case Instruction::LONG_TO_FLOAT: convertIntToFP(cUnit, cUnit->irb->getFloatTy(), rlDest, rlSrc[0]); break; case Instruction::INT_TO_DOUBLE: case Instruction::LONG_TO_DOUBLE: convertIntToFP(cUnit, cUnit->irb->getDoubleTy(), rlDest, rlSrc[0]); break; case Instruction::FLOAT_TO_DOUBLE: convertFloatToDouble(cUnit, rlDest, rlSrc[0]); break; case Instruction::DOUBLE_TO_FLOAT: convertDoubleToFloat(cUnit, rlDest, rlSrc[0]); break; case Instruction::NEG_LONG: case Instruction::NEG_INT: convertNeg(cUnit, rlDest, rlSrc[0]); break; case Instruction::NEG_FLOAT: case Instruction::NEG_DOUBLE: convertNegFP(cUnit, rlDest, rlSrc[0]); break; case Instruction::NOT_LONG: case Instruction::NOT_INT: convertNot(cUnit, rlDest, rlSrc[0]); break; case Instruction::FLOAT_TO_INT: convertFPToInt(cUnit, greenland::IntrinsicHelper::F2I, rlDest, rlSrc[0]); break; case Instruction::DOUBLE_TO_INT: convertFPToInt(cUnit, greenland::IntrinsicHelper::D2I, rlDest, rlSrc[0]); break; case Instruction::FLOAT_TO_LONG: convertFPToInt(cUnit, greenland::IntrinsicHelper::F2L, rlDest, rlSrc[0]); break; case Instruction::DOUBLE_TO_LONG: convertFPToInt(cUnit, greenland::IntrinsicHelper::D2L, rlDest, rlSrc[0]); break; case Instruction::CMPL_FLOAT: convertWideComparison(cUnit, greenland::IntrinsicHelper::CmplFloat, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::CMPG_FLOAT: convertWideComparison(cUnit, greenland::IntrinsicHelper::CmpgFloat, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::CMPL_DOUBLE: convertWideComparison(cUnit, greenland::IntrinsicHelper::CmplDouble, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::CMPG_DOUBLE: convertWideComparison(cUnit, greenland::IntrinsicHelper::CmpgDouble, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::CMP_LONG: convertWideComparison(cUnit, greenland::IntrinsicHelper::CmpLong, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::PACKED_SWITCH: convertPackedSwitch(cUnit, bb, vB, rlSrc[0]); break; case Instruction::SPARSE_SWITCH: convertSparseSwitch(cUnit, bb, vB, rlSrc[0]); break; default: UNIMPLEMENTED(FATAL) << "Unsupported Dex opcode 0x" << std::hex << opcode; res = true; } if (objectDefinition) { setShadowFrameEntry(cUnit, (llvm::Value*) cUnit->llvmValues.elemList[rlDest.origSReg]); } return res; } /* Extended MIR instructions like PHI */ void convertExtendedMIR(CompilationUnit* cUnit, BasicBlock* bb, MIR* mir, llvm::BasicBlock* llvmBB) { switch ((ExtendedMIROpcode)mir->dalvikInsn.opcode) { case kMirOpPhi: { RegLocation rlDest = cUnit->regLocation[mir->ssaRep->defs[0]]; /* * The Art compiler's Phi nodes only handle 32-bit operands, * representing wide values using a matched set of Phi nodes * for the lower and upper halves. In the llvm world, we only * want a single Phi for wides. Here we will simply discard * the Phi node representing the high word. */ if (rlDest.highWord) { return; // No Phi node - handled via low word } int* incoming = (int*)mir->dalvikInsn.vB; llvm::Type* phiType = llvmTypeFromLocRec(cUnit, rlDest); llvm::PHINode* phi = cUnit->irb->CreatePHI(phiType, mir->ssaRep->numUses); for (int i = 0; i < mir->ssaRep->numUses; i++) { RegLocation loc; // Don't check width here. loc = oatGetRawSrc(cUnit, mir, i); DCHECK_EQ(rlDest.wide, loc.wide); DCHECK_EQ(rlDest.wide & rlDest.highWord, loc.wide & loc.highWord); DCHECK_EQ(rlDest.fp, loc.fp); DCHECK_EQ(rlDest.core, loc.core); DCHECK_EQ(rlDest.ref, loc.ref); SafeMap::iterator it; it = cUnit->blockIdMap.find(incoming[i]); DCHECK(it != cUnit->blockIdMap.end()); phi->addIncoming(getLLVMValue(cUnit, loc.origSReg), getLLVMBlock(cUnit, it->second)); } defineValue(cUnit, phi, rlDest.origSReg); break; } case kMirOpCopy: { UNIMPLEMENTED(WARNING) << "unimp kMirOpPhi"; break; } case kMirOpNop: if ((mir == bb->lastMIRInsn) && (bb->taken == NULL) && (bb->fallThrough == NULL)) { cUnit->irb->CreateUnreachable(); } break; #if defined(TARGET_ARM) case kMirOpFusedCmplFloat: UNIMPLEMENTED(WARNING) << "unimp kMirOpFusedCmpFloat"; break; case kMirOpFusedCmpgFloat: UNIMPLEMENTED(WARNING) << "unimp kMirOpFusedCmgFloat"; break; case kMirOpFusedCmplDouble: UNIMPLEMENTED(WARNING) << "unimp kMirOpFusedCmplDouble"; break; case kMirOpFusedCmpgDouble: UNIMPLEMENTED(WARNING) << "unimp kMirOpFusedCmpgDouble"; break; case kMirOpFusedCmpLong: UNIMPLEMENTED(WARNING) << "unimp kMirOpLongCmpBranch"; break; #endif default: break; } } void setDexOffset(CompilationUnit* cUnit, int32_t offset) { cUnit->currentDalvikOffset = offset; llvm::SmallVector arrayRef; arrayRef.push_back(cUnit->irb->getInt32(offset)); llvm::MDNode* node = llvm::MDNode::get(*cUnit->context, arrayRef); cUnit->irb->SetDexOffset(node); } // Attach method info as metadata to special intrinsic void setMethodInfo(CompilationUnit* cUnit) { // We don't want dex offset on this cUnit->irb->SetDexOffset(NULL); greenland::IntrinsicHelper::IntrinsicId id; id = greenland::IntrinsicHelper::MethodInfo; llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction(id); llvm::Instruction* inst = cUnit->irb->CreateCall(intr); llvm::SmallVector regInfo; regInfo.push_back(cUnit->irb->getInt32(cUnit->numIns)); regInfo.push_back(cUnit->irb->getInt32(cUnit->numRegs)); regInfo.push_back(cUnit->irb->getInt32(cUnit->numOuts)); regInfo.push_back(cUnit->irb->getInt32(cUnit->numCompilerTemps)); regInfo.push_back(cUnit->irb->getInt32(cUnit->numSSARegs)); llvm::MDNode* regInfoNode = llvm::MDNode::get(*cUnit->context, regInfo); inst->setMetadata("RegInfo", regInfoNode); int promoSize = cUnit->numDalvikRegisters + cUnit->numCompilerTemps + 1; llvm::SmallVector pmap; for (int i = 0; i < promoSize; i++) { PromotionMap* p = &cUnit->promotionMap[i]; int32_t mapData = ((p->firstInPair & 0xff) << 24) | ((p->fpReg & 0xff) << 16) | ((p->coreReg & 0xff) << 8) | ((p->fpLocation & 0xf) << 4) | (p->coreLocation & 0xf); pmap.push_back(cUnit->irb->getInt32(mapData)); } llvm::MDNode* mapNode = llvm::MDNode::get(*cUnit->context, pmap); inst->setMetadata("PromotionMap", mapNode); setDexOffset(cUnit, cUnit->currentDalvikOffset); } /* Handle the content in each basic block */ bool methodBlockBitcodeConversion(CompilationUnit* cUnit, BasicBlock* bb) { if (bb->blockType == kDead) return false; llvm::BasicBlock* llvmBB = getLLVMBlock(cUnit, bb->id); if (llvmBB == NULL) { CHECK(bb->blockType == kExitBlock); } else { cUnit->irb->SetInsertPoint(llvmBB); setDexOffset(cUnit, bb->startOffset); } if (cUnit->printMe) { LOG(INFO) << "................................"; LOG(INFO) << "Block id " << bb->id; if (llvmBB != NULL) { LOG(INFO) << "label " << llvmBB->getName().str().c_str(); } else { LOG(INFO) << "llvmBB is NULL"; } } if (bb->blockType == kEntryBlock) { setMethodInfo(cUnit); bool *canBeRef = (bool*) oatNew(cUnit, sizeof(bool) * cUnit->numDalvikRegisters, true, kAllocMisc); for (int i = 0; i < cUnit->numSSARegs; i++) { int vReg = SRegToVReg(cUnit, i); if (vReg > SSA_METHOD_BASEREG) { canBeRef[SRegToVReg(cUnit, i)] |= cUnit->regLocation[i].ref; } } for (int i = 0; i < cUnit->numDalvikRegisters; i++) { if (canBeRef[i]) { cUnit->numShadowFrameEntries++; } } if (cUnit->numShadowFrameEntries > 0) { cUnit->shadowMap = (int*) oatNew(cUnit, sizeof(int) * cUnit->numShadowFrameEntries, true, kAllocMisc); for (int i = 0, j = 0; i < cUnit->numDalvikRegisters; i++) { if (canBeRef[i]) { cUnit->shadowMap[j++] = i; } } } greenland::IntrinsicHelper::IntrinsicId id = greenland::IntrinsicHelper::AllocaShadowFrame; llvm::Function* func = cUnit->intrinsic_helper->GetIntrinsicFunction(id); llvm::Value* entries = cUnit->irb->getInt32(cUnit->numShadowFrameEntries); cUnit->irb->CreateCall(func, entries); } else if (bb->blockType == kExitBlock) { /* * Because of the differences between how MIR/LIR and llvm handle exit * blocks, we won't explicitly covert them. On the llvm-to-lir * path, it will need to be regenereated. */ return false; } else if (bb->blockType == kExceptionHandling) { /* * Because we're deferring null checking, delete the associated empty * exception block. */ llvmBB->eraseFromParent(); return false; } for (MIR* mir = bb->firstMIRInsn; mir; mir = mir->next) { setDexOffset(cUnit, mir->offset); int opcode = mir->dalvikInsn.opcode; Instruction::Format dalvikFormat = Instruction::FormatOf(mir->dalvikInsn.opcode); /* If we're compiling for the debugger, generate an update callout */ if (cUnit->genDebugger) { UNIMPLEMENTED(FATAL) << "Need debug codegen"; //genDebuggerUpdate(cUnit, mir->offset); } if (opcode == kMirOpCheck) { // Combine check and work halves of throwing instruction. MIR* workHalf = mir->meta.throwInsn; mir->dalvikInsn.opcode = workHalf->dalvikInsn.opcode; opcode = mir->dalvikInsn.opcode; SSARepresentation* ssaRep = workHalf->ssaRep; workHalf->ssaRep = mir->ssaRep; mir->ssaRep = ssaRep; workHalf->dalvikInsn.opcode = static_cast(kMirOpNop); if (bb->successorBlockList.blockListType == kCatch) { llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction( greenland::IntrinsicHelper::CatchTargets); llvm::Value* switchKey = cUnit->irb->CreateCall(intr, cUnit->irb->getInt32(mir->offset)); GrowableListIterator iter; oatGrowableListIteratorInit(&bb->successorBlockList.blocks, &iter); // New basic block to use for work half llvm::BasicBlock* workBB = llvm::BasicBlock::Create(*cUnit->context, "", cUnit->func); llvm::SwitchInst* sw = cUnit->irb->CreateSwitch(switchKey, workBB, bb->successorBlockList.blocks.numUsed); while (true) { SuccessorBlockInfo *successorBlockInfo = (SuccessorBlockInfo *) oatGrowableListIteratorNext(&iter); if (successorBlockInfo == NULL) break; llvm::BasicBlock *target = getLLVMBlock(cUnit, successorBlockInfo->block->id); int typeIndex = successorBlockInfo->key; sw->addCase(cUnit->irb->getInt32(typeIndex), target); } llvmBB = workBB; cUnit->irb->SetInsertPoint(llvmBB); } } if (opcode >= kMirOpFirst) { convertExtendedMIR(cUnit, bb, mir, llvmBB); continue; } bool notHandled = convertMIRNode(cUnit, mir, bb, llvmBB, NULL /* labelList */); if (notHandled) { Instruction::Code dalvikOpcode = static_cast(opcode); LOG(WARNING) << StringPrintf("%#06x: Op %#x (%s) / Fmt %d not handled", mir->offset, opcode, Instruction::Name(dalvikOpcode), dalvikFormat); } } if (bb->blockType == kEntryBlock) { cUnit->entryTargetBB = getLLVMBlock(cUnit, bb->fallThrough->id); } else if ((bb->fallThrough != NULL) && !bb->hasReturn) { cUnit->irb->CreateBr(getLLVMBlock(cUnit, bb->fallThrough->id)); } return false; } char remapShorty(char shortyType) { /* * TODO: might want to revisit this. Dalvik registers are 32-bits wide, * and longs/doubles are represented as a pair of registers. When sub-word * arguments (and method results) are passed, they are extended to Dalvik * virtual register containers. Because llvm is picky about type consistency, * we must either cast the "real" type to 32-bit container multiple Dalvik * register types, or always use the expanded values. * Here, we're doing the latter. We map the shorty signature to container * types (which is valid so long as we always do a real expansion of passed * arguments and field loads). */ switch(shortyType) { case 'Z' : shortyType = 'I'; break; case 'B' : shortyType = 'I'; break; case 'S' : shortyType = 'I'; break; case 'C' : shortyType = 'I'; break; default: break; } return shortyType; } llvm::FunctionType* getFunctionType(CompilationUnit* cUnit) { // Get return type llvm::Type* ret_type = cUnit->irb->GetJType(remapShorty(cUnit->shorty[0]), greenland::kAccurate); // Get argument type std::vector args_type; // method object args_type.push_back(cUnit->irb->GetJMethodTy()); // Do we have a "this"? if ((cUnit->access_flags & kAccStatic) == 0) { args_type.push_back(cUnit->irb->GetJObjectTy()); } for (uint32_t i = 1; i < strlen(cUnit->shorty); ++i) { args_type.push_back(cUnit->irb->GetJType(remapShorty(cUnit->shorty[i]), greenland::kAccurate)); } return llvm::FunctionType::get(ret_type, args_type, false); } bool createFunction(CompilationUnit* cUnit) { std::string func_name(PrettyMethod(cUnit->method_idx, *cUnit->dex_file, /* with_signature */ false)); llvm::FunctionType* func_type = getFunctionType(cUnit); if (func_type == NULL) { return false; } cUnit->func = llvm::Function::Create(func_type, llvm::Function::ExternalLinkage, func_name, cUnit->module); llvm::Function::arg_iterator arg_iter(cUnit->func->arg_begin()); llvm::Function::arg_iterator arg_end(cUnit->func->arg_end()); arg_iter->setName("method"); ++arg_iter; int startSReg = cUnit->numRegs; for (unsigned i = 0; arg_iter != arg_end; ++i, ++arg_iter) { arg_iter->setName(StringPrintf("v%i_0", startSReg)); startSReg += cUnit->regLocation[startSReg].wide ? 2 : 1; } return true; } bool createLLVMBasicBlock(CompilationUnit* cUnit, BasicBlock* bb) { // Skip the exit block if ((bb->blockType == kDead) ||(bb->blockType == kExitBlock)) { cUnit->idToBlockMap.Put(bb->id, NULL); } else { int offset = bb->startOffset; bool entryBlock = (bb->blockType == kEntryBlock); llvm::BasicBlock* llvmBB = llvm::BasicBlock::Create(*cUnit->context, entryBlock ? "entry" : StringPrintf(kLabelFormat, bb->catchEntry ? kCatchBlock : kNormalBlock, offset, bb->id), cUnit->func); if (entryBlock) { cUnit->entryBB = llvmBB; cUnit->placeholderBB = llvm::BasicBlock::Create(*cUnit->context, "placeholder", cUnit->func); } cUnit->idToBlockMap.Put(bb->id, llvmBB); } return false; } /* * Convert MIR to LLVM_IR * o For each ssa name, create LLVM named value. Type these * appropriately, and ignore high half of wide and double operands. * o For each MIR basic block, create an LLVM basic block. * o Iterate through the MIR a basic block at a time, setting arguments * to recovered ssa name. */ void oatMethodMIR2Bitcode(CompilationUnit* cUnit) { initIR(cUnit); oatInitGrowableList(cUnit, &cUnit->llvmValues, cUnit->numSSARegs); // Create the function createFunction(cUnit); // Create an LLVM basic block for each MIR block in dfs preorder oatDataFlowAnalysisDispatcher(cUnit, createLLVMBasicBlock, kPreOrderDFSTraversal, false /* isIterative */); /* * Create an llvm named value for each MIR SSA name. Note: we'll use * placeholders for all non-argument values (because we haven't seen * the definition yet). */ cUnit->irb->SetInsertPoint(cUnit->placeholderBB); llvm::Function::arg_iterator arg_iter(cUnit->func->arg_begin()); arg_iter++; /* Skip path method */ for (int i = 0; i < cUnit->numSSARegs; i++) { llvm::Value* val; RegLocation rlTemp = cUnit->regLocation[i]; if ((SRegToVReg(cUnit, i) < 0) || rlTemp.highWord) { oatInsertGrowableList(cUnit, &cUnit->llvmValues, 0); } else if ((i < cUnit->numRegs) || (i >= (cUnit->numRegs + cUnit->numIns))) { llvm::Constant* immValue = cUnit->regLocation[i].wide ? cUnit->irb->GetJLong(0) : cUnit->irb->GetJInt(0); val = emitConst(cUnit, immValue, cUnit->regLocation[i]); val->setName(llvmSSAName(cUnit, i)); oatInsertGrowableList(cUnit, &cUnit->llvmValues, (intptr_t)val); } else { // Recover previously-created argument values llvm::Value* argVal = arg_iter++; oatInsertGrowableList(cUnit, &cUnit->llvmValues, (intptr_t)argVal); } } oatDataFlowAnalysisDispatcher(cUnit, methodBlockBitcodeConversion, kPreOrderDFSTraversal, false /* Iterative */); /* * In a few rare cases of verification failure, the verifier will * replace one or more Dalvik opcodes with the special * throw-verification-failure opcode. This can leave the SSA graph * in an invalid state, as definitions may be lost, while uses retained. * To work around this problem, we insert placeholder definitions for * all Dalvik SSA regs in the "placeholder" block. Here, after * bitcode conversion is complete, we examine those placeholder definitions * and delete any with no references (which normally is all of