/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #if defined(ART_USE_QUICK_COMPILER) #include "object_utils.h" #include #include #include #include #include #include #include #include #include #include static const char* kLabelFormat = "L0x%x_%d"; namespace art { extern const RegLocation badLoc; RegLocation getLoc(CompilationUnit* cUnit, llvm::Value* val); llvm::BasicBlock* getLLVMBlock(CompilationUnit* cUnit, int id) { return cUnit->idToBlockMap.Get(id); } llvm::Value* getLLVMValue(CompilationUnit* cUnit, int sReg) { return (llvm::Value*)oatGrowableListGetElement(&cUnit->llvmValues, sReg); } // Replace the placeholder value with the real definition void defineValue(CompilationUnit* cUnit, llvm::Value* val, int sReg) { llvm::Value* placeholder = getLLVMValue(cUnit, sReg); CHECK(placeholder != NULL) << "Null placeholder - shouldn't happen"; placeholder->replaceAllUsesWith(val); val->takeName(placeholder); cUnit->llvmValues.elemList[sReg] = (intptr_t)val; } llvm::Type* llvmTypeFromLocRec(CompilationUnit* cUnit, RegLocation loc) { llvm::Type* res = NULL; if (loc.wide) { if (loc.fp) res = cUnit->irb->getDoubleTy(); else res = cUnit->irb->getInt64Ty(); } else { if (loc.fp) { res = cUnit->irb->getFloatTy(); } else { if (loc.ref) res = cUnit->irb->GetJObjectTy(); else res = cUnit->irb->getInt32Ty(); } } return res; } /* Create an in-memory RegLocation from an llvm Value. */ void createLocFromValue(CompilationUnit* cUnit, llvm::Value* val) { // NOTE: llvm takes shortcuts with c_str() - get to std::string firstt std::string s(val->getName().str()); const char* valName = s.c_str(); SafeMap::iterator it = cUnit->locMap.find(val); DCHECK(it == cUnit->locMap.end()) << " - already defined: " << valName; int baseSReg = INVALID_SREG; int subscript = -1; sscanf(valName, "v%d_%d", &baseSReg, &subscript); if ((baseSReg == INVALID_SREG) && (!strcmp(valName, "method"))) { baseSReg = SSA_METHOD_BASEREG; subscript = 0; } DCHECK_NE(baseSReg, INVALID_SREG); DCHECK_NE(subscript, -1); // TODO: redo during C++'ification RegLocation loc = {kLocDalvikFrame, 0, 0, 0, 0, 0, 0, 0, 0, INVALID_REG, INVALID_REG, INVALID_SREG, INVALID_SREG}; llvm::Type* ty = val->getType(); loc.wide = ((ty == cUnit->irb->getInt64Ty()) || (ty == cUnit->irb->getDoubleTy())); loc.defined = true; if ((ty == cUnit->irb->getFloatTy()) || (ty == cUnit->irb->getDoubleTy())) { loc.fp = true; } else if (ty == cUnit->irb->GetJObjectTy()) { loc.ref = true; } else { loc.core = true; } loc.home = false; // Will change during promotion loc.sRegLow = baseSReg; loc.origSReg = cUnit->locMap.size(); cUnit->locMap.Put(val, loc); } void initIR(CompilationUnit* cUnit) { cUnit->context = new llvm::LLVMContext(); cUnit->module = new llvm::Module("art", *cUnit->context); llvm::StructType::create(*cUnit->context, "JavaObject"); llvm::StructType::create(*cUnit->context, "Method"); llvm::StructType::create(*cUnit->context, "Thread"); cUnit->intrinsic_helper = new greenland::IntrinsicHelper(*cUnit->context, *cUnit->module); cUnit->irb = new greenland::IRBuilder(*cUnit->context, *cUnit->module, *cUnit->intrinsic_helper); } void freeIR(CompilationUnit* cUnit) { delete cUnit->irb; delete cUnit->intrinsic_helper; delete cUnit->module; delete cUnit->context; } const char* llvmSSAName(CompilationUnit* cUnit, int ssaReg) { return GET_ELEM_N(cUnit->ssaStrings, char*, ssaReg); } void convertSget(CompilationUnit* cUnit, int32_t fieldIndex, greenland::IntrinsicHelper::IntrinsicId id, RegLocation rlDest) { llvm::Constant* fieldIdx = cUnit->irb->getInt32(fieldIndex); llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction(id); llvm::Value* res = cUnit->irb->CreateCall(intr, fieldIdx); defineValue(cUnit, res, rlDest.origSReg); } void convertSput(CompilationUnit* cUnit, int32_t fieldIndex, greenland::IntrinsicHelper::IntrinsicId id, RegLocation rlSrc) { llvm::SmallVector args; args.push_back(cUnit->irb->getInt32(fieldIndex)); args.push_back(getLLVMValue(cUnit, rlSrc.origSReg)); llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction(id); cUnit->irb->CreateCall(intr, args); } llvm::Value* emitConst(CompilationUnit* cUnit, llvm::ArrayRef src, RegLocation loc) { greenland::IntrinsicHelper::IntrinsicId id; if (loc.wide) { if (loc.fp) { id = greenland::IntrinsicHelper::ConstDouble; } else { id = greenland::IntrinsicHelper::ConstLong; } } else { if (loc.fp) { id = greenland::IntrinsicHelper::ConstFloat; } else if (loc.ref) { id = greenland::IntrinsicHelper::ConstObj; } else { id = greenland::IntrinsicHelper::ConstInt; } } llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction(id); return cUnit->irb->CreateCall(intr, src); } void emitPopShadowFrame(CompilationUnit* cUnit) { llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction( greenland::IntrinsicHelper::PopShadowFrame); cUnit->irb->CreateCall(intr); } llvm::Value* emitCopy(CompilationUnit* cUnit, llvm::ArrayRef src, RegLocation loc) { greenland::IntrinsicHelper::IntrinsicId id; if (loc.wide) { if (loc.fp) { id = greenland::IntrinsicHelper::CopyDouble; } else { id = greenland::IntrinsicHelper::CopyLong; } } else { if (loc.fp) { id = greenland::IntrinsicHelper::CopyFloat; } else if (loc.ref) { id = greenland::IntrinsicHelper::CopyObj; } else { id = greenland::IntrinsicHelper::CopyInt; } } llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction(id); return cUnit->irb->CreateCall(intr, src); } void convertMoveException(CompilationUnit* cUnit, RegLocation rlDest) { llvm::Function* func = cUnit->intrinsic_helper->GetIntrinsicFunction( greenland::IntrinsicHelper::GetException); llvm::Value* res = cUnit->irb->CreateCall(func); defineValue(cUnit, res, rlDest.origSReg); } void convertThrow(CompilationUnit* cUnit, RegLocation rlSrc) { llvm::Value* src = getLLVMValue(cUnit, rlSrc.origSReg); llvm::Function* func = cUnit->intrinsic_helper->GetIntrinsicFunction( greenland::IntrinsicHelper::Throw); cUnit->irb->CreateCall(func, src); cUnit->irb->CreateUnreachable(); } void convertMonitorEnterExit(CompilationUnit* cUnit, int optFlags, greenland::IntrinsicHelper::IntrinsicId id, RegLocation rlSrc) { llvm::SmallVector args; args.push_back(cUnit->irb->getInt32(optFlags)); args.push_back(getLLVMValue(cUnit, rlSrc.origSReg)); llvm::Function* func = cUnit->intrinsic_helper->GetIntrinsicFunction(id); cUnit->irb->CreateCall(func, args); } void convertArrayLength(CompilationUnit* cUnit, int optFlags, RegLocation rlSrc) { llvm::SmallVector args; args.push_back(cUnit->irb->getInt32(optFlags)); args.push_back(getLLVMValue(cUnit, rlSrc.origSReg)); llvm::Function* func = cUnit->intrinsic_helper->GetIntrinsicFunction( greenland::IntrinsicHelper::ArrayLength); cUnit->irb->CreateCall(func, args); } void convertThrowVerificationError(CompilationUnit* cUnit, int info1, int info2) { llvm::Function* func = cUnit->intrinsic_helper->GetIntrinsicFunction( greenland::IntrinsicHelper::Throw); llvm::SmallVector args; args.push_back(cUnit->irb->getInt32(info1)); args.push_back(cUnit->irb->getInt32(info2)); cUnit->irb->CreateCall(func, args); cUnit->irb->CreateUnreachable(); } void emitSuspendCheck(CompilationUnit* cUnit) { greenland::IntrinsicHelper::IntrinsicId id = greenland::IntrinsicHelper::CheckSuspend; llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction(id); cUnit->irb->CreateCall(intr); } llvm::Value* convertCompare(CompilationUnit* cUnit, ConditionCode cc, llvm::Value* src1, llvm::Value* src2) { llvm::Value* res = NULL; switch(cc) { case kCondEq: res = cUnit->irb->CreateICmpEQ(src1, src2); break; case kCondNe: res = cUnit->irb->CreateICmpNE(src1, src2); break; case kCondLt: res = cUnit->irb->CreateICmpSLT(src1, src2); break; case kCondGe: res = cUnit->irb->CreateICmpSGE(src1, src2); break; case kCondGt: res = cUnit->irb->CreateICmpSGT(src1, src2); break; case kCondLe: res = cUnit->irb->CreateICmpSLE(src1, src2); break; default: LOG(FATAL) << "Unexpected cc value " << cc; } return res; } void convertCompareAndBranch(CompilationUnit* cUnit, BasicBlock* bb, MIR* mir, ConditionCode cc, RegLocation rlSrc1, RegLocation rlSrc2) { if (bb->taken->startOffset <= mir->offset) { emitSuspendCheck(cUnit); } llvm::Value* src1 = getLLVMValue(cUnit, rlSrc1.origSReg); llvm::Value* src2 = getLLVMValue(cUnit, rlSrc2.origSReg); llvm::Value* condValue = convertCompare(cUnit, cc, src1, src2); condValue->setName(StringPrintf("t%d", cUnit->tempName++)); cUnit->irb->CreateCondBr(condValue, getLLVMBlock(cUnit, bb->taken->id), getLLVMBlock(cUnit, bb->fallThrough->id)); // Don't redo the fallthrough branch in the BB driver bb->fallThrough = NULL; } void convertCompareZeroAndBranch(CompilationUnit* cUnit, BasicBlock* bb, MIR* mir, ConditionCode cc, RegLocation rlSrc1) { if (bb->taken->startOffset <= mir->offset) { emitSuspendCheck(cUnit); } llvm::Value* src1 = getLLVMValue(cUnit, rlSrc1.origSReg); llvm::Value* src2; if (rlSrc1.ref) { src2 = cUnit->irb->GetJNull(); } else { src2 = cUnit->irb->getInt32(0); } llvm::Value* condValue = convertCompare(cUnit, cc, src1, src2); condValue->setName(StringPrintf("t%d", cUnit->tempName++)); cUnit->irb->CreateCondBr(condValue, getLLVMBlock(cUnit, bb->taken->id), getLLVMBlock(cUnit, bb->fallThrough->id)); // Don't redo the fallthrough branch in the BB driver bb->fallThrough = NULL; } llvm::Value* genDivModOp(CompilationUnit* cUnit, bool isDiv, bool isLong, llvm::Value* src1, llvm::Value* src2) { greenland::IntrinsicHelper::IntrinsicId id; if (isLong) { if (isDiv) { id = greenland::IntrinsicHelper::DivLong; } else { id = greenland::IntrinsicHelper::RemLong; } } else if (isDiv) { id = greenland::IntrinsicHelper::DivInt; } else { id = greenland::IntrinsicHelper::RemInt; } llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction(id); llvm::SmallVectorargs; args.push_back(src1); args.push_back(src2); return cUnit->irb->CreateCall(intr, args); } llvm::Value* genArithOp(CompilationUnit* cUnit, OpKind op, bool isLong, llvm::Value* src1, llvm::Value* src2) { llvm::Value* res = NULL; switch(op) { case kOpAdd: res = cUnit->irb->CreateAdd(src1, src2); break; case kOpSub: res = cUnit->irb->CreateSub(src1, src2); break; case kOpRsub: res = cUnit->irb->CreateSub(src2, src1); break; case kOpMul: res = cUnit->irb->CreateMul(src1, src2); break; case kOpOr: res = cUnit->irb->CreateOr(src1, src2); break; case kOpAnd: res = cUnit->irb->CreateAnd(src1, src2); break; case kOpXor: res = cUnit->irb->CreateXor(src1, src2); break; case kOpDiv: res = genDivModOp(cUnit, true, isLong, src1, src2); break; case kOpRem: res = genDivModOp(cUnit, false, isLong, src1, src2); break; case kOpLsl: res = cUnit->irb->CreateShl(src1, src2); break; case kOpLsr: res = cUnit->irb->CreateLShr(src1, src2); break; case kOpAsr: res = cUnit->irb->CreateAShr(src1, src2); break; default: LOG(FATAL) << "Invalid op " << op; } return res; } void convertFPArithOp(CompilationUnit* cUnit, OpKind op, RegLocation rlDest, RegLocation rlSrc1, RegLocation rlSrc2) { llvm::Value* src1 = getLLVMValue(cUnit, rlSrc1.origSReg); llvm::Value* src2 = getLLVMValue(cUnit, rlSrc2.origSReg); llvm::Value* res = NULL; LOG(INFO) << "in convertFPArithOp"; switch(op) { case kOpAdd: res = cUnit->irb->CreateFAdd(src1, src2); break; case kOpSub: res = cUnit->irb->CreateFSub(src1, src2); break; case kOpMul: res = cUnit->irb->CreateFMul(src1, src2); break; case kOpDiv: res = cUnit->irb->CreateFDiv(src1, src2); break; case kOpRem: res = cUnit->irb->CreateFRem(src1, src2); break; default: LOG(FATAL) << "Invalid op " << op; } defineValue(cUnit, res, rlDest.origSReg); } void convertShift(CompilationUnit* cUnit, OpKind op, RegLocation rlDest, RegLocation rlSrc1, RegLocation rlSrc2) { llvm::Value* src1 = getLLVMValue(cUnit, rlSrc1.origSReg); llvm::Value* src2a = getLLVMValue(cUnit, rlSrc2.origSReg); llvm::Value* src2b; // Limit shift counnt to 63 for long and 31 for int if (rlDest.wide) { // Note: creates 2 unnamed temps llvm::Value* t1 = cUnit->irb->CreateAnd(src2a, 0x3f); src2b = cUnit->irb->CreateZExt(t1, cUnit->irb->getInt64Ty()); } else { // Note: creates 1 unnamed temp src2b = cUnit->irb->CreateAnd(src2a, 0x1f); } llvm::Value* res = genArithOp(cUnit, op, rlDest.wide, src1, src2b); defineValue(cUnit, res, rlDest.origSReg); } void convertArithOp(CompilationUnit* cUnit, OpKind op, RegLocation rlDest, RegLocation rlSrc1, RegLocation rlSrc2) { llvm::Value* src1 = getLLVMValue(cUnit, rlSrc1.origSReg); llvm::Value* src2 = getLLVMValue(cUnit, rlSrc2.origSReg); llvm::Value* res = genArithOp(cUnit, op, rlDest.wide, src1, src2); defineValue(cUnit, res, rlDest.origSReg); } void setShadowFrameEntry(CompilationUnit* cUnit, llvm::Value* newVal) { int index = -1; DCHECK(newVal != NULL); int vReg = SRegToVReg(cUnit, getLoc(cUnit, newVal).origSReg); for (int i = 0; i < cUnit->numShadowFrameEntries; i++) { if (cUnit->shadowMap[i] == vReg) { index = i; break; } } DCHECK_NE(index, -1) << "Corrupt shadowMap"; greenland::IntrinsicHelper::IntrinsicId id = greenland::IntrinsicHelper::SetShadowFrameEntry; llvm::Function* func = cUnit->intrinsic_helper->GetIntrinsicFunction(id); llvm::Value* tableSlot = cUnit->irb->getInt32(index); llvm::Value* args[] = { newVal, tableSlot }; cUnit->irb->CreateCall(func, args); } void convertArithOpLit(CompilationUnit* cUnit, OpKind op, RegLocation rlDest, RegLocation rlSrc1, int32_t imm) { llvm::Value* src1 = getLLVMValue(cUnit, rlSrc1.origSReg); llvm::Value* src2 = cUnit->irb->getInt32(imm); llvm::Value* res = genArithOp(cUnit, op, rlDest.wide, src1, src2); defineValue(cUnit, res, rlDest.origSReg); } void convertInvoke(CompilationUnit* cUnit, BasicBlock* bb, MIR* mir, InvokeType invokeType, bool isRange) { CallInfo* info = oatNewCallInfo(cUnit, bb, mir, invokeType, isRange); llvm::SmallVector args; // Insert the invokeType args.push_back(cUnit->irb->getInt32(static_cast(invokeType))); // Insert the method_idx args.push_back(cUnit->irb->getInt32(info->index)); // Insert the optimization flags args.push_back(cUnit->irb->getInt32(info->optFlags)); // Now, insert the actual arguments if (cUnit->printMe) { LOG(INFO) << "Building Invoke info"; } for (int i = 0; i < info->numArgWords;) { if (cUnit->printMe) { oatDumpRegLoc(info->args[i]); } llvm::Value* val = getLLVMValue(cUnit, info->args[i].origSReg); args.push_back(val); i += info->args[i].wide ? 2 : 1; } /* * Choose the invoke return type based on actual usage. Note: may * be different than shorty. For example, if a function return value * is not used, we'll treat this as a void invoke. */ greenland::IntrinsicHelper::IntrinsicId id; if (info->result.location == kLocInvalid) { id = greenland::IntrinsicHelper::HLInvokeVoid; } else { if (info->result.wide) { if (info->result.fp) { id = greenland::IntrinsicHelper::HLInvokeDouble; } else { id = greenland::IntrinsicHelper::HLInvokeLong; } } else if (info->result.ref) { id = greenland::IntrinsicHelper::HLInvokeObj; } else if (info->result.fp) { id = greenland::IntrinsicHelper::HLInvokeFloat; } else { id = greenland::IntrinsicHelper::HLInvokeInt; } } llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction(id); llvm::Value* res = cUnit->irb->CreateCall(intr, args); if (info->result.location != kLocInvalid) { defineValue(cUnit, res, info->result.origSReg); } } void convertConstString(CompilationUnit* cUnit, BasicBlock* bb, uint32_t string_idx, RegLocation rlDest) { greenland::IntrinsicHelper::IntrinsicId id; id = greenland::IntrinsicHelper::ConstString; llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction(id); llvm::Value* index = cUnit->irb->getInt32(string_idx); llvm::Value* res = cUnit->irb->CreateCall(intr, index); defineValue(cUnit, res, rlDest.origSReg); } void convertNewInstance(CompilationUnit* cUnit, uint32_t type_idx, RegLocation rlDest) { greenland::IntrinsicHelper::IntrinsicId id; id = greenland::IntrinsicHelper::NewInstance; llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction(id); llvm::Value* index = cUnit->irb->getInt32(type_idx); llvm::Value* res = cUnit->irb->CreateCall(intr, index); defineValue(cUnit, res, rlDest.origSReg); } void convertNewArray(CompilationUnit* cUnit, uint32_t type_idx, RegLocation rlDest, RegLocation rlSrc) { greenland::IntrinsicHelper::IntrinsicId id; id = greenland::IntrinsicHelper::NewArray; llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction(id); llvm::SmallVector args; args.push_back(cUnit->irb->getInt32(type_idx)); args.push_back(getLLVMValue(cUnit, rlSrc.origSReg)); llvm::Value* res = cUnit->irb->CreateCall(intr, args); defineValue(cUnit, res, rlDest.origSReg); } void convertAget(CompilationUnit* cUnit, int optFlags, greenland::IntrinsicHelper::IntrinsicId id, RegLocation rlDest, RegLocation rlArray, RegLocation rlIndex) { llvm::SmallVector args; args.push_back(cUnit->irb->getInt32(optFlags)); args.push_back(getLLVMValue(cUnit, rlArray.origSReg)); args.push_back(getLLVMValue(cUnit, rlIndex.origSReg)); llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction(id); llvm::Value* res = cUnit->irb->CreateCall(intr, args); defineValue(cUnit, res, rlDest.origSReg); } void convertAput(CompilationUnit* cUnit, int optFlags, greenland::IntrinsicHelper::IntrinsicId id, RegLocation rlSrc, RegLocation rlArray, RegLocation rlIndex) { llvm::SmallVector args; args.push_back(cUnit->irb->getInt32(optFlags)); args.push_back(getLLVMValue(cUnit, rlSrc.origSReg)); args.push_back(getLLVMValue(cUnit, rlArray.origSReg)); args.push_back(getLLVMValue(cUnit, rlIndex.origSReg)); llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction(id); cUnit->irb->CreateCall(intr, args); } void convertInstanceOf(CompilationUnit* cUnit, uint32_t type_idx, RegLocation rlDest, RegLocation rlSrc) { greenland::IntrinsicHelper::IntrinsicId id; id = greenland::IntrinsicHelper::InstanceOf; llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction(id); llvm::SmallVector args; args.push_back(cUnit->irb->getInt32(type_idx)); args.push_back(getLLVMValue(cUnit, rlSrc.origSReg)); llvm::Value* res = cUnit->irb->CreateCall(intr, args); defineValue(cUnit, res, rlDest.origSReg); } /* * Target-independent code generation. Use only high-level * load/store utilities here, or target-dependent genXX() handlers * when necessary. */ bool convertMIRNode(CompilationUnit* cUnit, MIR* mir, BasicBlock* bb, llvm::BasicBlock* llvmBB, LIR* labelList) { bool res = false; // Assume success RegLocation rlSrc[3]; RegLocation rlDest = badLoc; RegLocation rlResult = badLoc; Instruction::Code opcode = mir->dalvikInsn.opcode; uint32_t vA = mir->dalvikInsn.vA; uint32_t vB = mir->dalvikInsn.vB; uint32_t vC = mir->dalvikInsn.vC; int optFlags = mir->optimizationFlags; bool objectDefinition = false; /* Prep Src and Dest locations */ int nextSreg = 0; int nextLoc = 0; int attrs = oatDataFlowAttributes[opcode]; rlSrc[0] = rlSrc[1] = rlSrc[2] = badLoc; if (attrs & DF_UA) { if (attrs & DF_A_WIDE) { rlSrc[nextLoc++] = oatGetSrcWide(cUnit, mir, nextSreg); nextSreg+= 2; } else { rlSrc[nextLoc++] = oatGetSrc(cUnit, mir, nextSreg); nextSreg++; } } if (attrs & DF_UB) { if (attrs & DF_B_WIDE) { rlSrc[nextLoc++] = oatGetSrcWide(cUnit, mir, nextSreg); nextSreg+= 2; } else { rlSrc[nextLoc++] = oatGetSrc(cUnit, mir, nextSreg); nextSreg++; } } if (attrs & DF_UC) { if (attrs & DF_C_WIDE) { rlSrc[nextLoc++] = oatGetSrcWide(cUnit, mir, nextSreg); } else { rlSrc[nextLoc++] = oatGetSrc(cUnit, mir, nextSreg); } } if (attrs & DF_DA) { if (attrs & DF_A_WIDE) { rlDest = oatGetDestWide(cUnit, mir); } else { rlDest = oatGetDest(cUnit, mir); if (rlDest.ref) { objectDefinition = true; } } } switch (opcode) { case Instruction::NOP: break; case Instruction::MOVE: case Instruction::MOVE_OBJECT: case Instruction::MOVE_16: case Instruction::MOVE_OBJECT_16: case Instruction::MOVE_FROM16: case Instruction::MOVE_WIDE: case Instruction::MOVE_WIDE_16: case Instruction::MOVE_WIDE_FROM16: { /* * Moves/copies are meaningless in pure SSA register form, * but we need to preserve them for the conversion back into * MIR (at least until we stop using the Dalvik register maps). * Insert a dummy intrinsic copy call, which will be recognized * by the quick path and removed by the portable path. */ llvm::Value* src = getLLVMValue(cUnit, rlSrc[0].origSReg); llvm::Value* res = emitCopy(cUnit, src, rlDest); defineValue(cUnit, res, rlDest.origSReg); } break; case Instruction::CONST: case Instruction::CONST_4: case Instruction::CONST_16: { llvm::Constant* immValue = cUnit->irb->GetJInt(vB); llvm::Value* res = emitConst(cUnit, immValue, rlDest); defineValue(cUnit, res, rlDest.origSReg); } break; case Instruction::CONST_WIDE_16: case Instruction::CONST_WIDE_32: { llvm::Constant* immValue = cUnit->irb->GetJLong(vB); llvm::Value* res = emitConst(cUnit, immValue, rlDest); defineValue(cUnit, res, rlDest.origSReg); } break; case Instruction::CONST_HIGH16: { llvm::Constant* immValue = cUnit->irb->GetJInt(vB << 16); llvm::Value* res = emitConst(cUnit, immValue, rlDest); defineValue(cUnit, res, rlDest.origSReg); } break; case Instruction::CONST_WIDE: { llvm::Constant* immValue = cUnit->irb->GetJLong(mir->dalvikInsn.vB_wide); llvm::Value* res = emitConst(cUnit, immValue, rlDest); defineValue(cUnit, res, rlDest.origSReg); } break; case Instruction::CONST_WIDE_HIGH16: { int64_t imm = static_cast(vB) << 48; llvm::Constant* immValue = cUnit->irb->GetJLong(imm); llvm::Value* res = emitConst(cUnit, immValue, rlDest); defineValue(cUnit, res, rlDest.origSReg); } break; case Instruction::SPUT_OBJECT: convertSget(cUnit, vB, greenland::IntrinsicHelper::HLSputObject, rlSrc[0]); break; case Instruction::SPUT: if (rlSrc[0].fp) { convertSget(cUnit, vB, greenland::IntrinsicHelper::HLSputFloat, rlSrc[0]); } else { convertSget(cUnit, vB, greenland::IntrinsicHelper::HLSput, rlSrc[0]); } break; case Instruction::SPUT_BOOLEAN: convertSget(cUnit, vB, greenland::IntrinsicHelper::HLSputBoolean, rlSrc[0]); break; case Instruction::SPUT_BYTE: convertSget(cUnit, vB, greenland::IntrinsicHelper::HLSputByte, rlSrc[0]); break; case Instruction::SPUT_CHAR: convertSget(cUnit, vB, greenland::IntrinsicHelper::HLSputChar, rlSrc[0]); break; case Instruction::SPUT_SHORT: convertSget(cUnit, vB, greenland::IntrinsicHelper::HLSputShort, rlSrc[0]); break; case Instruction::SPUT_WIDE: if (rlSrc[0].fp) { convertSget(cUnit, vB, greenland::IntrinsicHelper::HLSputDouble, rlSrc[0]); } else { convertSget(cUnit, vB, greenland::IntrinsicHelper::HLSputWide, rlSrc[0]); } break; case Instruction::SGET_OBJECT: convertSget(cUnit, vB, greenland::IntrinsicHelper::HLSgetObject, rlDest); break; case Instruction::SGET: if (rlDest.fp) { convertSget(cUnit, vB, greenland::IntrinsicHelper::HLSgetFloat, rlDest); } else { convertSget(cUnit, vB, greenland::IntrinsicHelper::HLSget, rlDest); } break; case Instruction::SGET_BOOLEAN: convertSget(cUnit, vB, greenland::IntrinsicHelper::HLSgetBoolean, rlDest); break; case Instruction::SGET_BYTE: convertSget(cUnit, vB, greenland::IntrinsicHelper::HLSgetByte, rlDest); break; case Instruction::SGET_CHAR: convertSget(cUnit, vB, greenland::IntrinsicHelper::HLSgetChar, rlDest); break; case Instruction::SGET_SHORT: convertSget(cUnit, vB, greenland::IntrinsicHelper::HLSgetShort, rlDest); break; case Instruction::SGET_WIDE: if (rlDest.fp) { convertSget(cUnit, vB, greenland::IntrinsicHelper::HLSgetDouble, rlDest); } else { convertSget(cUnit, vB, greenland::IntrinsicHelper::HLSgetWide, rlDest); } break; case Instruction::RETURN_WIDE: case Instruction::RETURN: case Instruction::RETURN_OBJECT: { if (!(cUnit->attrs & METHOD_IS_LEAF)) { emitSuspendCheck(cUnit); } emitPopShadowFrame(cUnit); cUnit->irb->CreateRet(getLLVMValue(cUnit, rlSrc[0].origSReg)); bb->hasReturn = true; } break; case Instruction::RETURN_VOID: { if (!(cUnit->attrs & METHOD_IS_LEAF)) { emitSuspendCheck(cUnit); } emitPopShadowFrame(cUnit); cUnit->irb->CreateRetVoid(); bb->hasReturn = true; } break; case Instruction::IF_EQ: convertCompareAndBranch(cUnit, bb, mir, kCondEq, rlSrc[0], rlSrc[1]); break; case Instruction::IF_NE: convertCompareAndBranch(cUnit, bb, mir, kCondNe, rlSrc[0], rlSrc[1]); break; case Instruction::IF_LT: convertCompareAndBranch(cUnit, bb, mir, kCondLt, rlSrc[0], rlSrc[1]); break; case Instruction::IF_GE: convertCompareAndBranch(cUnit, bb, mir, kCondGe, rlSrc[0], rlSrc[1]); break; case Instruction::IF_GT: convertCompareAndBranch(cUnit, bb, mir, kCondGt, rlSrc[0], rlSrc[1]); break; case Instruction::IF_LE: convertCompareAndBranch(cUnit, bb, mir, kCondLe, rlSrc[0], rlSrc[1]); break; case Instruction::IF_EQZ: convertCompareZeroAndBranch(cUnit, bb, mir, kCondEq, rlSrc[0]); break; case Instruction::IF_NEZ: convertCompareZeroAndBranch(cUnit, bb, mir, kCondNe, rlSrc[0]); break; case Instruction::IF_LTZ: convertCompareZeroAndBranch(cUnit, bb, mir, kCondLt, rlSrc[0]); break; case Instruction::IF_GEZ: convertCompareZeroAndBranch(cUnit, bb, mir, kCondGe, rlSrc[0]); break; case Instruction::IF_GTZ: convertCompareZeroAndBranch(cUnit, bb, mir, kCondGt, rlSrc[0]); break; case Instruction::IF_LEZ: convertCompareZeroAndBranch(cUnit, bb, mir, kCondLe, rlSrc[0]); break; case Instruction::GOTO: case Instruction::GOTO_16: case Instruction::GOTO_32: { if (bb->taken->startOffset <= bb->startOffset) { emitSuspendCheck(cUnit); } cUnit->irb->CreateBr(getLLVMBlock(cUnit, bb->taken->id)); } break; case Instruction::ADD_LONG: case Instruction::ADD_LONG_2ADDR: case Instruction::ADD_INT: case Instruction::ADD_INT_2ADDR: convertArithOp(cUnit, kOpAdd, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::SUB_LONG: case Instruction::SUB_LONG_2ADDR: case Instruction::SUB_INT: case Instruction::SUB_INT_2ADDR: convertArithOp(cUnit, kOpSub, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::MUL_LONG: case Instruction::MUL_LONG_2ADDR: case Instruction::MUL_INT: case Instruction::MUL_INT_2ADDR: convertArithOp(cUnit, kOpMul, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::DIV_LONG: case Instruction::DIV_LONG_2ADDR: case Instruction::DIV_INT: case Instruction::DIV_INT_2ADDR: convertArithOp(cUnit, kOpDiv, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::REM_LONG: case Instruction::REM_LONG_2ADDR: case Instruction::REM_INT: case Instruction::REM_INT_2ADDR: convertArithOp(cUnit, kOpRem, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::AND_LONG: case Instruction::AND_LONG_2ADDR: case Instruction::AND_INT: case Instruction::AND_INT_2ADDR: convertArithOp(cUnit, kOpAnd, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::OR_LONG: case Instruction::OR_LONG_2ADDR: case Instruction::OR_INT: case Instruction::OR_INT_2ADDR: convertArithOp(cUnit, kOpOr, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::XOR_LONG: case Instruction::XOR_LONG_2ADDR: case Instruction::XOR_INT: case Instruction::XOR_INT_2ADDR: convertArithOp(cUnit, kOpXor, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::SHL_LONG: case Instruction::SHL_LONG_2ADDR: convertShift(cUnit, kOpLsl, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::SHL_INT: case Instruction::SHL_INT_2ADDR: convertShift(cUnit, kOpLsl, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::SHR_LONG: case Instruction::SHR_LONG_2ADDR: convertShift(cUnit, kOpAsr, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::SHR_INT: case Instruction::SHR_INT_2ADDR: convertShift(cUnit, kOpAsr, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::USHR_LONG: case Instruction::USHR_LONG_2ADDR: convertShift(cUnit, kOpLsr, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::USHR_INT: case Instruction::USHR_INT_2ADDR: convertShift(cUnit, kOpLsr, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::ADD_INT_LIT16: case Instruction::ADD_INT_LIT8: convertArithOpLit(cUnit, kOpAdd, rlDest, rlSrc[0], vC); break; case Instruction::RSUB_INT: case Instruction::RSUB_INT_LIT8: convertArithOpLit(cUnit, kOpRsub, rlDest, rlSrc[0], vC); break; case Instruction::MUL_INT_LIT16: case Instruction::MUL_INT_LIT8: convertArithOpLit(cUnit, kOpMul, rlDest, rlSrc[0], vC); break; case Instruction::DIV_INT_LIT16: case Instruction::DIV_INT_LIT8: convertArithOpLit(cUnit, kOpDiv, rlDest, rlSrc[0], vC); break; case Instruction::REM_INT_LIT16: case Instruction::REM_INT_LIT8: convertArithOpLit(cUnit, kOpRem, rlDest, rlSrc[0], vC); break; case Instruction::AND_INT_LIT16: case Instruction::AND_INT_LIT8: convertArithOpLit(cUnit, kOpAnd, rlDest, rlSrc[0], vC); break; case Instruction::OR_INT_LIT16: case Instruction::OR_INT_LIT8: convertArithOpLit(cUnit, kOpOr, rlDest, rlSrc[0], vC); break; case