them). * * If any definitions remain, we link the placeholder block into the * CFG. Otherwise, it is deleted. */ for (llvm::BasicBlock::iterator it = cUnit->placeholderBB->begin(), itEnd = cUnit->placeholderBB->end(); it != itEnd;) { llvm::Instruction* inst = llvm::dyn_cast(it++); DCHECK(inst != NULL); llvm::Value* val = llvm::dyn_cast(inst); DCHECK(val != NULL); if (val->getNumUses() == 0) { inst->eraseFromParent(); } } setDexOffset(cUnit, 0); if (cUnit->placeholderBB->empty()) { cUnit->placeholderBB->eraseFromParent(); } else { cUnit->irb->SetInsertPoint(cUnit->placeholderBB); cUnit->irb->CreateBr(cUnit->entryTargetBB); cUnit->entryTargetBB = cUnit->placeholderBB; } cUnit->irb->SetInsertPoint(cUnit->entryBB); cUnit->irb->CreateBr(cUnit->entryTargetBB); if (cUnit->enableDebug & (1 << kDebugVerifyBitcode)) { if (llvm::verifyFunction(*cUnit->func, llvm::PrintMessageAction)) { LOG(INFO) << "Bitcode verification FAILED for " << PrettyMethod(cUnit->method_idx, *cUnit->dex_file) << " of size " << cUnit->insnsSize; cUnit->enableDebug |= (1 << kDebugDumpBitcodeFile); } } if (cUnit->enableDebug & (1 << kDebugDumpBitcodeFile)) { // Write bitcode to file std::string errmsg; std::string fname(PrettyMethod(cUnit->method_idx, *cUnit->dex_file)); oatReplaceSpecialChars(fname); // TODO: make configurable fname = StringPrintf("/sdcard/Bitcode/%s.bc", fname.c_str()); llvm::OwningPtr out_file( new llvm::tool_output_file(fname.c_str(), errmsg, llvm::raw_fd_ostream::F_Binary)); if (!errmsg.empty()) { LOG(ERROR) << "Failed to create bitcode output file: " << errmsg; } llvm::WriteBitcodeToFile(cUnit->module, out_file->os()); out_file->keep(); } } RegLocation getLoc(CompilationUnit* cUnit, llvm::Value* val) { RegLocation res; DCHECK(val != NULL); SafeMap::iterator it = cUnit->locMap.find(val); if (it == cUnit->locMap.end()) { std::string valName = val->getName().str(); if (valName.empty()) { // FIXME: need to be more robust, handle FP and be in a position to // manage unnamed temps whose lifetimes span basic block boundaries UNIMPLEMENTED(WARNING) << "Need to handle unnamed llvm temps"; memset(&res, 0, sizeof(res)); res.location = kLocPhysReg; res.lowReg = oatAllocTemp(cUnit); res.home = true; res.sRegLow = INVALID_SREG; res.origSReg = INVALID_SREG; llvm::Type* ty = val->getType(); res.wide = ((ty == cUnit->irb->getInt64Ty()) || (ty == cUnit->irb->getDoubleTy())); if (res.wide) { res.highReg = oatAllocTemp(cUnit); } cUnit->locMap.Put(val, res); } else { DCHECK_EQ(valName[0], 'v'); int baseSReg = INVALID_SREG; sscanf(valName.c_str(), "v%d_", &baseSReg); res = cUnit->regLocation[baseSReg]; cUnit->locMap.Put(val, res); } } else { res = it->second; } return res; } Instruction::Code getDalvikOpcode(OpKind op, bool isConst, bool isWide) { Instruction::Code res = Instruction::NOP; if (isWide) { switch(op) { case kOpAdd: res = Instruction::ADD_LONG; break; case kOpSub: res = Instruction::SUB_LONG; break; case kOpMul: res = Instruction::MUL_LONG; break; case kOpDiv: res = Instruction::DIV_LONG; break; case kOpRem: res = Instruction::REM_LONG; break; case kOpAnd: res = Instruction::AND_LONG; break; case kOpOr: res = Instruction::OR_LONG; break; case kOpXor: res = Instruction::XOR_LONG; break; case kOpLsl: res = Instruction::SHL_LONG; break; case kOpLsr: res = Instruction::USHR_LONG; break; case kOpAsr: res = Instruction::SHR_LONG; break; default: LOG(FATAL) << "Unexpected OpKind " << op; } } else if (isConst){ switch(op) { case kOpAdd: res = Instruction::ADD_INT_LIT16; break; case kOpSub: res = Instruction::RSUB_INT_LIT8; break; case kOpMul: res = Instruction::MUL_INT_LIT16; break; case kOpDiv: res = Instruction::DIV_INT_LIT16; break; case kOpRem: res = Instruction::REM_INT_LIT16; break; case kOpAnd: res = Instruction::AND_INT_LIT16; break; case kOpOr: res = Instruction::OR_INT_LIT16; break; case kOpXor: res = Instruction::XOR_INT_LIT16; break; case kOpLsl: res = Instruction::SHL_INT_LIT8; break; case kOpLsr: res = Instruction::USHR_INT_LIT8; break; case kOpAsr: res = Instruction::SHR_INT_LIT8; break; default: LOG(FATAL) << "Unexpected OpKind " << op; } } else { switch(op) { case kOpAdd: res = Instruction::ADD_INT; break; case kOpSub: res = Instruction::SUB_INT; break; case kOpMul: res = Instruction::MUL_INT; break; case kOpDiv: res = Instruction::DIV_INT; break; case kOpRem: res = Instruction::REM_INT; break; case kOpAnd: res = Instruction::AND_INT; break; case kOpOr: res = Instruction::OR_INT; break; case kOpXor: res = Instruction::XOR_INT; break; case kOpLsl: res = Instruction::SHL_INT; break; case kOpLsr: res = Instruction::USHR_INT; break; case kOpAsr: res = Instruction::SHR_INT; break; default: LOG(FATAL) << "Unexpected OpKind " << op; } } return res; } Instruction::Code getDalvikFPOpcode(OpKind op, bool isConst, bool isWide) { Instruction::Code res = Instruction::NOP; if (isWide) { switch(op) { case kOpAdd: res = Instruction::ADD_DOUBLE; break; case kOpSub: res = Instruction::SUB_DOUBLE; break; case kOpMul: res = Instruction::MUL_DOUBLE; break; case kOpDiv: res = Instruction::DIV_DOUBLE; break; case kOpRem: res = Instruction::REM_DOUBLE; break; default: LOG(FATAL) << "Unexpected OpKind " << op; } } else { switch(op) { case kOpAdd: res = Instruction::ADD_FLOAT; break; case kOpSub: res = Instruction::SUB_FLOAT; break; case kOpMul: res = Instruction::MUL_FLOAT; break; case kOpDiv: res = Instruction::DIV_FLOAT; break; case kOpRem: res = Instruction::REM_FLOAT; break; default: LOG(FATAL) << "Unexpected OpKind " << op; } } return res; } void cvtBinFPOp(CompilationUnit* cUnit, OpKind op, llvm::Instruction* inst) { RegLocation rlDest = getLoc(cUnit, inst); /* * Normally, we won't ever generate an FP operation with an immediate * operand (not supported in Dex instruction set). However, the IR builder * may insert them - in particular for createNegFP. Recognize this case * and deal with it. */ llvm::ConstantFP* op1C = llvm::dyn_cast(inst->getOperand(0)); llvm::ConstantFP* op2C = llvm::dyn_cast(inst->getOperand(1)); DCHECK(op2C == NULL); if ((op1C != NULL) && (op == kOpSub)) { RegLocation rlSrc = getLoc(cUnit, inst->getOperand(1)); if (rlDest.wide) { genArithOpDouble(cUnit, Instruction::NEG_DOUBLE, rlDest, rlSrc, rlSrc); } else { genArithOpFloat(cUnit, Instruction::NEG_FLOAT, rlDest, rlSrc, rlSrc); } } else { DCHECK(op1C == NULL); RegLocation rlSrc1 = getLoc(cUnit, inst->getOperand(0)); RegLocation rlSrc2 = getLoc(cUnit, inst->getOperand(1)); Instruction::Code dalvikOp = getDalvikFPOpcode(op, false, rlDest.wide); if (rlDest.wide) { genArithOpDouble(cUnit, dalvikOp, rlDest, rlSrc1, rlSrc2); } else { genArithOpFloat(cUnit, dalvikOp, rlDest, rlSrc1, rlSrc2); } } } void cvtIntNarrowing(CompilationUnit* cUnit, llvm::Instruction* inst, Instruction::Code opcode) { RegLocation rlDest = getLoc(cUnit, inst); RegLocation rlSrc = getLoc(cUnit, inst->getOperand(0)); genIntNarrowing(cUnit, opcode, rlDest, rlSrc); } void cvtIntToFP(CompilationUnit* cUnit, llvm::Instruction* inst) { RegLocation rlDest = getLoc(cUnit, inst); RegLocation rlSrc = getLoc(cUnit, inst->getOperand(0)); Instruction::Code opcode; if (rlDest.wide) { if (rlSrc.wide) { opcode = Instruction::LONG_TO_DOUBLE; } else { opcode = Instruction::INT_TO_DOUBLE; } } else { if (rlSrc.wide) { opcode = Instruction::LONG_TO_FLOAT; } else { opcode = Instruction::INT_TO_FLOAT; } } genConversion(cUnit, opcode, rlDest, rlSrc); } void cvtFPToInt(CompilationUnit* cUnit, llvm::CallInst* call_inst) { RegLocation rlDest = getLoc(cUnit, call_inst); RegLocation rlSrc = getLoc(cUnit, call_inst->getOperand(0)); Instruction::Code opcode; if (rlDest.wide) { if (rlSrc.wide) { opcode = Instruction::DOUBLE_TO_LONG; } else { opcode = Instruction::FLOAT_TO_LONG; } } else { if (rlSrc.wide) { opcode = Instruction::DOUBLE_TO_INT; } else { opcode = Instruction::FLOAT_TO_INT; } } genConversion(cUnit, opcode, rlDest, rlSrc); } void cvtFloatToDouble(CompilationUnit* cUnit, llvm::Instruction* inst) { RegLocation rlDest = getLoc(cUnit, inst); RegLocation rlSrc = getLoc(cUnit, inst->getOperand(0)); genConversion(cUnit, Instruction::FLOAT_TO_DOUBLE, rlDest, rlSrc); } void cvtTrunc(CompilationUnit* cUnit, llvm::Instruction* inst) { RegLocation rlDest = getLoc(cUnit, inst); RegLocation rlSrc = getLoc(cUnit, inst->getOperand(0)); rlSrc = oatUpdateLocWide(cUnit, rlSrc); rlSrc = oatWideToNarrow(cUnit, rlSrc); storeValue(cUnit, rlDest, rlSrc); } void cvtDoubleToFloat(CompilationUnit* cUnit, llvm::Instruction* inst) { RegLocation rlDest = getLoc(cUnit, inst); RegLocation rlSrc = getLoc(cUnit, inst->getOperand(0)); genConversion(cUnit, Instruction::DOUBLE_TO_FLOAT, rlDest, rlSrc); } void cvtIntExt(CompilationUnit* cUnit, llvm::Instruction* inst, bool isSigned) { // TODO: evaluate src/tgt types and add general support for more than int to long RegLocation rlDest = getLoc(cUnit, inst); RegLocation rlSrc = getLoc(cUnit, inst->getOperand(0)); DCHECK(rlDest.wide); DCHECK(!rlSrc.wide); DCHECK(!rlDest.fp); DCHECK(!rlSrc.fp); RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); if (rlSrc.location == kLocPhysReg) { opRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg); } else { loadValueDirect(cUnit, rlSrc, rlResult.lowReg); } if (isSigned) { opRegRegImm(cUnit, kOpAsr, rlResult.highReg, rlResult.lowReg, 31); } else { loadConstant(cUnit, rlResult.highReg, 0); } storeValueWide(cUnit, rlDest, rlResult); } void cvtBinOp(CompilationUnit* cUnit, OpKind op, llvm::Instruction* inst) { RegLocation rlDest = getLoc(cUnit, inst); llvm::Value* lhs = inst->getOperand(0); // Special-case RSUB/NEG llvm::ConstantInt* lhsImm = llvm::dyn_cast(lhs); if ((op == kOpSub) && (lhsImm != NULL)) { RegLocation rlSrc1 = getLoc(cUnit, inst->getOperand(1)); if (rlSrc1.wide) { DCHECK_EQ(lhsImm->getSExtValue(), 0); genArithOpLong(cUnit, Instruction::NEG_LONG, rlDest, rlSrc1, rlSrc1); } else { genArithOpIntLit(cUnit, Instruction::RSUB_INT, rlDest, rlSrc1, lhsImm->getSExtValue()); } return; } DCHECK(lhsImm == NULL); RegLocation rlSrc1 = getLoc(cUnit, inst->getOperand(0)); llvm::Value* rhs = inst->getOperand(1); llvm::ConstantInt* constRhs = llvm::dyn_cast(rhs); if (!rlDest.wide && (constRhs != NULL)) { Instruction::Code dalvikOp = getDalvikOpcode(op, true, false); genArithOpIntLit(cUnit, dalvikOp, rlDest, rlSrc1, constRhs->getSExtValue()); } else { Instruction::Code dalvikOp = getDalvikOpcode(op, false, rlDest.wide); RegLocation rlSrc2; if (constRhs != NULL) { // ir_builder converts NOT_LONG to xor src, -1. Restore DCHECK_EQ(dalvikOp, Instruction::XOR_LONG); DCHECK_EQ(-1L, constRhs->getSExtValue()); dalvikOp = Instruction::NOT_LONG; rlSrc2 = rlSrc1; } else { rlSrc2 = getLoc(cUnit, rhs); } if (rlDest.wide) { genArithOpLong(cUnit, dalvikOp, rlDest, rlSrc1, rlSrc2); } else { genArithOpInt(cUnit, dalvikOp, rlDest, rlSrc1, rlSrc2); } } } void cvtShiftOp(CompilationUnit* cUnit, Instruction::Code opcode, llvm::CallInst* callInst) { DCHECK_EQ(callInst->getNumArgOperands(), 2U); RegLocation rlDest = getLoc(cUnit, callInst); RegLocation rlSrc = getLoc(cUnit, callInst->getArgOperand(0)); llvm::Value* rhs = callInst->getArgOperand(1); if (llvm::ConstantInt* src2 = llvm::dyn_cast(rhs)) { DCHECK(!rlDest.wide); genArithOpIntLit(cUnit, opcode, rlDest, rlSrc, src2->getSExtValue()); } else { RegLocation rlShift = getLoc(cUnit, rhs); if (callInst->getType() == cUnit->irb->getInt64Ty()) { genShiftOpLong(cUnit, opcode, rlDest, rlSrc, rlShift); } else { genArithOpInt(cUnit, opcode, rlDest, rlSrc, rlShift); } } } void cvtBr(CompilationUnit* cUnit, llvm::Instruction* inst) { llvm::BranchInst* brInst = llvm::dyn_cast(inst); DCHECK(brInst != NULL); DCHECK(brInst->isUnconditional()); // May change - but this is all we use now llvm::BasicBlock* targetBB = brInst->getSuccessor(0); opUnconditionalBranch(cUnit, cUnit->blockToLabelMap.Get(targetBB)); } void cvtPhi(CompilationUnit* cUnit, llvm::Instruction* inst) { // Nop - these have already been processed } void cvtRet(CompilationUnit* cUnit, llvm::Instruction* inst) { llvm::ReturnInst* retInst = llvm::dyn_cast(inst); llvm::Value* retVal = retInst->getReturnValue(); if (retVal != NULL) { RegLocation rlSrc = getLoc(cUnit, retVal); if (rlSrc.wide) { storeValueWide(cUnit, oatGetReturnWide(cUnit, rlSrc.fp), rlSrc); } else { storeValue(cUnit, oatGetReturn(cUnit, rlSrc.fp), rlSrc); } } genExitSequence(cUnit); } ConditionCode getCond(llvm::ICmpInst::Predicate llvmCond) { ConditionCode res = kCondAl; switch(llvmCond) { case llvm::ICmpInst::ICMP_EQ: res = kCondEq; break; case llvm::ICmpInst::ICMP_NE: res = kCondNe; break; case llvm::ICmpInst::ICMP_SLT: res = kCondLt; break; case llvm::ICmpInst::ICMP_SGE: res = kCondGe; break; case llvm::ICmpInst::ICMP_SGT: res = kCondGt; break; case llvm::ICmpInst::ICMP_SLE: res = kCondLe; break; default: LOG(FATAL) << "Unexpected llvm condition"; } return res; } void cvtICmp(CompilationUnit* cUnit, llvm::Instruction* inst) { // genCmpLong(cUnit, rlDest, rlSrc1, rlSrc2) UNIMPLEMENTED(FATAL); } void cvtICmpBr(CompilationUnit* cUnit, llvm::Instruction* inst, llvm::BranchInst* brInst) { // Get targets llvm::BasicBlock* takenBB = brInst->getSuccessor(0); LIR* taken = cUnit->blockToLabelMap.Get(takenBB); llvm::BasicBlock* fallThroughBB = brInst->getSuccessor(1); LIR* fallThrough = cUnit->blockToLabelMap.Get(fallThroughBB); // Get comparison operands llvm::ICmpInst* iCmpInst = llvm::dyn_cast(inst); ConditionCode cond = getCond(iCmpInst->getPredicate()); llvm::Value* lhs = iCmpInst->getOperand(0); // Not expecting a constant as 1st operand DCHECK(llvm::dyn_cast(lhs) == NULL); RegLocation rlSrc1 = getLoc(cUnit, inst->getOperand(0)); rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg); llvm::Value* rhs = inst->getOperand(1); #if defined(TARGET_MIPS) // Compare and branch in one shot (void)taken; (void)cond; (void)rhs; UNIMPLEMENTED(FATAL); #else //Compare, then branch // TODO: handle fused CMP_LONG/IF_xxZ case if (llvm::ConstantInt* src2 = llvm::dyn_cast(rhs)) { opRegImm(cUnit, kOpCmp, rlSrc1.lowReg, src2->getSExtValue()); } else if (llvm::dyn_cast(rhs) != NULL) { opRegImm(cUnit, kOpCmp, rlSrc1.lowReg, 0); } else { RegLocation rlSrc2 = getLoc(cUnit, rhs); rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg); opRegReg(cUnit, kOpCmp, rlSrc1.lowReg, rlSrc2.lowReg); } opCondBranch(cUnit, cond, taken); #endif // Fallthrough opUnconditionalBranch(cUnit, fallThrough); } void cvtCall(CompilationUnit* cUnit, llvm::CallInst* callInst, llvm::Function* callee) { UNIMPLEMENTED(FATAL); } void cvtCopy(CompilationUnit* cUnit, llvm::CallInst* callInst) { DCHECK_EQ(callInst->getNumArgOperands(), 1U); RegLocation rlSrc = getLoc(cUnit, callInst->getArgOperand(0)); RegLocation rlDest = getLoc(cUnit, callInst); DCHECK_EQ(rlSrc.wide, rlDest.wide); DCHECK_EQ(rlSrc.fp, rlDest.fp); if (rlSrc.wide) { storeValueWide(cUnit, rlDest, rlSrc); } else { storeValue(cUnit, rlDest, rlSrc); } } // Note: Immediate arg is a ConstantInt regardless of result type void cvtConst(CompilationUnit* cUnit, llvm::CallInst* callInst) { DCHECK_EQ(callInst->getNumArgOperands(), 1U); llvm::ConstantInt* src = llvm::dyn_cast(callInst->getArgOperand(0)); uint64_t immval = src->getZExtValue(); RegLocation rlDest = getLoc(cUnit, callInst); RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kAnyReg, true); if (rlDest.wide) { loadConstantValueWide(cUnit, rlResult.lowReg, rlResult.highReg, (immval) & 0xffffffff, (immval >> 32) & 0xffffffff); storeValueWide(cUnit, rlDest, rlResult); } else { loadConstantNoClobber(cUnit, rlResult.lowReg, immval & 0xffffffff); storeValue(cUnit, rlDest, rlResult); } } void cvtConstObject(CompilationUnit* cUnit, llvm::CallInst* callInst, bool isString) { DCHECK_EQ(callInst->getNumArgOperands(), 1U); llvm::ConstantInt* idxVal = llvm::dyn_cast(callInst->getArgOperand(0)); uint32_t index = idxVal->getZExtValue(); RegLocation rlDest = getLoc(cUnit, callInst); if (isString) { genConstString(cUnit, index, rlDest); } else { genConstClass(cUnit, index, rlDest); } } void cvtFillArrayData(CompilationUnit* cUnit, llvm::CallInst* callInst) { DCHECK_EQ(callInst->getNumArgOperands(), 2U); llvm::ConstantInt* offsetVal = llvm::dyn_cast(callInst->getArgOperand(0)); RegLocation rlSrc = getLoc(cUnit, callInst->getArgOperand(1)); genFillArrayData(cUnit, offsetVal->getSExtValue(), rlSrc); } void cvtNewInstance(CompilationUnit* cUnit, llvm::CallInst* callInst) { DCHECK_EQ(callInst->getNumArgOperands(), 1U); llvm::ConstantInt* typeIdxVal = llvm::dyn_cast(callInst->getArgOperand(0)); uint32_t typeIdx = typeIdxVal->getZExtValue(); RegLocation rlDest = getLoc(cUnit, callInst); genNewInstance(cUnit, typeIdx, rlDest); } void cvtNewArray(CompilationUnit* cUnit, llvm::CallInst* callInst) { DCHECK_EQ(callInst->getNumArgOperands(), 2U); llvm::ConstantInt* typeIdxVal = llvm::dyn_cast(callInst->getArgOperand(0)); uint32_t typeIdx = typeIdxVal->getZExtValue(); llvm::Value* len = callInst->getArgOperand(1); RegLocation rlLen = getLoc(cUnit, len); RegLocation rlDest = getLoc(cUnit, callInst); genNewArray(cUnit, typeIdx, rlDest, rlLen); } void cvtInstanceOf(CompilationUnit* cUnit, llvm::CallInst* callInst) { DCHECK_EQ(callInst->getNumArgOperands(), 2U); llvm::ConstantInt* typeIdxVal = llvm::dyn_cast(callInst->getArgOperand(0)); uint32_t typeIdx = typeIdxVal->getZExtValue(); llvm::Value* src = callInst->getArgOperand(1); RegLocation rlSrc = getLoc(cUnit, src); RegLocation rlDest = getLoc(cUnit, callInst); genInstanceof(cUnit, typeIdx, rlDest, rlSrc); } void cvtThrow(CompilationUnit* cUnit, llvm::CallInst* callInst) { DCHECK_EQ(callInst->getNumArgOperands(), 1U); llvm::Value* src = callInst->getArgOperand(0); RegLocation rlSrc = getLoc(cUnit, src); genThrow(cUnit, rlSrc); } void cvtMonitorEnterExit(CompilationUnit* cUnit, bool isEnter, llvm::CallInst* callInst) { DCHECK_EQ(callInst->getNumArgOperands(), 2U); llvm::ConstantInt* optFlags = llvm::dyn_cast(callInst->getArgOperand(0)); llvm::Value* src = callInst->getArgOperand(1); RegLocation rlSrc = getLoc(cUnit, src); if (isEnter) { genMonitorEnter(cUnit, optFlags->getZExtValue(), rlSrc); } else { genMonitorExit(cUnit, optFlags->getZExtValue(), rlSrc); } } void cvtArrayLength(CompilationUnit* cUnit, llvm::CallInst* callInst) { DCHECK_EQ(callInst->getNumArgOperands(), 2U); llvm::ConstantInt* optFlags = llvm::dyn_cast(callInst->getArgOperand(0)); llvm::Value* src = callInst->getArgOperand(1); RegLocation rlSrc = getLoc(cUnit, src); rlSrc = loadValue(cUnit, rlSrc, kCoreReg); genNullCheck(cUnit, rlSrc.sRegLow, rlSrc.lowReg, optFlags->getZExtValue()); RegLocation rlDest = getLoc(cUnit, callInst); RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); int lenOffset = Array::LengthOffset().Int32Value(); loadWordDisp(cUnit, rlSrc.lowReg, lenOffset, rlResult.lowReg); storeValue(cUnit, rlDest, rlResult); } void cvtMoveException(CompilationUnit* cUnit, llvm::CallInst* callInst) { RegLocation rlDest = getLoc(cUnit, callInst); genMoveException(cUnit, rlDest); } void cvtSget(CompilationUnit* cUnit, llvm::CallInst* callInst, bool isWide, bool isObject) { DCHECK_EQ(callInst->getNumArgOperands(), 1U); llvm::ConstantInt* typeIdxVal = llvm::dyn_cast(callInst->getArgOperand(0)); uint32_t typeIdx = typeIdxVal->getZExtValue(); RegLocation rlDest = getLoc(cUnit, callInst); genSget(cUnit, typeIdx, rlDest, isWide, isObject); } void cvtSput(CompilationUnit* cUnit, llvm::CallInst* callInst, bool isWide, bool isObject) { DCHECK_EQ(callInst->getNumArgOperands(), 2U); llvm::ConstantInt* typeIdxVal = llvm::dyn_cast(callInst->getArgOperand(0)); uint32_t typeIdx = typeIdxVal->getZExtValue(); llvm::Value* src = callInst->getArgOperand(1); RegLocation rlSrc = getLoc(cUnit, src); genSput(cUnit, typeIdx, rlSrc, isWide, isObject); } void cvtAget(CompilationUnit* cUnit, llvm::CallInst* callInst, OpSize size, int scale) { DCHECK_EQ(callInst->getNumArgOperands(), 3U); llvm::ConstantInt* optFlags = llvm::dyn_cast(callInst->getArgOperand(0)); RegLocation rlArray = getLoc(cUnit, callInst->getArgOperand(1)); RegLocation rlIndex = getLoc(cUnit, callInst->getArgOperand(2)); RegLocation rlDest = getLoc(cUnit, callInst); genArrayGet(cUnit, optFlags->getZExtValue(), size, rlArray, rlIndex, rlDest, scale); } void cvtAput(CompilationUnit* cUnit, llvm::CallInst* callInst, OpSize size, int scale, bool isObject) { DCHECK_EQ(callInst->getNumArgOperands(), 4U); llvm::ConstantInt* optFlags = llvm::dyn_cast(callInst->getArgOperand(0)); RegLocation rlSrc = getLoc(cUnit, callInst->getArgOperand(1)); RegLocation rlArray = getLoc(cUnit, callInst->getArgOperand(2)); RegLocation rlIndex = getLoc(cUnit, callInst->getArgOperand(3)); if (isObject) { genArrayObjPut(cUnit, optFlags->getZExtValue(), rlArray, rlIndex, rlSrc, scale); } else { genArrayPut(cUnit, optFlags->getZExtValue(), size, rlArray, rlIndex, rlSrc, scale); } } void cvtAputObj(CompilationUnit* cUnit, llvm::CallInst* callInst) { cvtAput(cUnit, callInst, kWord, 2, true /* isObject */); } void cvtAputPrimitive(CompilationUnit* cUnit, llvm::CallInst* callInst, OpSize size, int scale) { cvtAput(cUnit, callInst, size, scale, false /* isObject */); } void cvtIget(CompilationUnit* cUnit, llvm::CallInst* callInst, OpSize size, bool isWide, bool isObj) { DCHECK_EQ(callInst->getNumArgOperands(), 3U); llvm::ConstantInt* optFlags = llvm::dyn_cast(callInst->getArgOperand(0)); RegLocation rlObj = getLoc(cUnit, callInst->getArgOperand(1)); llvm::ConstantInt* fieldIdx = llvm::dyn_cast(callInst->getArgOperand(2)); RegLocation rlDest = getLoc(cUnit, callInst); genIGet(cUnit, fieldIdx->getZExtValue(), optFlags->getZExtValue(), size, rlDest, rlObj, isWide, isObj); } void cvtIput(CompilationUnit* cUnit, llvm::CallInst* callInst, OpSize size, bool isWide, bool isObj) { DCHECK_EQ(callInst->getNumArgOperands(), 4U); llvm::ConstantInt* optFlags = llvm::dyn_cast(callInst->getArgOperand(0)); RegLocation rlSrc = getLoc(cUnit, callInst->getArgOperand(1)); RegLocation rlObj = getLoc(cUnit, callInst->getArgOperand(2)); llvm::ConstantInt* fieldIdx = llvm::dyn_cast(callInst->getArgOperand(3)); genIPut(cUnit, fieldIdx->getZExtValue(), optFlags->getZExtValue(), size, rlSrc, rlObj, isWide, isObj); } void cvtCheckCast(CompilationUnit* cUnit, llvm::CallInst* callInst) { DCHECK_EQ(callInst->getNumArgOperands(), 2U); llvm::ConstantInt* typeIdx = llvm::dyn_cast(callInst->getArgOperand(0)); RegLocation rlSrc = getLoc(cUnit, callInst->getArgOperand(1)); genCheckCast(cUnit, typeIdx->getZExtValue(), rlSrc); } void cvtFPCompare(CompilationUnit* cUnit, llvm::CallInst* callInst, Instruction::Code opcode) { RegLocation rlSrc1 = getLoc(cUnit, callInst->getArgOperand(0)); RegLocation rlSrc2 = getLoc(cUnit, callInst->getArgOperand(1)); RegLocation rlDest = getLoc(cUnit, callInst); genCmpFP(cUnit, opcode, rlDest, rlSrc1, rlSrc2); } void cvtLongCompare(CompilationUnit* cUnit, llvm::CallInst* callInst) { RegLocation rlSrc1 = getLoc(cUnit, callInst->getArgOperand(0)); RegLocation rlSrc2 = getLoc(cUnit, callInst->getArgOperand(1)); RegLocation rlDest = getLoc(cUnit, callInst); genCmpLong(cUnit, rlDest, rlSrc1, rlSrc2); } void cvtSwitch(CompilationUnit* cUnit, llvm::Instruction* inst) { llvm::SwitchInst* swInst = llvm::dyn_cast(inst); DCHECK(swInst != NULL); llvm::Value* testVal = swInst->getCondition(); llvm::MDNode* tableOffsetNode = swInst->getMetadata("SwitchTable"); DCHECK(tableOffsetNode != NULL); llvm::ConstantInt* tableOffsetValue = static_cast(tableOffsetNode->getOperand(0)); int32_t tableOffset = tableOffsetValue->getSExtValue(); RegLocation rlSrc = getLoc(cUnit, testVal); const u2* table = cUnit->insns + cUnit->currentDalvikOffset + tableOffset; u2 tableMagic = *table; if (tableMagic == 0x100) { genPackedSwitch(cUnit, tableOffset, rlSrc); } else { DCHECK_EQ(tableMagic, 0x200); genSparseSwitch(cUnit, tableOffset, rlSrc); } } void cvtInvoke(CompilationUnit* cUnit, llvm::CallInst* callInst, bool isVoid, bool isFilledNewArray) { CallInfo* info = (CallInfo*)oatNew(cUnit, sizeof(CallInfo), true, kAllocMisc); if (isVoid) { info->result.location = kLocInvalid; } else { info->result = getLoc(cUnit, callInst); } llvm::ConstantInt* invokeTypeVal = llvm::dyn_cast(callInst->getArgOperand(0)); llvm::ConstantInt* methodIndexVal = llvm::dyn_cast(callInst->getArgOperand(1)); llvm::ConstantInt* optFlagsVal = llvm::dyn_cast(callInst->getArgOperand(2)); info->type = static_cast(invokeTypeVal->getZExtValue()); info->index = methodIndexVal->getZExtValue(); info->optFlags = optFlagsVal->getZExtValue(); info->offset = cUnit->currentDalvikOffset; // Count the argument words, and then build argument array. info->numArgWords = 0; for (unsigned int i = 3; i < callInst->getNumArgOperands(); i++) { RegLocation tLoc = getLoc(cUnit, callInst->getArgOperand(i)); info->numArgWords += tLoc.wide ? 2 : 1; } info->args = (info->numArgWords == 0) ? NULL : (RegLocation*) oatNew(cUnit, sizeof(RegLocation) * info->numArgWords, false, kAllocMisc); // Now, fill in the location records, synthesizing high loc of wide vals for (int i = 3, next = 0; next < info->numArgWords;) { info->args[next] = getLoc(cUnit, callInst->getArgOperand(i++)); if (info->args[next].wide) { next++; // TODO: Might make sense to mark this as an invalid loc info->args[next].origSReg = info->args[next-1].origSReg+1; info->args[next].sRegLow = info->args[next-1].sRegLow+1; } next++; } // TODO - rework such that we no longer need isRange info->isRange = (info->numArgWords > 5); if (isFilledNewArray) { genFilledNewArray(cUnit, info); } else { genInvoke(cUnit, info); } } /* Look up the RegLocation associated with a Value. Must already be defined */ RegLocation valToLoc(CompilationUnit* cUnit, llvm::Value* val) { SafeMap::iterator it = cUnit->locMap.find(val); DCHECK(it != cUnit->locMap.end()) << "Missing definition"; return it->second; } bool methodBitcodeBlockCodeGen(CompilationUnit* cUnit, llvm::BasicBlock* bb) { while (cUnit->llvmBlocks.find(bb) == cUnit->llvmBlocks.end()) { llvm::BasicBlock* nextBB = NULL; cUnit->llvmBlocks.insert(bb); bool isEntry = (bb == &cUnit->func->getEntryBlock()); // Define the starting label LIR* blockLabel = cUnit->blockToLabelMap.Get(bb); // Extract the type and starting offset from the block's name char blockType = kNormalBlock; if (!isEntry) { const char* blockName = bb->getName().str().c_str(); int dummy; sscanf(blockName, kLabelFormat, &blockType, &blockLabel->operands[0], &dummy); cUnit->currentDalvikOffset = blockLabel->operands[0]; } else { cUnit->currentDalvikOffset = 0; } // Set the label kind blockLabel->opcode = kPseudoNormalBlockLabel; // Insert the label oatAppendLIR(cUnit, blockLabel); LIR* headLIR = NULL; if (blockType == kCatchBlock) { headLIR = newLIR0(cUnit, kPseudoExportedPC); } // Free temp registers and reset redundant store tracking */ oatResetRegPool(cUnit); oatResetDefTracking(cUnit); //TODO: restore oat incoming liveness optimization oatClobberAllRegs(cUnit); if (isEntry) { RegLocation* argLocs = (RegLocation*) oatNew(cUnit, sizeof(RegLocation) * cUnit->numIns, true, kAllocMisc); llvm::Function::arg_iterator it(cUnit->func->arg_begin()); llvm::Function::arg_iterator it_end(cUnit->func->arg_end()); // Skip past Method* it++; for (unsigned i = 0; it != it_end; ++it) { llvm::Value* val = it; argLocs[i++] = valToLoc(cUnit, val); llvm::Type* ty = val->getType(); if ((ty == cUnit->irb->getInt64Ty()) || (ty == cUnit->irb->getDoubleTy())) { argLocs[i] = argLocs[i-1]; argLocs[i].lowReg = argLocs[i].highReg; argLocs[i].origSReg++; argLocs[i].sRegLow = INVALID_SREG; argLocs[i].highWord = true; i++; } } genEntrySequence(cUnit, argLocs, cUnit->methodLoc); } // Visit all of the instructions in the block for (llvm::BasicBlock::iterator it = bb->begin(), e = bb->end(); it != e;) { llvm::Instruction* inst = it; llvm::BasicBlock::iterator nextIt = ++it; // Extract the Dalvik offset from the instruction uint32_t opcode = inst->getOpcode(); llvm::MDNode* dexOffsetNode = inst->getMetadata("DexOff"); if (dexOffsetNode != NULL) { llvm::ConstantInt* dexOffsetValue = static_cast(dexOffsetNode->getOperand(0)); cUnit->currentDalvikOffset = dexOffsetValue->getZExtValue(); } oatResetRegPool(cUnit); if (cUnit->disableOpt & (1 << kTrackLiveTemps)) { oatClobberAllRegs(cUnit); } if (cUnit->disableOpt & (1 << kSuppressLoads)) { oatResetDefTracking(cUnit); } #ifndef NDEBUG /* Reset temp tracking sanity check */ cUnit->liveSReg = INVALID_SREG; #endif // TODO: use llvm opcode name here instead of "boundary" if verbose LIR* boundaryLIR = markBoundary(cUnit, cUnit->currentDalvikOffset, "boundary"); /* Remember the first LIR for thisl block*/ if (headLIR == NULL) { headLIR = boundaryLIR; headLIR->defMask = ENCODE_ALL; } switch(opcode) { case llvm::Instruction::ICmp: { llvm::Instruction* nextInst = nextIt; llvm::BranchInst* brInst = llvm::dyn_cast(nextInst); if (brInst != NULL /* and... */) { cvtICmpBr(cUnit, inst, brInst); ++it; } else { cvtICmp(cUnit, inst); } } break; case llvm::Instruction::Call: { llvm::CallInst* callInst = llvm::dyn_cast(inst); llvm::Function* callee = callInst->getCalledFunction(); greenland::IntrinsicHelper::IntrinsicId id = cUnit->intrinsic_helper->GetIntrinsicId(callee); switch (id) { case greenland::IntrinsicHelper::AllocaShadowFrame: case greenland::IntrinsicHelper::SetShadowFrameEntry: case greenland::IntrinsicHelper::PopShadowFrame: // Ignore shadow frame stuff for quick compiler break; case greenland::IntrinsicHelper::CopyInt: case greenland::IntrinsicHelper::CopyObj: case greenland::IntrinsicHelper::CopyFloat: case greenland::IntrinsicHelper::CopyLong: case greenland::IntrinsicHelper::CopyDouble: cvtCopy(cUnit, callInst); break; case greenland::IntrinsicHelper::ConstInt: case greenland::IntrinsicHelper::ConstObj: case greenland::IntrinsicHelper::ConstLong: case greenland::IntrinsicHelper::ConstFloat: case greenland::IntrinsicHelper::ConstDouble: cvtConst(cUnit, callInst); break; case greenland::IntrinsicHelper::DivInt: case greenland::IntrinsicHelper::DivLong: cvtBinOp(cUnit, kOpDiv, inst); break; case greenland::IntrinsicHelper::RemInt: case greenland::IntrinsicHelper::RemLong: cvtBinOp(cUnit, kOpRem, inst); break; case greenland::IntrinsicHelper::MethodInfo: // Already dealt with - just ignore it here. break; case greenland::IntrinsicHelper::CheckSuspend: genSuspendTest(cUnit, 0 /* optFlags already applied */); break; case greenland::IntrinsicHelper::HLInvokeObj: case greenland::IntrinsicHelper::HLInvokeFloat: case greenland::IntrinsicHelper::HLInvokeDouble: case greenland::IntrinsicHelper::HLInvokeLong: case greenland::IntrinsicHelper::HLInvokeInt: cvtInvoke(cUnit, callInst, false /* isVoid */, false /* newArray */); break; case greenland::IntrinsicHelper::HLInvokeVoid: cvtInvoke(cUnit, callInst, true /* isVoid */, false /* newArray */); break; case greenland::IntrinsicHelper::HLFilledNewArray: cvtInvoke(cUnit, callInst, false /* isVoid */, true /* newArray */); break; case greenland::IntrinsicHelper::HLFillArrayData: cvtFillArrayData(cUnit, callInst); break; case greenland::IntrinsicHelper::ConstString: cvtConstObject(cUnit, callInst, true /* isString */); break; case greenland::IntrinsicHelper::ConstClass: cvtConstObject(cUnit, callInst, false /* isString */); break; case greenland::IntrinsicHelper::HLCheckCast: cvtCheckCast(cUnit, callInst); break; case