Instruction::XOR_INT_LIT16: case Instruction::XOR_INT_LIT8: convertArithOpLit(cUnit, kOpXor, rlDest, rlSrc[0], vC); break; case Instruction::SHL_INT_LIT8: convertArithOpLit(cUnit, kOpLsl, rlDest, rlSrc[0], vC & 0x1f); break; case Instruction::SHR_INT_LIT8: convertArithOpLit(cUnit, kOpLsr, rlDest, rlSrc[0], vC & 0x1f); break; case Instruction::USHR_INT_LIT8: convertArithOpLit(cUnit, kOpAsr, rlDest, rlSrc[0], vC & 0x1f); break; case Instruction::ADD_FLOAT: case Instruction::ADD_FLOAT_2ADDR: case Instruction::ADD_DOUBLE: case Instruction::ADD_DOUBLE_2ADDR: convertFPArithOp(cUnit, kOpAdd, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::SUB_FLOAT: case Instruction::SUB_FLOAT_2ADDR: case Instruction::SUB_DOUBLE: case Instruction::SUB_DOUBLE_2ADDR: convertFPArithOp(cUnit, kOpSub, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::MUL_FLOAT: case Instruction::MUL_FLOAT_2ADDR: case Instruction::MUL_DOUBLE: case Instruction::MUL_DOUBLE_2ADDR: convertFPArithOp(cUnit, kOpMul, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::DIV_FLOAT: case Instruction::DIV_FLOAT_2ADDR: case Instruction::DIV_DOUBLE: case Instruction::DIV_DOUBLE_2ADDR: convertFPArithOp(cUnit, kOpDiv, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::REM_FLOAT: case Instruction::REM_FLOAT_2ADDR: case Instruction::REM_DOUBLE: case Instruction::REM_DOUBLE_2ADDR: convertFPArithOp(cUnit, kOpRem, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::INVOKE_STATIC: convertInvoke(cUnit, bb, mir, kStatic, false /*range*/); break; case Instruction::INVOKE_STATIC_RANGE: convertInvoke(cUnit, bb, mir, kStatic, true /*range*/); break; case Instruction::INVOKE_DIRECT: convertInvoke(cUnit, bb, mir, kDirect, false /*range*/); break; case Instruction::INVOKE_DIRECT_RANGE: convertInvoke(cUnit, bb, mir, kDirect, true /*range*/); break; case Instruction::INVOKE_VIRTUAL: convertInvoke(cUnit, bb, mir, kVirtual, false /*range*/); break; case Instruction::INVOKE_VIRTUAL_RANGE: convertInvoke(cUnit, bb, mir, kVirtual, true /*range*/); break; case Instruction::INVOKE_SUPER: convertInvoke(cUnit, bb, mir, kSuper, false /*range*/); break; case Instruction::INVOKE_SUPER_RANGE: convertInvoke(cUnit, bb, mir, kSuper, true /*range*/); break; case Instruction::INVOKE_INTERFACE: convertInvoke(cUnit, bb, mir, kInterface, false /*range*/); break; case Instruction::INVOKE_INTERFACE_RANGE: convertInvoke(cUnit, bb, mir, kInterface, true /*range*/); break; case Instruction::CONST_STRING: case Instruction::CONST_STRING_JUMBO: convertConstString(cUnit, bb, vB, rlDest); break; case Instruction::NEW_INSTANCE: convertNewInstance(cUnit, vB, rlDest); break; case Instruction::MOVE_EXCEPTION: convertMoveException(cUnit, rlDest); break; case Instruction::THROW: convertThrow(cUnit, rlSrc[0]); break; case Instruction::THROW_VERIFICATION_ERROR: convertThrowVerificationError(cUnit, vA, vB); break; case Instruction::MOVE_RESULT_WIDE: case Instruction::MOVE_RESULT: case Instruction::MOVE_RESULT_OBJECT: CHECK(false) << "Unexpected MOVE_RESULT"; break; case Instruction::MONITOR_ENTER: convertMonitorEnterExit(cUnit, optFlags, greenland::IntrinsicHelper::MonitorEnter, rlSrc[0]); break; case Instruction::MONITOR_EXIT: convertMonitorEnterExit(cUnit, optFlags, greenland::IntrinsicHelper::MonitorExit, rlSrc[0]); break; case Instruction::ARRAY_LENGTH: convertArrayLength(cUnit, optFlags, rlSrc[0]); break; case Instruction::NEW_ARRAY: convertNewArray(cUnit, vC, rlDest, rlSrc[0]); break; case Instruction::INSTANCE_OF: convertInstanceOf(cUnit, vC, rlDest, rlSrc[0]); break; case Instruction::AGET: if (rlDest.fp) { convertAget(cUnit, optFlags, greenland::IntrinsicHelper::HLArrayGetFloat, rlDest, rlSrc[0], rlSrc[1]); } else { convertAget(cUnit, optFlags, greenland::IntrinsicHelper::HLArrayGet, rlDest, rlSrc[0], rlSrc[1]); } break; case Instruction::AGET_OBJECT: convertAget(cUnit, optFlags, greenland::IntrinsicHelper::HLArrayGetObject, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::AGET_BOOLEAN: convertAget(cUnit, optFlags, greenland::IntrinsicHelper::HLArrayGetBoolean, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::AGET_BYTE: convertAget(cUnit, optFlags, greenland::IntrinsicHelper::HLArrayGetByte, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::AGET_CHAR: convertAget(cUnit, optFlags, greenland::IntrinsicHelper::HLArrayGetChar, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::AGET_SHORT: convertAget(cUnit, optFlags, greenland::IntrinsicHelper::HLArrayGetShort, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::AGET_WIDE: if (rlDest.fp) { convertAget(cUnit, optFlags, greenland::IntrinsicHelper::HLArrayGetDouble, rlDest, rlSrc[0], rlSrc[1]); } else { convertAget(cUnit, optFlags, greenland::IntrinsicHelper::HLArrayGetWide, rlDest, rlSrc[0], rlSrc[1]); } break; case Instruction::APUT: if (rlSrc[0].fp) { convertAput(cUnit, optFlags, greenland::IntrinsicHelper::HLArrayPutFloat, rlSrc[0], rlSrc[1], rlSrc[2]); } else { convertAput(cUnit, optFlags, greenland::IntrinsicHelper::HLArrayPut, rlSrc[0], rlSrc[1], rlSrc[2]); } break; case Instruction::APUT_OBJECT: convertAput(cUnit, optFlags, greenland::IntrinsicHelper::HLArrayPutObject, rlSrc[0], rlSrc[1], rlSrc[2]); break; case Instruction::APUT_BOOLEAN: convertAput(cUnit, optFlags, greenland::IntrinsicHelper::HLArrayPutBoolean, rlSrc[0], rlSrc[1], rlSrc[2]); break; case Instruction::APUT_BYTE: convertAput(cUnit, optFlags, greenland::IntrinsicHelper::HLArrayPutByte, rlSrc[0], rlSrc[1], rlSrc[2]); break; case Instruction::APUT_CHAR: convertAput(cUnit, optFlags, greenland::IntrinsicHelper::HLArrayPutChar, rlSrc[0], rlSrc[1], rlSrc[2]); break; case Instruction::APUT_SHORT: convertAput(cUnit, optFlags, greenland::IntrinsicHelper::HLArrayPutShort, rlSrc[0], rlSrc[1], rlSrc[2]); break; case Instruction::APUT_WIDE: if (rlSrc[0].fp) { convertAput(cUnit, optFlags, greenland::IntrinsicHelper::HLArrayPutDouble, rlSrc[0], rlSrc[1], rlSrc[2]); } else { convertAput(cUnit, optFlags, greenland::IntrinsicHelper::HLArrayPutWide, rlSrc[0], rlSrc[1], rlSrc[2]); } break; #if 0 case Instruction::CHECK_CAST: genCheckCast(cUnit, mir, rlSrc[0]); break; case Instruction::CONST_CLASS: genConstClass(cUnit, mir, rlDest, rlSrc[0]); break; case Instruction::FILL_ARRAY_DATA: genFillArrayData(cUnit, mir, rlSrc[0]); break; case Instruction::FILLED_NEW_ARRAY_RANGE: genFilledNewArray(cUnit, mir, true /* range */); break; case Instruction::PACKED_SWITCH: genPackedSwitch(cUnit, mir, rlSrc[0]); break; case Instruction::SPARSE_SWITCH: genSparseSwitch(cUnit, mir, rlSrc[0], labelList); break; case Instruction::CMPL_FLOAT: case Instruction::CMPG_FLOAT: case Instruction::CMPL_DOUBLE: case Instruction::CMPG_DOUBLE: res = genCmpFP(cUnit, mir, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::CMP_LONG: genCmpLong(cUnit, mir, rlDest, rlSrc[0], rlSrc[1]); break; case Instruction::IGET_OBJECT: //case Instruction::IGET_OBJECT_VOLATILE: genIGet(cUnit, mir, kWord, rlDest, rlSrc[0], false, true); break; case Instruction::IGET_WIDE: //case Instruction::IGET_WIDE_VOLATILE: genIGet(cUnit, mir, kLong, rlDest, rlSrc[0], true, false); break; case Instruction::IGET: //case Instruction::IGET_VOLATILE: genIGet(cUnit, mir, kWord, rlDest, rlSrc[0], false, false); break; case Instruction::IGET_CHAR: genIGet(cUnit, mir, kUnsignedHalf, rlDest, rlSrc[0], false, false); break; case Instruction::IGET_SHORT: genIGet(cUnit, mir, kSignedHalf, rlDest, rlSrc[0], false, false); break; case Instruction::IGET_BOOLEAN: case Instruction::IGET_BYTE: genIGet(cUnit, mir, kUnsignedByte, rlDest, rlSrc[0], false, false); break; case Instruction::IPUT_WIDE: //case Instruction::IPUT_WIDE_VOLATILE: genIPut(cUnit, mir, kLong, rlSrc[0], rlSrc[1], true, false); break; case Instruction::IPUT_OBJECT: //case Instruction::IPUT_OBJECT_VOLATILE: genIPut(cUnit, mir, kWord, rlSrc[0], rlSrc[1], false, true); break; case Instruction::IPUT: //case Instruction::IPUT_VOLATILE: genIPut(cUnit, mir, kWord, rlSrc[0], rlSrc[1], false, false); break; case Instruction::IPUT_BOOLEAN: case Instruction::IPUT_BYTE: genIPut(cUnit, mir, kUnsignedByte, rlSrc[0], rlSrc[1], false, false); break; case Instruction::IPUT_CHAR: genIPut(cUnit, mir, kUnsignedHalf, rlSrc[0], rlSrc[1], false, false); break; case Instruction::IPUT_SHORT: genIPut(cUnit, mir, kSignedHalf, rlSrc[0], rlSrc[1], false, false); break; case Instruction::NEG_INT: case Instruction::NOT_INT: res = genArithOpInt(cUnit, mir, rlDest, rlSrc[0], rlSrc[0]); break; case Instruction::NEG_LONG: case Instruction::NOT_LONG: res = genArithOpLong(cUnit, mir, rlDest, rlSrc[0], rlSrc[0]); break; case Instruction::NEG_FLOAT: res = genArithOpFloat(cUnit, mir, rlDest, rlSrc[0], rlSrc[0]); break; case Instruction::NEG_DOUBLE: res = genArithOpDouble(cUnit, mir, rlDest, rlSrc[0], rlSrc[0]); break; case Instruction::INT_TO_LONG: genIntToLong(cUnit, mir, rlDest, rlSrc[0]); break; case Instruction::LONG_TO_INT: rlSrc[0] = oatUpdateLocWide(cUnit, rlSrc[0]); rlSrc[0] = oatWideToNarrow(cUnit, rlSrc[0]); storeValue(cUnit, rlDest, rlSrc[0]); break; case Instruction::INT_TO_BYTE: case Instruction::INT_TO_SHORT: case Instruction::INT_TO_CHAR: genIntNarrowing(cUnit, mir, rlDest, rlSrc[0]); break; case Instruction::INT_TO_FLOAT: case Instruction::INT_TO_DOUBLE: case Instruction::LONG_TO_FLOAT: case Instruction::LONG_TO_DOUBLE: case Instruction::FLOAT_TO_INT: case Instruction::FLOAT_TO_LONG: case Instruction::FLOAT_TO_DOUBLE: case Instruction::DOUBLE_TO_INT: case Instruction::DOUBLE_TO_LONG: case Instruction::DOUBLE_TO_FLOAT: genConversion(cUnit, mir); break; #endif default: UNIMPLEMENTED(FATAL) << "Unsupported Dex opcode 0x" << std::hex << opcode; res = true; } if (objectDefinition) { setShadowFrameEntry(cUnit, (llvm::Value*) cUnit->llvmValues.elemList[rlDest.origSReg]); } return res; } /* Extended MIR instructions like PHI */ void convertExtendedMIR(CompilationUnit* cUnit, BasicBlock* bb, MIR* mir, llvm::BasicBlock* llvmBB) { switch ((ExtendedMIROpcode)mir->dalvikInsn.opcode) { case kMirOpPhi: { int* incoming = (int*)mir->dalvikInsn.vB; RegLocation rlDest = cUnit->regLocation[mir->ssaRep->defs[0]]; llvm::Type* phiType = llvmTypeFromLocRec(cUnit, rlDest); llvm::PHINode* phi = cUnit->irb->CreatePHI(phiType, mir->ssaRep->numUses); for (int i = 0; i < mir->ssaRep->numUses; i++) { RegLocation loc; if (rlDest.wide) { loc = oatGetSrcWide(cUnit, mir, i); i++; } else { loc = oatGetSrc(cUnit, mir, i); } phi->addIncoming(getLLVMValue(cUnit, loc.origSReg), getLLVMBlock(cUnit, incoming[i])); } defineValue(cUnit, phi, rlDest.origSReg); break; } case kMirOpCopy: { UNIMPLEMENTED(WARNING) << "unimp kMirOpPhi"; break; } #if defined(TARGET_ARM) case kMirOpFusedCmplFloat: UNIMPLEMENTED(WARNING) << "unimp kMirOpFusedCmpFloat"; break; case kMirOpFusedCmpgFloat: UNIMPLEMENTED(WARNING) << "unimp kMirOpFusedCmgFloat"; break; case kMirOpFusedCmplDouble: UNIMPLEMENTED(WARNING) << "unimp kMirOpFusedCmplDouble"; break; case kMirOpFusedCmpgDouble: UNIMPLEMENTED(WARNING) << "unimp kMirOpFusedCmpgDouble"; break; case kMirOpFusedCmpLong: UNIMPLEMENTED(WARNING) << "unimp kMirOpLongCmpBranch"; break; #endif default: break; } } void setDexOffset(CompilationUnit* cUnit, int32_t offset) { cUnit->currentDalvikOffset = offset; llvm::SmallVectorarrayRef; arrayRef.push_back(cUnit->irb->getInt32(offset)); llvm::MDNode* node = llvm::MDNode::get(*cUnit->context, arrayRef); cUnit->irb->SetDexOffset(node); } // Attach method info as metadata to special intrinsic void setMethodInfo(CompilationUnit* cUnit) { // We don't want dex offset on this cUnit->irb->SetDexOffset(NULL); greenland::IntrinsicHelper::IntrinsicId id; id = greenland::IntrinsicHelper::MethodInfo; llvm::Function* intr = cUnit->intrinsic_helper->GetIntrinsicFunction(id); llvm::Instruction* inst = cUnit->irb->CreateCall(intr); llvm::SmallVector regInfo; regInfo.push_back(cUnit->irb->getInt32(cUnit->numIns)); regInfo.push_back(cUnit->irb->getInt32(cUnit->numRegs)); regInfo.push_back(cUnit->irb->getInt32(cUnit->numOuts)); regInfo.push_back(cUnit->irb->getInt32(cUnit->numCompilerTemps)); regInfo.push_back(cUnit->irb->getInt32(cUnit->numSSARegs)); llvm::MDNode* regInfoNode = llvm::MDNode::get(*cUnit->context, regInfo); inst->setMetadata("RegInfo", regInfoNode); int promoSize = cUnit->numDalvikRegisters + cUnit->numCompilerTemps + 1; llvm::SmallVector pmap; for (int i = 0; i < promoSize; i++) { PromotionMap* p = &cUnit->promotionMap[i]; int32_t mapData = ((p->firstInPair & 0xff) << 24) | ((p->fpReg & 0xff) << 16) | ((p->coreReg & 0xff) << 8) | ((p->fpLocation & 0xf) << 4) | (p->coreLocation & 0xf); pmap.push_back(cUnit->irb->getInt32(mapData)); } llvm::MDNode* mapNode = llvm::MDNode::get(*cUnit->context, pmap); inst->setMetadata("PromotionMap", mapNode); setDexOffset(cUnit, cUnit->currentDalvikOffset); } /* Handle the content in each basic block */ bool methodBlockBitcodeConversion(CompilationUnit* cUnit, BasicBlock* bb) { llvm::BasicBlock* llvmBB = getLLVMBlock(cUnit, bb->id); cUnit->irb->SetInsertPoint(llvmBB); setDexOffset(cUnit, bb->startOffset); if (bb->blockType == kEntryBlock) { setMethodInfo(cUnit); bool *canBeRef = (bool*) oatNew(cUnit, sizeof(bool) * cUnit->numDalvikRegisters, true, kAllocMisc); for (int i = 0; i < cUnit->numSSARegs; i++) { canBeRef[SRegToVReg(cUnit, i)] |= cUnit->regLocation[i].ref; } for (int i = 0; i < cUnit->numDalvikRegisters; i++) { if (canBeRef[i]) { cUnit->numShadowFrameEntries++; } } if (cUnit->numShadowFrameEntries > 0) { cUnit->shadowMap = (int*) oatNew(cUnit, sizeof(int) * cUnit->numShadowFrameEntries, true, kAllocMisc); for (int i = 0, j = 0; i < cUnit->numDalvikRegisters; i++) { if (canBeRef[i]) { cUnit->shadowMap[j++] = i; } } greenland::IntrinsicHelper::IntrinsicId id = greenland::IntrinsicHelper::AllocaShadowFrame; llvm::Function* func = cUnit->intrinsic_helper->GetIntrinsicFunction(id); llvm::Value* entries = cUnit->irb->getInt32(cUnit->numShadowFrameEntries); cUnit->irb->CreateCall(func, entries); } } else if (bb->blockType == kExitBlock) { /* * Because of the differences between how MIR/LIR and llvm handle exit * blocks, we won't explicitly covert them. On the llvm-to-lir * path, it will need to be regenereated. */ return false; } else if (bb->blockType == kExceptionHandling) { /* * Because we're deferring null checking, delete the associated empty * exception block. * TODO: add new block type for exception blocks that we generate * greenland code for. */ llvmBB->eraseFromParent(); return false; } for (MIR* mir = bb->firstMIRInsn; mir; mir = mir->next) { setDexOffset(cUnit, mir->offset); Instruction::Code dalvikOpcode = mir->dalvikInsn.opcode; Instruction::Format dalvikFormat = Instruction::FormatOf(dalvikOpcode); /* If we're compiling for the debugger, generate an update callout */ if (cUnit->genDebugger) { UNIMPLEMENTED(FATAL) << "Need debug codegen"; //genDebuggerUpdate(cUnit, mir->offset); } if ((int)mir->dalvikInsn.opcode >= (int)kMirOpFirst) { convertExtendedMIR(cUnit, bb, mir, llvmBB); continue; } bool notHandled = convertMIRNode(cUnit, mir, bb, llvmBB, NULL /* labelList */); if (notHandled) { LOG(WARNING) << StringPrintf("%#06x: Op %#x (%s) / Fmt %d not handled", mir->offset, dalvikOpcode, Instruction::Name(dalvikOpcode), dalvikFormat); } } if ((bb->fallThrough != NULL) && !bb->hasReturn) { cUnit->irb->CreateBr(getLLVMBlock(cUnit, bb->fallThrough->id)); } return false; } llvm::FunctionType* getFunctionType(CompilationUnit* cUnit) { // Get return type llvm::Type* ret_type = cUnit->irb->GetJType(cUnit->shorty[0], greenland::kAccurate); // Get argument type std::vector args_type; // method object args_type.push_back(cUnit->irb->GetJMethodTy()); // Do we have a "this"? if ((cUnit->access_flags & kAccStatic) == 0) { args_type.push_back(cUnit->irb->GetJObjectTy()); } for (uint32_t i = 1; i < strlen(cUnit->shorty); ++i) { args_type.push_back(cUnit->irb->GetJType(cUnit->shorty[i], greenland::kAccurate)); } return llvm::FunctionType::get(ret_type, args_type, false); } bool createFunction(CompilationUnit* cUnit) { std::string func_name(PrettyMethod(cUnit->method_idx, *cUnit->dex_file, /* with_signature */ false)); llvm::FunctionType* func_type = getFunctionType(cUnit); if (func_type == NULL) { return false; } cUnit->func = llvm::Function::Create(func_type, llvm::Function::ExternalLinkage, func_name, cUnit->module); llvm::Function::arg_iterator arg_iter(cUnit->func->arg_begin()); llvm::Function::arg_iterator arg_end(cUnit->func->arg_end()); arg_iter->setName("method"); ++arg_iter; int startSReg = cUnit->numRegs; for (unsigned i = 0; arg_iter != arg_end; ++i, ++arg_iter) { arg_iter->setName(StringPrintf("v%i_0", startSReg)); startSReg += cUnit->regLocation[startSReg].wide ? 2 : 1; } return true; } bool createLLVMBasicBlock(CompilationUnit* cUnit, BasicBlock* bb) { // Skip the exit block if (bb->blockType == kExitBlock) { cUnit->idToBlockMap.Put(bb->id, NULL); } else { int offset = bb->startOffset; bool entryBlock = (bb->blockType == kEntryBlock); llvm::BasicBlock* llvmBB = llvm::BasicBlock::Create(*cUnit->context, entryBlock ? "entry" : StringPrintf(kLabelFormat, offset, bb->id), cUnit->func); if (entryBlock) { cUnit->entryBB = llvmBB; cUnit->placeholderBB = llvm::BasicBlock::Create(*cUnit->context, "placeholder", cUnit->func); } cUnit->idToBlockMap.Put(bb->id, llvmBB); } return false; } /* * Convert MIR to LLVM_IR * o For each ssa name, create LLVM named value. Type these * appropriately, and ignore high half of wide and double operands. * o For each MIR basic block, create an LLVM basic block. * o Iterate through the MIR a basic block at a time, setting arguments * to recovered ssa name. */ void oatMethodMIR2Bitcode(CompilationUnit* cUnit) { initIR(cUnit); oatInitGrowableList(cUnit, &cUnit->llvmValues, cUnit->numSSARegs); // Create the function createFunction(cUnit); // Create an LLVM basic block for each MIR block in dfs preorder oatDataFlowAnalysisDispatcher(cUnit, createLLVMBasicBlock, kPreOrderDFSTraversal, false /* isIterative */); /* * Create an llvm named value for each MIR SSA name. Note: we'll use * placeholders for all non-argument values (because we haven't seen * the definition yet). */ cUnit->irb->SetInsertPoint(cUnit->placeholderBB); llvm::Function::arg_iterator arg_iter(cUnit->func->arg_begin()); arg_iter++; /* Skip path method */ for (int i = 0; i < cUnit->numSSARegs; i++) { llvm::Value* val; llvm::Type* ty = llvmTypeFromLocRec(cUnit, cUnit->regLocation[i]); if (i < cUnit->numRegs) { // Skip non-argument _0 names - should never be a use oatInsertGrowableList(cUnit, &cUnit->llvmValues, (intptr_t)0); } else if (i >= (cUnit->numRegs + cUnit->numIns)) { // Handle SSA defs, skipping Method* and compiler temps if (SRegToVReg(cUnit, i) < 0) { val = NULL; } else { val = cUnit->irb->CreateLoad(cUnit->irb->CreateAlloca(ty, 0)); val->setName(llvmSSAName(cUnit, i)); } oatInsertGrowableList(cUnit, &cUnit->llvmValues, (intptr_t)val); if (cUnit->regLocation[i].wide) { // Skip