greenland::IntrinsicHelper::NewInstance: cvtNewInstance(cUnit, callInst); break; case greenland::IntrinsicHelper::HLSgetObject: cvtSget(cUnit, callInst, false /* wide */, true /* Object */); break; case greenland::IntrinsicHelper::HLSget: case greenland::IntrinsicHelper::HLSgetFloat: case greenland::IntrinsicHelper::HLSgetBoolean: case greenland::IntrinsicHelper::HLSgetByte: case greenland::IntrinsicHelper::HLSgetChar: case greenland::IntrinsicHelper::HLSgetShort: cvtSget(cUnit, callInst, false /* wide */, false /* Object */); break; case greenland::IntrinsicHelper::HLSgetWide: case greenland::IntrinsicHelper::HLSgetDouble: cvtSget(cUnit, callInst, true /* wide */, false /* Object */); break; case greenland::IntrinsicHelper::HLSput: case greenland::IntrinsicHelper::HLSputFloat: case greenland::IntrinsicHelper::HLSputBoolean: case greenland::IntrinsicHelper::HLSputByte: case greenland::IntrinsicHelper::HLSputChar: case greenland::IntrinsicHelper::HLSputShort: cvtSput(cUnit, callInst, false /* wide */, false /* Object */); break; case greenland::IntrinsicHelper::HLSputWide: case greenland::IntrinsicHelper::HLSputDouble: cvtSput(cUnit, callInst, true /* wide */, false /* Object */); break; case greenland::IntrinsicHelper::HLSputObject: cvtSput(cUnit, callInst, false /* wide */, true /* Object */); break; case greenland::IntrinsicHelper::GetException: cvtMoveException(cUnit, callInst); break; case greenland::IntrinsicHelper::HLThrowException: cvtThrow(cUnit, callInst); break; case greenland::IntrinsicHelper::MonitorEnter: cvtMonitorEnterExit(cUnit, true /* isEnter */, callInst); break; case greenland::IntrinsicHelper::MonitorExit: cvtMonitorEnterExit(cUnit, false /* isEnter */, callInst); break; case greenland::IntrinsicHelper::OptArrayLength: cvtArrayLength(cUnit, callInst); break; case greenland::IntrinsicHelper::NewArray: cvtNewArray(cUnit, callInst); break; case greenland::IntrinsicHelper::InstanceOf: cvtInstanceOf(cUnit, callInst); break; case greenland::IntrinsicHelper::HLArrayGet: case greenland::IntrinsicHelper::HLArrayGetObject: case greenland::IntrinsicHelper::HLArrayGetFloat: cvtAget(cUnit, callInst, kWord, 2); break; case greenland::IntrinsicHelper::HLArrayGetWide: case greenland::IntrinsicHelper::HLArrayGetDouble: cvtAget(cUnit, callInst, kLong, 3); break; case greenland::IntrinsicHelper::HLArrayGetBoolean: cvtAget(cUnit, callInst, kUnsignedByte, 0); break; case greenland::IntrinsicHelper::HLArrayGetByte: cvtAget(cUnit, callInst, kSignedByte, 0); break; case greenland::IntrinsicHelper::HLArrayGetChar: cvtAget(cUnit, callInst, kUnsignedHalf, 1); break; case greenland::IntrinsicHelper::HLArrayGetShort: cvtAget(cUnit, callInst, kSignedHalf, 1); break; case greenland::IntrinsicHelper::HLArrayPut: case greenland::IntrinsicHelper::HLArrayPutFloat: cvtAputPrimitive(cUnit, callInst, kWord, 2); break; case greenland::IntrinsicHelper::HLArrayPutObject: cvtAputObj(cUnit, callInst); break; case greenland::IntrinsicHelper::HLArrayPutWide: case greenland::IntrinsicHelper::HLArrayPutDouble: cvtAputPrimitive(cUnit, callInst, kLong, 3); break; case greenland::IntrinsicHelper::HLArrayPutBoolean: cvtAputPrimitive(cUnit, callInst, kUnsignedByte, 0); break; case greenland::IntrinsicHelper::HLArrayPutByte: cvtAputPrimitive(cUnit, callInst, kSignedByte, 0); break; case greenland::IntrinsicHelper::HLArrayPutChar: cvtAputPrimitive(cUnit, callInst, kUnsignedHalf, 1); break; case greenland::IntrinsicHelper::HLArrayPutShort: cvtAputPrimitive(cUnit, callInst, kSignedHalf, 1); break; case greenland::IntrinsicHelper::HLIGet: case greenland::IntrinsicHelper::HLIGetFloat: cvtIget(cUnit, callInst, kWord, false /* isWide */, false /* obj */); break; case greenland::IntrinsicHelper::HLIGetObject: cvtIget(cUnit, callInst, kWord, false /* isWide */, true /* obj */); break; case greenland::IntrinsicHelper::HLIGetWide: case greenland::IntrinsicHelper::HLIGetDouble: cvtIget(cUnit, callInst, kLong, true /* isWide */, false /* obj */); break; case greenland::IntrinsicHelper::HLIGetBoolean: cvtIget(cUnit, callInst, kUnsignedByte, false /* isWide */, false /* obj */); break; case greenland::IntrinsicHelper::HLIGetByte: cvtIget(cUnit, callInst, kSignedByte, false /* isWide */, false /* obj */); break; case greenland::IntrinsicHelper::HLIGetChar: cvtIget(cUnit, callInst, kUnsignedHalf, false /* isWide */, false /* obj */); break; case greenland::IntrinsicHelper::HLIGetShort: cvtIget(cUnit, callInst, kSignedHalf, false /* isWide */, false /* obj */); break; case greenland::IntrinsicHelper::HLIPut: case greenland::IntrinsicHelper::HLIPutFloat: cvtIput(cUnit, callInst, kWord, false /* isWide */, false /* obj */); break; case greenland::IntrinsicHelper::HLIPutObject: cvtIput(cUnit, callInst, kWord, false /* isWide */, true /* obj */); break; case greenland::IntrinsicHelper::HLIPutWide: case greenland::IntrinsicHelper::HLIPutDouble: cvtIput(cUnit, callInst, kLong, true /* isWide */, false /* obj */); break; case greenland::IntrinsicHelper::HLIPutBoolean: cvtIput(cUnit, callInst, kUnsignedByte, false /* isWide */, false /* obj */); break; case greenland::IntrinsicHelper::HLIPutByte: cvtIput(cUnit, callInst, kSignedByte, false /* isWide */, false /* obj */); break; case greenland::IntrinsicHelper::HLIPutChar: cvtIput(cUnit, callInst, kUnsignedHalf, false /* isWide */, false /* obj */); break; case greenland::IntrinsicHelper::HLIPutShort: cvtIput(cUnit, callInst, kSignedHalf, false /* isWide */, false /* obj */); break; case greenland::IntrinsicHelper::IntToChar: cvtIntNarrowing(cUnit, callInst, Instruction::INT_TO_CHAR); break; case greenland::IntrinsicHelper::IntToShort: cvtIntNarrowing(cUnit, callInst, Instruction::INT_TO_SHORT); break; case greenland::IntrinsicHelper::IntToByte: cvtIntNarrowing(cUnit, callInst, Instruction::INT_TO_BYTE); break; case greenland::IntrinsicHelper::F2I: case greenland::IntrinsicHelper::D2I: case greenland::IntrinsicHelper::F2L: case greenland::IntrinsicHelper::D2L: cvtFPToInt(cUnit, callInst); break; case greenland::IntrinsicHelper::CmplFloat: cvtFPCompare(cUnit, callInst, Instruction::CMPL_FLOAT); break; case greenland::IntrinsicHelper::CmpgFloat: cvtFPCompare(cUnit, callInst, Instruction::CMPG_FLOAT); break; case greenland::IntrinsicHelper::CmplDouble: cvtFPCompare(cUnit, callInst, Instruction::CMPL_DOUBLE); break; case greenland::IntrinsicHelper::CmpgDouble: cvtFPCompare(cUnit, callInst, Instruction::CMPG_DOUBLE); break; case greenland::IntrinsicHelper::CmpLong: cvtLongCompare(cUnit, callInst); break; case greenland::IntrinsicHelper::SHLLong: cvtShiftOp(cUnit, Instruction::SHL_LONG, callInst); break; case greenland::IntrinsicHelper::SHRLong: cvtShiftOp(cUnit, Instruction::SHR_LONG, callInst); break; case greenland::IntrinsicHelper::USHRLong: cvtShiftOp(cUnit, Instruction::USHR_LONG, callInst); break; case greenland::IntrinsicHelper::SHLInt: cvtShiftOp(cUnit, Instruction::SHL_INT, callInst); break; case greenland::IntrinsicHelper::SHRInt: cvtShiftOp(cUnit, Instruction::SHR_INT, callInst); break; case greenland::IntrinsicHelper::USHRInt: cvtShiftOp(cUnit, Instruction::USHR_INT, callInst); break; case greenland::IntrinsicHelper::CatchTargets: { llvm::SwitchInst* swInst = llvm::dyn_cast(nextIt); DCHECK(swInst != NULL); /* * Discard the edges and the following conditional branch. * Do a direct branch to the default target (which is the * "work" portion of the pair. * TODO: awful code layout - rework */ llvm::BasicBlock* targetBB = swInst->getDefaultDest(); DCHECK(targetBB != NULL); opUnconditionalBranch(cUnit, cUnit->blockToLabelMap.Get(targetBB)); ++it; // Set next bb to default target - improves code layout nextBB = targetBB; } break; default: LOG(FATAL) << "Unexpected intrinsic " << (int)id << ", " << cUnit->intrinsic_helper->GetName(id); } } break; case llvm::Instruction::Br: cvtBr(cUnit, inst); break; case llvm::Instruction::Add: cvtBinOp(cUnit, kOpAdd, inst); break; case llvm::Instruction::Sub: cvtBinOp(cUnit, kOpSub, inst); break; case llvm::Instruction::Mul: cvtBinOp(cUnit, kOpMul, inst); break; case llvm::Instruction::SDiv: cvtBinOp(cUnit, kOpDiv, inst); break; case llvm::Instruction::SRem: cvtBinOp(cUnit, kOpRem, inst); break; case llvm::Instruction::And: cvtBinOp(cUnit, kOpAnd, inst); break; case llvm::Instruction::Or: cvtBinOp(cUnit, kOpOr, inst); break; case llvm::Instruction::Xor: cvtBinOp(cUnit, kOpXor, inst); break; case llvm::Instruction::PHI: cvtPhi(cUnit, inst); break; case llvm::Instruction::Ret: cvtRet(cUnit, inst); break; case llvm::Instruction::FAdd: cvtBinFPOp(cUnit, kOpAdd, inst); break; case llvm::Instruction::FSub: cvtBinFPOp(cUnit, kOpSub, inst); break; case llvm::Instruction::FMul: cvtBinFPOp(cUnit, kOpMul, inst); break; case llvm::Instruction::FDiv: cvtBinFPOp(cUnit, kOpDiv, inst); break; case llvm::Instruction::FRem: cvtBinFPOp(cUnit, kOpRem, inst); break; case llvm::Instruction::SIToFP: cvtIntToFP(cUnit, inst); break; case llvm::Instruction::FPTrunc: cvtDoubleToFloat(cUnit, inst); break; case llvm::Instruction::FPExt: cvtFloatToDouble(cUnit, inst); break; case llvm::Instruction::Trunc: cvtTrunc(cUnit, inst); break; case llvm::Instruction::ZExt: cvtIntExt(cUnit, inst, false /* signed */); break; case llvm::Instruction::SExt: cvtIntExt(cUnit, inst, true /* signed */); break; case llvm::Instruction::Switch: cvtSwitch(cUnit, inst); break; case llvm::Instruction::Unreachable: break; // FIXME: can we really ignore these? case llvm::Instruction::Shl: case llvm::Instruction::LShr: case llvm::Instruction::AShr: case llvm::Instruction::Invoke: case llvm::Instruction::FPToUI: case llvm::Instruction::FPToSI: case llvm::Instruction::UIToFP: case llvm::Instruction::PtrToInt: case llvm::Instruction::IntToPtr: case llvm::Instruction::FCmp: case llvm::Instruction::URem: case llvm::Instruction::UDiv: case llvm::Instruction::Resume: case llvm::Instruction::Alloca: case llvm::Instruction::GetElementPtr: case llvm::Instruction::Fence: case llvm::Instruction::AtomicCmpXchg: case llvm::Instruction::AtomicRMW: case llvm::Instruction::BitCast: case llvm::Instruction::VAArg: case llvm::Instruction::Select: case llvm::Instruction::UserOp1: case llvm::Instruction::UserOp2: case llvm::Instruction::ExtractElement: case llvm::Instruction::InsertElement: case llvm::Instruction::ShuffleVector: case llvm::Instruction::ExtractValue: case llvm::Instruction::InsertValue: case llvm::Instruction::LandingPad: case llvm::Instruction::IndirectBr: case llvm::Instruction::Load: case llvm::Instruction::Store: LOG(FATAL) << "Unexpected llvm opcode: " << opcode; break; default: LOG(FATAL) << "Unknown llvm opcode: " << inst->getOpcodeName(); break; } } if (headLIR != NULL) { oatApplyLocalOptimizations(cUnit, headLIR, cUnit->lastLIRInsn); } if (nextBB != NULL) { bb = nextBB; nextBB = NULL; } } return false; } /* * Convert LLVM_IR to MIR: * o Iterate through the LLVM_IR and construct a graph using * standard MIR building blocks. * o Perform a basic-block optimization pass to remove unnecessary * store/load sequences. * o Convert the LLVM Value operands into RegLocations where applicable. * o Create ssaRep def/use operand arrays for each converted LLVM opcode * o Perform register promotion * o Iterate through the graph a basic block at a time, generating * LIR. * o Assemble LIR as usual. * o Profit. */ void oatMethodBitcode2LIR(CompilationUnit* cUnit) { llvm::Function* func = cUnit->func; int numBasicBlocks = func->getBasicBlockList().size(); // Allocate a list for LIR basic block labels cUnit->blockLabelList = (LIR*)oatNew(cUnit, sizeof(LIR) * numBasicBlocks, true, kAllocLIR); LIR* labelList = cUnit->blockLabelList; int nextLabel = 0; for (llvm::Function::iterator i = func->begin(), e = func->end(); i != e; ++i) { cUnit->blockToLabelMap.Put(static_cast(i), &labelList[nextLabel++]); } /* * Keep honest - clear regLocations, Value => RegLocation, * promotion map and VmapTables. */ cUnit->locMap.clear(); // Start fresh cUnit->regLocation = NULL; for (int i = 0; i < cUnit->numDalvikRegisters + cUnit->numCompilerTemps + 1; i++) { cUnit->promotionMap[i].coreLocation = kLocDalvikFrame; cUnit->promotionMap[i].fpLocation = kLocDalvikFrame; } cUnit->coreSpillMask = 0; cUnit->numCoreSpills = 0; cUnit->fpSpillMask = 0; cUnit->numFPSpills = 0; cUnit->coreVmapTable.clear(); cUnit->fpVmapTable.clear(); /* * At this point, we've lost all knowledge of register promotion. * Rebuild that info from the MethodInfo intrinsic (if it * exists - not required for correctness). Normally, this will * be the first instruction we encounter, so we won't have to iterate * through everything. */ for (llvm::inst_iterator i = llvm::inst_begin(func), e = llvm::inst_end(func); i != e; ++i) { llvm::CallInst* callInst = llvm::dyn_cast(&*i); if (callInst != NULL) { llvm::Function* callee = callInst->getCalledFunction(); greenland::IntrinsicHelper::IntrinsicId id = cUnit->intrinsic_helper->GetIntrinsicId(callee); if (id == greenland::IntrinsicHelper::MethodInfo) { if (cUnit->printMe) { LOG(INFO) << "Found MethodInfo"; } llvm::MDNode* regInfoNode = callInst->getMetadata("RegInfo"); if (regInfoNode != NULL) { llvm::ConstantInt* numInsValue = static_cast(regInfoNode->getOperand(0)); llvm::ConstantInt* numRegsValue = static_cast(regInfoNode->getOperand(1)); llvm::ConstantInt* numOutsValue = static_cast(regInfoNode->getOperand(2)); llvm::ConstantInt* numCompilerTempsValue = static_cast(regInfoNode->getOperand(3)); llvm::ConstantInt* numSSARegsValue = static_cast(regInfoNode->getOperand(4)); if (cUnit->printMe) { LOG(INFO) << "RegInfo - Ins:" << numInsValue->getZExtValue() << ", Regs:" << numRegsValue->getZExtValue() << ", Outs:" << numOutsValue->getZExtValue() << ", CTemps:" << numCompilerTempsValue->getZExtValue() << ", SSARegs:" << numSSARegsValue->getZExtValue(); } } llvm::MDNode* pmapInfoNode = callInst->getMetadata("PromotionMap"); if (pmapInfoNode != NULL) { int elems = pmapInfoNode->getNumOperands(); if (cUnit->printMe) { LOG(INFO) << "PMap size: " << elems; } for (int i = 0; i < elems; i++) { llvm::ConstantInt* rawMapData = static_cast(pmapInfoNode->getOperand(i)); uint32_t mapData = rawMapData->getZExtValue(); PromotionMap* p = &cUnit->promotionMap[i]; p->firstInPair = (mapData >> 24) & 0xff; p->fpReg = (mapData >> 16) & 0xff; p->coreReg = (mapData >> 8) & 0xff; p->fpLocation = static_cast((mapData >> 4) & 0xf); if (p->fpLocation == kLocPhysReg) { oatRecordFpPromotion(cUnit, p->fpReg, i); } p->coreLocation = static_cast(mapData & 0xf); if (p->coreLocation == kLocPhysReg) { oatRecordCorePromotion(cUnit, p->coreReg, i); } } if (cUnit->printMe) { oatDumpPromotionMap(cUnit); } } break; } } } oatAdjustSpillMask(cUnit); cUnit->frameSize = oatComputeFrameSize(cUnit); // Create RegLocations for arguments llvm::Function::arg_iterator it(cUnit->func->arg_begin()); llvm::Function::arg_iterator it_end(cUnit->func->arg_end()); for (; it != it_end; ++it) { llvm::Value* val = it; createLocFromValue(cUnit, val); } // Create RegLocations for all non-argument defintions for (llvm::inst_iterator i = llvm::inst_begin(func), e = llvm::inst_end(func); i != e; ++i) { llvm::Value* val = &*i; if (val->hasName() && (val->getName().str().c_str()[0] == 'v')) { createLocFromValue(cUnit, val); } } // Walk the blocks, generating code. for (llvm::Function::iterator i = cUnit->func->begin(), e = cUnit->func->end(); i != e; ++i) { methodBitcodeBlockCodeGen(cUnit, static_cast(i)); } handleSuspendLaunchpads(cUnit); handleThrowLaunchpads(cUnit); handleIntrinsicLaunchpads(cUnit); cUnit->func->eraseFromParent(); cUnit->func = NULL; } } // namespace art #endif // ART_USE_QUICK_COMPILER