high half of wide values oatInsertGrowableList(cUnit, &cUnit->llvmValues, 0); i++; } } else { // Recover previously-created argument values llvm::Value* argVal = arg_iter++; oatInsertGrowableList(cUnit, &cUnit->llvmValues, (intptr_t)argVal); } } cUnit->irb->CreateBr(cUnit->placeholderBB); oatDataFlowAnalysisDispatcher(cUnit, methodBlockBitcodeConversion, kPreOrderDFSTraversal, false /* Iterative */); cUnit->placeholderBB->eraseFromParent(); llvm::verifyFunction(*cUnit->func, llvm::PrintMessageAction); if (cUnit->enableDebug & (1 << kDebugDumpBitcodeFile)) { // Write bitcode to file std::string errmsg; std::string fname(PrettyMethod(cUnit->method_idx, *cUnit->dex_file)); oatReplaceSpecialChars(fname); // TODO: make configurable fname = StringPrintf("/sdcard/Bitcode/%s.bc", fname.c_str()); llvm::OwningPtr out_file( new llvm::tool_output_file(fname.c_str(), errmsg, llvm::raw_fd_ostream::F_Binary)); if (!errmsg.empty()) { LOG(ERROR) << "Failed to create bitcode output file: " << errmsg; } llvm::WriteBitcodeToFile(cUnit->module, out_file->os()); out_file->keep(); } } RegLocation getLoc(CompilationUnit* cUnit, llvm::Value* val) { RegLocation res; DCHECK(val != NULL); SafeMap::iterator it = cUnit->locMap.find(val); if (it == cUnit->locMap.end()) { std::string valName = val->getName().str(); if (valName.empty()) { UNIMPLEMENTED(WARNING) << "Need to handle unnamed llvm temps"; memset(&res, 0, sizeof(res)); res.location = kLocPhysReg; res.lowReg = oatAllocTemp(cUnit); res.home = true; res.sRegLow = INVALID_SREG; res.origSReg = INVALID_SREG; cUnit->locMap.Put(val, res); } else { DCHECK_EQ(valName[0], 'v'); int baseSReg = INVALID_SREG; sscanf(valName.c_str(), "v%d_", &baseSReg); res = cUnit->regLocation[baseSReg]; cUnit->locMap.Put(val, res); } } else { res = it->second; } return res; } Instruction::Code getDalvikOpcode(OpKind op, bool isConst, bool isWide) { Instruction::Code res = Instruction::NOP; if (isWide) { switch(op) { case kOpAdd: res = Instruction::ADD_LONG; break; case kOpSub: res = Instruction::SUB_LONG; break; case kOpMul: res = Instruction::MUL_LONG; break; case kOpDiv: res = Instruction::DIV_LONG; break; case kOpRem: res = Instruction::REM_LONG; break; case kOpAnd: res = Instruction::AND_LONG; break; case kOpOr: res = Instruction::OR_LONG; break; case kOpXor: res = Instruction::XOR_LONG; break; case kOpLsl: res = Instruction::SHL_LONG; break; case kOpLsr: res = Instruction::USHR_LONG; break; case kOpAsr: res = Instruction::SHR_LONG; break; default: LOG(FATAL) << "Unexpected OpKind " << op; } } else if (isConst){ switch(op) { case kOpAdd: res = Instruction::ADD_INT_LIT16; break; case kOpSub: res = Instruction::RSUB_INT_LIT8; break; case kOpMul: res = Instruction::MUL_INT_LIT16; break; case kOpDiv: res = Instruction::DIV_INT_LIT16; break; case kOpRem: res = Instruction::REM_INT_LIT16; break; case kOpAnd: res = Instruction::AND_INT_LIT16; break; case kOpOr: res = Instruction::OR_INT_LIT16; break; case kOpXor: res = Instruction::XOR_INT_LIT16; break; case kOpLsl: res = Instruction::SHL_INT_LIT8; break; case kOpLsr: res = Instruction::USHR_INT_LIT8; break; case kOpAsr: res = Instruction::SHR_INT_LIT8; break; default: LOG(FATAL) << "Unexpected OpKind " << op; } } else { switch(op) { case kOpAdd: res = Instruction::ADD_INT; break; case kOpSub: res = Instruction::SUB_INT; break; case kOpMul: res = Instruction::MUL_INT; break; case kOpDiv: res = Instruction::DIV_INT; break; case kOpRem: res = Instruction::REM_INT; break; case kOpAnd: res = Instruction::AND_INT; break; case kOpOr: res = Instruction::OR_INT; break; case kOpXor: res = Instruction::XOR_INT; break; case kOpLsl: res = Instruction::SHL_INT; break; case kOpLsr: res = Instruction::USHR_INT; break; case kOpAsr: res = Instruction::SHR_INT; break; default: LOG(FATAL) << "Unexpected OpKind " << op; } } return res; } Instruction::Code getDalvikFPOpcode(OpKind op, bool isConst, bool isWide) { Instruction::Code res = Instruction::NOP; if (isWide) { switch(op) { case kOpAdd: res = Instruction::ADD_DOUBLE; break; case kOpSub: res = Instruction::SUB_DOUBLE; break; case kOpMul: res = Instruction::MUL_DOUBLE; break; case kOpDiv: res = Instruction::DIV_DOUBLE; break; case kOpRem: res = Instruction::REM_DOUBLE; break; default: LOG(FATAL) << "Unexpected OpKind " << op; } } else { switch(op) { case kOpAdd: res = Instruction::ADD_FLOAT; break; case kOpSub: res = Instruction::SUB_FLOAT; break; case kOpMul: res = Instruction::MUL_FLOAT; break; case kOpDiv: res = Instruction::DIV_FLOAT; break; case kOpRem: res = Instruction::REM_FLOAT; break; default: LOG(FATAL) << "Unexpected OpKind " << op; } } return res; } void cvtBinFPOp(CompilationUnit* cUnit, OpKind op, llvm::Instruction* inst) { RegLocation rlDest = getLoc(cUnit, inst); RegLocation rlSrc1 = getLoc(cUnit, inst->getOperand(0)); RegLocation rlSrc2 = getLoc(cUnit, inst->getOperand(1)); Instruction::Code dalvikOp = getDalvikFPOpcode(op, false, rlDest.wide); if (rlDest.wide) { genArithOpDouble(cUnit, dalvikOp, rlDest, rlSrc1, rlSrc2); } else { genArithOpFloat(cUnit, dalvikOp, rlDest, rlSrc1, rlSrc2); } } void cvtBinOp(CompilationUnit* cUnit, OpKind op, llvm::Instruction* inst) { RegLocation rlDest = getLoc(cUnit, inst); llvm::Value* lhs = inst->getOperand(0); // Special-case RSUB llvm::ConstantInt* lhsImm = llvm::dyn_cast(lhs); if ((op == kOpSub) && (lhsImm != NULL)) { RegLocation rlSrc1 = getLoc(cUnit, inst->getOperand(1)); genArithOpIntLit(cUnit, Instruction::RSUB_INT, rlDest, rlSrc1, lhsImm->getSExtValue()); return; } DCHECK(lhsImm == NULL); RegLocation rlSrc1 = getLoc(cUnit, inst->getOperand(0)); llvm::Value* rhs = inst->getOperand(1); if (llvm::ConstantInt* src2 = llvm::dyn_cast(rhs)) { Instruction::Code dalvikOp = getDalvikOpcode(op, true, false); genArithOpIntLit(cUnit, dalvikOp, rlDest, rlSrc1, src2->getSExtValue()); } else { Instruction::Code dalvikOp = getDalvikOpcode(op, false, rlDest.wide); RegLocation rlSrc2 = getLoc(cUnit, rhs); if (rlDest.wide) { genArithOpLong(cUnit, dalvikOp, rlDest, rlSrc1, rlSrc2); } else { genArithOpInt(cUnit, dalvikOp, rlDest, rlSrc1, rlSrc2); } } } void cvtBr(CompilationUnit* cUnit, llvm::Instruction* inst) { llvm::BranchInst* brInst = llvm::dyn_cast(inst); DCHECK(brInst != NULL); DCHECK(brInst->isUnconditional()); // May change - but this is all we use now llvm::BasicBlock* targetBB = brInst->getSuccessor(0); opUnconditionalBranch(cUnit, cUnit->blockToLabelMap.Get(targetBB)); } void cvtPhi(CompilationUnit* cUnit, llvm::Instruction* inst) { // Nop - these have already been processed } void cvtRet(CompilationUnit* cUnit, llvm::Instruction* inst) { llvm::ReturnInst* retInst = llvm::dyn_cast(inst); llvm::Value* retVal = retInst->getReturnValue(); if (retVal != NULL) { RegLocation rlSrc = getLoc(cUnit, retVal); if (rlSrc.wide) { storeValueWide(cUnit, oatGetReturnWide(cUnit, rlSrc.fp), rlSrc); } else { storeValue(cUnit, oatGetReturn(cUnit, rlSrc.fp), rlSrc); } } genExitSequence(cUnit); } ConditionCode getCond(llvm::ICmpInst::Predicate llvmCond) { ConditionCode res = kCondAl; switch(llvmCond) { case llvm::ICmpInst::ICMP_EQ: res = kCondEq; break; case llvm::ICmpInst::ICMP_NE: res = kCondNe; break; case llvm::ICmpInst::ICMP_SLT: res = kCondLt; break; case llvm::ICmpInst::ICMP_SGE: res = kCondGe; break; case llvm::ICmpInst::ICMP_SGT: res = kCondGt; break; case llvm::ICmpInst::ICMP_SLE: res = kCondLe; break; default: LOG(FATAL) << "Unexpected llvm condition"; } return res; } void cvtICmp(CompilationUnit* cUnit, llvm::Instruction* inst) { // genCmpLong(cUnit, rlDest, rlSrc1, rlSrc2) UNIMPLEMENTED(FATAL); } void cvtICmpBr(CompilationUnit* cUnit, llvm::Instruction* inst, llvm::BranchInst* brInst) { // Get targets llvm::BasicBlock* takenBB = brInst->getSuccessor(0); LIR* taken = cUnit->blockToLabelMap.Get(takenBB); llvm::BasicBlock* fallThroughBB = brInst->getSuccessor(1); LIR* fallThrough = cUnit->blockToLabelMap.Get(fallThroughBB); // Get comparison operands llvm::ICmpInst* iCmpInst = llvm::dyn_cast(inst); ConditionCode cond = getCond(iCmpInst->getPredicate()); llvm::Value* lhs = iCmpInst->getOperand(0); // Not expecting a constant as 1st operand DCHECK(llvm::dyn_cast(lhs) == NULL); RegLocation rlSrc1 = getLoc(cUnit, inst->getOperand(0)); rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg); llvm::Value* rhs = inst->getOperand(1); #if defined(TARGET_MIPS) // Compare and branch in one shot (void)taken; (void)cond; (void)rhs; UNIMPLEMENTED(FATAL); #else //Compare, then branch // TODO: handle fused CMP_LONG/IF_xxZ case if (llvm::ConstantInt* src2 = llvm::dyn_cast(rhs)) { opRegImm(cUnit, kOpCmp, rlSrc1.lowReg, src2->getSExtValue()); } else { RegLocation rlSrc2 = getLoc(cUnit, rhs); rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg); opRegReg(cUnit, kOpCmp, rlSrc1.lowReg, rlSrc2.lowReg); } opCondBranch(cUnit, cond, taken); #endif // Fallthrough opUnconditionalBranch(cUnit, fallThrough); } void cvtCall(CompilationUnit* cUnit, llvm::CallInst* callInst, llvm::Function* callee) { UNIMPLEMENTED(FATAL); } void cvtCopy(CompilationUnit* cUnit, llvm::CallInst* callInst) { DCHECK_EQ(callInst->getNumArgOperands(), 1U); RegLocation rlSrc = getLoc(cUnit, callInst->getArgOperand(0)); RegLocation rlDest = getLoc(cUnit, callInst); if (rlSrc.wide) { storeValueWide(cUnit, rlDest, rlSrc); } else { storeValue(cUnit, rlDest, rlSrc); } } // Note: Immediate arg is a ConstantInt regardless of result type void cvtConst(CompilationUnit* cUnit, llvm::CallInst* callInst) { DCHECK_EQ(callInst->getNumArgOperands(), 1U); llvm::ConstantInt* src = llvm::dyn_cast(callInst->getArgOperand(0)); uint64_t immval = src->getZExtValue(); RegLocation rlDest = getLoc(cUnit, callInst); RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kAnyReg, true); if (rlDest.wide) { loadConstantValueWide(cUnit, rlResult.lowReg, rlResult.highReg, (immval) & 0xffffffff, (immval >> 32) & 0xffffffff); storeValueWide(cUnit, rlDest, rlResult); } else { loadConstantNoClobber(cUnit, rlResult.lowReg, immval & 0xffffffff); storeValue(cUnit, rlDest, rlResult); } } void cvtConstString(CompilationUnit* cUnit, llvm::CallInst* callInst) { DCHECK_EQ(callInst->getNumArgOperands(), 1U); llvm::ConstantInt* stringIdxVal = llvm::dyn_cast(callInst->getArgOperand(0)); uint32_t stringIdx = stringIdxVal->getZExtValue(); RegLocation rlDest = getLoc(cUnit, callInst); genConstString(cUnit, stringIdx, rlDest); } void cvtNewInstance(CompilationUnit* cUnit, llvm::CallInst* callInst) { DCHECK_EQ(callInst->getNumArgOperands(), 1U); llvm::ConstantInt* typeIdxVal = llvm::dyn_cast(callInst->getArgOperand(0)); uint32_t typeIdx = typeIdxVal->getZExtValue(); RegLocation rlDest = getLoc(cUnit, callInst); genNewInstance(cUnit, typeIdx, rlDest); } void cvtNewArray(CompilationUnit* cUnit, llvm::CallInst* callInst) { DCHECK_EQ(callInst->getNumArgOperands(), 2U); llvm::ConstantInt* typeIdxVal = llvm::dyn_cast(callInst->getArgOperand(0)); uint32_t typeIdx = typeIdxVal->getZExtValue(); llvm::Value* len = callInst->getArgOperand(1); RegLocation rlLen = getLoc(cUnit, len); RegLocation rlDest = getLoc(cUnit, callInst); genNewArray(cUnit, typeIdx, rlDest, rlLen); } void cvtInstanceOf(CompilationUnit* cUnit, llvm::CallInst* callInst) { DCHECK_EQ(callInst->getNumArgOperands(), 2U); llvm::ConstantInt* typeIdxVal = llvm::dyn_cast(callInst->getArgOperand(0)); uint32_t typeIdx = typeIdxVal->getZExtValue(); llvm::Value* src = callInst->getArgOperand(1); RegLocation rlSrc = getLoc(cUnit, src); RegLocation rlDest = getLoc(cUnit, callInst); genInstanceof(cUnit, typeIdx, rlDest, rlSrc); } void cvtThrowVerificationError(CompilationUnit* cUnit, llvm::CallInst* callInst) { DCHECK_EQ(callInst->getNumArgOperands(), 2U); llvm::ConstantInt* info1 = llvm::dyn_cast(callInst->getArgOperand(0)); llvm::ConstantInt* info2 = llvm::dyn_cast(callInst->getArgOperand(1)); genThrowVerificationError(cUnit, info1->getZExtValue(), info2->getZExtValue()); } void cvtThrow(CompilationUnit* cUnit, llvm::CallInst* callInst) { DCHECK_EQ(callInst->getNumArgOperands(), 1U); llvm::Value* src = callInst->getArgOperand(0); RegLocation rlSrc = getLoc(cUnit, src); genThrow(cUnit, rlSrc); } void cvtMonitorEnterExit(CompilationUnit* cUnit, bool isEnter, llvm::CallInst* callInst) { DCHECK_EQ(callInst->getNumArgOperands(), 2U); llvm::ConstantInt* optFlags = llvm::dyn_cast(callInst->getArgOperand(0)); llvm::Value* src = callInst->getArgOperand(1); RegLocation rlSrc = getLoc(cUnit, src); if (isEnter) { genMonitorEnter(cUnit, optFlags->getZExtValue(), rlSrc); } else { genMonitorExit(cUnit, optFlags->getZExtValue(), rlSrc); } } void cvtMonitorArrayLength(CompilationUnit* cUnit, llvm::CallInst* callInst) { DCHECK_EQ(callInst->getNumArgOperands(), 2U); llvm::ConstantInt* optFlags = llvm::dyn_cast(callInst->getArgOperand(0)); llvm::Value* src = callInst->getArgOperand(1); RegLocation rlSrc = getLoc(cUnit, src); rlSrc = loadValue(cUnit, rlSrc, kCoreReg); genNullCheck(cUnit, rlSrc.sRegLow, rlSrc.lowReg, optFlags->getZExtValue()); RegLocation rlDest = getLoc(cUnit, callInst); RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); int lenOffset = Array::LengthOffset().Int32Value(); loadWordDisp(cUnit, rlSrc.lowReg, lenOffset, rlResult.lowReg); storeValue(cUnit, rlDest, rlResult); } void cvtMoveException(CompilationUnit* cUnit, llvm::CallInst* callInst) { DCHECK_EQ(callInst->getNumArgOperands(), 0U); int exOffset = Thread::ExceptionOffset().Int32Value(); RegLocation rlDest = getLoc(cUnit, callInst); RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); #if defined(TARGET_X86) newLIR2(cUnit, kX86Mov32RT, rlResult.lowReg, exOffset); newLIR2(cUnit, kX86Mov32TI, exOffset, 0); #else int resetReg = oatAllocTemp(cUnit); loadWordDisp(cUnit, rSELF, exOffset, rlResult.lowReg); loadConstant(cUnit, resetReg, 0); storeWordDisp(cUnit, rSELF, exOffset, resetReg); oatFreeTemp(cUnit, resetReg); #endif storeValue(cUnit, rlDest, rlResult); } void cvtSget(CompilationUnit* cUnit, llvm::CallInst* callInst, bool isWide, bool isObject) { DCHECK_EQ(callInst->getNumArgOperands(), 1U); llvm::ConstantInt* typeIdxVal = llvm::dyn_cast(callInst->getArgOperand(0)); uint32_t typeIdx = typeIdxVal->getZExtValue(); RegLocation rlDest = getLoc(cUnit, callInst); genSget(cUnit, typeIdx, rlDest, isWide, isObject); } void cvtSput(CompilationUnit* cUnit, llvm::CallInst* callInst, bool isWide, bool isObject) { DCHECK_EQ(callInst->getNumArgOperands(), 2U); llvm::ConstantInt* typeIdxVal = llvm::dyn_cast(callInst->getArgOperand(0)); uint32_t typeIdx = typeIdxVal->getZExtValue(); llvm::Value* src = callInst->getArgOperand(1); RegLocation rlSrc = getLoc(cUnit, src); genSput(cUnit, typeIdx, rlSrc, isWide, isObject); } void cvtAget(CompilationUnit* cUnit, llvm::CallInst* callInst, OpSize size, int scale) { DCHECK_EQ(callInst->getNumArgOperands(), 3U); llvm::ConstantInt* optFlags = llvm::dyn_cast(callInst->getArgOperand(0)); RegLocation rlArray = getLoc(cUnit, callInst->getArgOperand(1)); RegLocation rlIndex = getLoc(cUnit, callInst->getArgOperand(2)); RegLocation rlDest = getLoc(cUnit, callInst); genArrayGet(cUnit, optFlags->getZExtValue(), size, rlArray, rlIndex, rlDest, scale); } void cvtAput(CompilationUnit* cUnit, llvm::CallInst* callInst, OpSize size, int scale) { DCHECK_EQ(callInst->getNumArgOperands(), 4U); llvm::ConstantInt* optFlags = llvm::dyn_cast(callInst->getArgOperand(0)); RegLocation rlSrc = getLoc(cUnit, callInst->getArgOperand(1)); RegLocation rlArray = getLoc(cUnit, callInst->getArgOperand(2)); RegLocation rlIndex = getLoc(cUnit, callInst->getArgOperand(3)); genArrayPut(cUnit, optFlags->getZExtValue(), size, rlArray, rlIndex, rlSrc, scale); } void cvtInvoke(CompilationUnit* cUnit, llvm::CallInst* callInst, bool isVoid) { CallInfo* info = (CallInfo*)oatNew(cUnit, sizeof(CallInfo), true, kAllocMisc); if (isVoid) { info->result.location = kLocInvalid; } else { info->result = getLoc(cUnit, callInst); } llvm::ConstantInt* invokeTypeVal = llvm::dyn_cast(callInst->getArgOperand(0)); llvm::ConstantInt* methodIndexVal = llvm::dyn_cast(callInst->getArgOperand(1)); llvm::ConstantInt* optFlagsVal = llvm::dyn_cast(callInst->getArgOperand(2)); info->type = static_cast(invokeTypeVal->getZExtValue()); info->index = methodIndexVal->getZExtValue(); info->optFlags = optFlagsVal->getZExtValue(); info->offset = cUnit->currentDalvikOffset; // FIXME - rework such that we no longer need isRange info->isRange = false; // Count the argument words, and then build argument array. info->numArgWords = 0; for (unsigned int i = 3; i < callInst->getNumArgOperands(); i++) { RegLocation tLoc = getLoc(cUnit, callInst->getArgOperand(i)); info->numArgWords += tLoc.wide ? 2 : 1; } info->args = (info->numArgWords == 0) ? NULL : (RegLocation*) oatNew(cUnit, sizeof(RegLocation) * info->numArgWords, false, kAllocMisc); // Now, fill in the location records, synthesizing high loc of wide vals for (int i = 3, next = 0; next < info->numArgWords;) { info->args[next] = getLoc(cUnit, callInst->getArgOperand(i++)); if (cUnit->printMe) { oatDumpRegLoc(info->args[next]); } if (info->args[next].wide) { next++; // TODO: Might make sense to mark this as an invalid loc info->args[next].origSReg = info->args[next-1].origSReg+1; info->args[next].sRegLow = info->args[next-1].sRegLow+1; } next++; } genInvoke(cUnit, info); } /* Look up the RegLocation associated with a Value. Must already be defined */ RegLocation valToLoc(CompilationUnit* cUnit, llvm::Value* val) { SafeMap::iterator it = cUnit->locMap.find(val); DCHECK(it != cUnit->locMap.end()) << "Missing definition"; return it->second; } bool methodBitcodeBlockCodeGen(CompilationUnit* cUnit, llvm::BasicBlock* bb) { bool isEntry = (bb == &cUnit->func->getEntryBlock()); // Define the starting label LIR* blockLabel = cUnit->blockToLabelMap.Get(bb); // Extract the starting offset from the block's name if (!isEntry) { const char* blockName = bb->getName().str().c_str(); int dummy; sscanf(blockName, kLabelFormat, &blockLabel->operands[0], &dummy); } // Set the label kind blockLabel->opcode = kPseudoNormalBlockLabel; // Insert the label oatAppendLIR(cUnit, blockLabel); // Free temp registers and reset redundant store tracking */ oatResetRegPool(cUnit); oatResetDefTracking(cUnit); //TODO: restore oat incoming liveness optimization oatClobberAllRegs(cUnit); LIR* headLIR = NULL; if (isEntry) { cUnit->currentDalvikOffset = 0; RegLocation* argLocs = (RegLocation*) oatNew(cUnit, sizeof(RegLocation) * cUnit->numIns, true, kAllocMisc); llvm::Function::arg_iterator it(cUnit->func->arg_begin()); llvm::Function::arg_iterator it_end(cUnit->func->arg_end()); for (unsigned i = 0; it != it_end; ++it) { llvm::Value* val = it; argLocs[i++] = valToLoc(cUnit, val); llvm::Type* ty = val->getType(); if ((ty == cUnit->irb->getInt64Ty()) || (ty == cUnit->irb->getDoubleTy())) { argLocs[i++].sRegLow = INVALID_SREG; } } genEntrySequence(cUnit, argLocs, cUnit->methodLoc); } // Visit all of the instructions in the block for (llvm::BasicBlock::iterator it = bb->begin(), e = bb->end(); it != e;) { llvm::Instruction* inst = it; llvm::BasicBlock::iterator nextIt = ++it; // Extract the Dalvik offset from the instruction uint32_t opcode = inst->getOpcode(); llvm::MDNode* dexOffsetNode = inst->getMetadata("DexOff"); if (dexOffsetNode != NULL) { llvm::ConstantInt* dexOffsetValue = static_cast(dexOffsetNode->getOperand(0)); cUnit->currentDalvikOffset = dexOffsetValue->getZExtValue(); } oatResetRegPool(cUnit); if (cUnit->disableOpt & (1 << kTrackLiveTemps)) { oatClobberAllRegs(cUnit); } if (cUnit->disableOpt & (1 << kSuppressLoads)) { oatResetDefTracking(cUnit); } #ifndef NDEBUG /* Reset temp tracking sanity check */ cUnit->liveSReg = INVALID_SREG; #endif LIR* boundaryLIR; const char* instStr = "boundary"; boundaryLIR = newLIR1(cUnit, kPseudoDalvikByteCodeBoundary, (intptr_t) instStr); cUnit->boundaryMap.Overwrite(cUnit->currentDalvikOffset, boundaryLIR); /* Remember the first LIR for thisl block*/ if (headLIR == NULL) { headLIR = boundaryLIR; headLIR->defMask = ENCODE_ALL; } switch(opcode) { case llvm::Instruction::ICmp: { llvm::Instruction* nextInst = nextIt; llvm::BranchInst* brInst = llvm::dyn_cast(nextInst); if (brInst != NULL /* and... */) { cvtICmpBr(cUnit, inst, brInst); ++it; } else { cvtICmp(cUnit, inst); } } break; case llvm::Instruction::Call: { llvm::CallInst* callInst = llvm::dyn_cast(inst); llvm::Function* callee = callInst->getCalledFunction(); greenland::IntrinsicHelper::IntrinsicId id = cUnit->intrinsic_helper->GetIntrinsicId(callee); switch (id) { case greenland::IntrinsicHelper::AllocaShadowFrame: case greenland::IntrinsicHelper::SetShadowFrameEntry: case greenland::IntrinsicHelper::PopShadowFrame: // Ignore shadow frame stuff for quick compiler break; case greenland::IntrinsicHelper::CopyInt: case greenland::IntrinsicHelper::CopyObj: case greenland::IntrinsicHelper::CopyFloat: case greenland::IntrinsicHelper::CopyLong: case greenland::IntrinsicHelper::CopyDouble: cvtCopy(cUnit, callInst); break; case greenland::IntrinsicHelper::ConstInt: case greenland::IntrinsicHelper::ConstObj: case greenland::IntrinsicHelper::ConstLong: case greenland::IntrinsicHelper::ConstFloat: case greenland::IntrinsicHelper::ConstDouble: cvtConst(cUnit, callInst); break; case greenland::IntrinsicHelper::DivInt: case greenland::IntrinsicHelper::DivLong: cvtBinOp(cUnit, kOpDiv, inst); break; case greenland::IntrinsicHelper::RemInt: case greenland::IntrinsicHelper::RemLong: cvtBinOp(cUnit, kOpRem, inst); break; case greenland::IntrinsicHelper::MethodInfo: // Already dealt with - just ignore it here. break; case greenland::IntrinsicHelper::CheckSuspend: genSuspendTest(cUnit, 0 /* optFlags already applied */); break; case greenland::IntrinsicHelper::HLInvokeObj: case greenland::IntrinsicHelper::HLInvokeFloat: case greenland::IntrinsicHelper::HLInvokeDouble: case greenland::IntrinsicHelper::HLInvokeLong: case greenland::IntrinsicHelper::HLInvokeInt: cvtInvoke(cUnit, callInst, false /* isVoid */); break; case greenland::IntrinsicHelper::HLInvokeVoid: cvtInvoke(cUnit, callInst, true /* isVoid */); break; case greenland::IntrinsicHelper::ConstString: cvtConstString(cUnit, callInst); break; case greenland::IntrinsicHelper::NewInstance: cvtNewInstance(cUnit, callInst); break; case greenland::IntrinsicHelper::HLSgetObject: cvtSget(cUnit, callInst, false /* wide */, true /* Object */); break; case greenland::IntrinsicHelper::HLSget: case greenland::IntrinsicHelper::HLSgetFloat: case greenland::IntrinsicHelper::HLSgetBoolean: case greenland::IntrinsicHelper::HLSgetByte: case greenland::IntrinsicHelper::HLSgetChar: case greenland::IntrinsicHelper::HLSgetShort: cvtSget(cUnit, callInst, false /* wide */, false /* Object */); break; case greenland::IntrinsicHelper::HLSgetWide: case greenland::IntrinsicHelper::HLSgetDouble: cvtSget(cUnit, callInst, true /* wide */, false /* Object */); break; case greenland::IntrinsicHelper::GetException: cvtMoveException(cUnit, callInst); break; case greenland::IntrinsicHelper::Throw: cvtThrow(cUnit, callInst); break; case greenland::IntrinsicHelper::ThrowVerificationError: cvtThrowVerificationError(cUnit, callInst); break; case greenland::IntrinsicHelper::MonitorEnter: cvtMonitorEnterExit(cUnit, true /* isEnter */, callInst); break; case greenland::IntrinsicHelper::MonitorExit: cvtMonitorEnterExit(cUnit, false /* isEnter */, callInst); break; case greenland::IntrinsicHelper::ArrayLength: cvtMonitorArrayLength(cUnit, callInst); break; case greenland::IntrinsicHelper::NewArray: cvtNewArray(cUnit, callInst); break; case greenland::IntrinsicHelper::InstanceOf: cvtInstanceOf(cUnit, callInst); break; case greenland::IntrinsicHelper::HLArrayGet: case greenland::IntrinsicHelper::HLArrayGetObject: case greenland::IntrinsicHelper::HLArrayGetFloat: cvtAget(cUnit, callInst, kWord, 2); break; case greenland::IntrinsicHelper::HLArrayGetWide: case greenland::IntrinsicHelper::HLArrayGetDouble: cvtAget(cUnit, callInst, kLong, 3); break; case greenland::IntrinsicHelper::HLArrayGetBoolean: cvtAget(cUnit, callInst, kUnsignedByte, 0); break; case greenland::IntrinsicHelper::HLArrayGetByte: cvtAget(cUnit, callInst, kSignedByte, 0); break; case greenland::IntrinsicHelper::HLArrayGetChar: cvtAget(cUnit, callInst, kUnsignedHalf, 1); break; case greenland::IntrinsicHelper::HLArrayGetShort: cvtAget(cUnit, callInst, kSignedHalf, 1); break; case greenland::IntrinsicHelper::HLArrayPut: case greenland::IntrinsicHelper::HLArrayPutObject: case greenland::IntrinsicHelper::HLArrayPutFloat: cvtAput(cUnit, callInst, kWord, 2); break; case greenland::IntrinsicHelper::HLArrayPutWide: case greenland::IntrinsicHelper::HLArrayPutDouble: cvtAput(cUnit, callInst, kLong, 3); break; case greenland::IntrinsicHelper::HLArrayPutBoolean: cvtAput(cUnit, callInst, kUnsignedByte, 0); break; case greenland::IntrinsicHelper::HLArrayPutByte: cvtAput(cUnit, callInst, kSignedByte, 0); break; case greenland::IntrinsicHelper::HLArrayPutChar: cvtAput(cUnit, callInst, kUnsignedHalf, 1); break; case greenland::IntrinsicHelper::HLArrayPutShort: cvtAput(cUnit, callInst, kSignedHalf, 1); break; case greenland::IntrinsicHelper::UnknownId: cvtCall(cUnit, callInst, callee); break; default: LOG(FATAL) << "Unexpected intrinsic " << (int)id << ", " << cUnit->intrinsic_helper->GetName(id); } } break; case llvm::Instruction::Br: cvtBr(cUnit, inst); break; case llvm::Instruction::Add: cvtBinOp(cUnit, kOpAdd, inst); break; case llvm::Instruction::Sub: cvtBinOp(cUnit, kOpSub, inst); break; case llvm::Instruction::Mul: cvtBinOp(cUnit, kOpMul, inst); break; case llvm::Instruction::SDiv: cvtBinOp(cUnit, kOpDiv, inst); break; case llvm::Instruction::SRem: cvtBinOp(cUnit, kOpRem, inst); break; case llvm::Instruction::And: cvtBinOp(cUnit, kOpAnd, inst); break; case llvm::Instruction::Or: cvtBinOp(cUnit, kOpOr, inst); break; case llvm::Instruction::Xor: cvtBinOp(cUnit, kOpXor, inst); break; case llvm::Instruction::Shl: cvtBinOp(cUnit, kOpLsl, inst); break; case llvm::Instruction::LShr: cvtBinOp(cUnit, kOpLsr, inst); break; case llvm::Instruction::AShr: cvtBinOp(cUnit, kOpAsr, inst); break; case llvm::Instruction::PHI: cvtPhi(cUnit, inst); break; case llvm::Instruction::Ret: cvtRet(cUnit, inst); break; case llvm::Instruction::FAdd: cvtBinFPOp(cUnit, kOpAdd, inst); break; case llvm::Instruction::FSub: cvtBinFPOp(cUnit, kOpSub, inst); break; case llvm::Instruction::FMul: cvtBinFPOp(cUnit, kOpMul, inst); break; case llvm::Instruction::FDiv: cvtBinFPOp(cUnit, kOpDiv, inst); break; case llvm::Instruction::FRem: cvtBinFPOp(cUnit, kOpRem, inst); break; case llvm::Instruction::Unreachable: break; // FIXME: can we really ignore these? case llvm::Instruction::Invoke: case llvm::Instruction::Trunc: case llvm::Instruction::ZExt: case llvm::Instruction::SExt: case llvm::Instruction::FPToUI: case llvm::Instruction::FPToSI: case llvm::Instruction::UIToFP: case llvm::Instruction::SIToFP: case llvm::Instruction::FPTrunc: case llvm::Instruction::FPExt: case llvm::Instruction::PtrToInt: case llvm::Instruction::IntToPtr: case llvm::Instruction::Switch: case llvm::Instruction::FCmp: UNIMPLEMENTED(FATAL) << "Unimplemented llvm opcode: " << opcode; break; break; case llvm::Instruction::URem: case llvm::Instruction::UDiv: case llvm::Instruction::Resume: case llvm::Instruction::Alloca: case llvm::Instruction::GetElementPtr: case llvm::Instruction::Fence: case llvm::Instruction::AtomicCmpXchg: case llvm::Instruction::AtomicRMW: case llvm::Instruction::BitCast: case llvm::Instruction::VAArg: case llvm::Instruction::Select: case llvm::Instruction::UserOp1: case llvm::Instruction::UserOp2: case llvm::Instruction::ExtractElement: case llvm::Instruction::InsertElement: case llvm::Instruction::ShuffleVector: case llvm::Instruction::ExtractValue: case llvm::Instruction::InsertValue: case llvm::Instruction::LandingPad: case llvm::Instruction::IndirectBr: case llvm::Instruction::Load: case llvm::Instruction::Store: LOG(FATAL) << "Unexpected llvm opcode: " << opcode; break; default: LOG(FATAL) << "Unknown llvm opcode: " << opcode; break; } } if (headLIR != NULL) { oatApplyLocalOptimizations(cUnit, headLIR, cUnit->lastLIRInsn); } return false; } /* * Convert LLVM_IR to MIR: * o Iterate through the LLVM_IR and construct a graph using * standard MIR building blocks. * o Perform a basic-block optimization pass to remove unnecessary * store/load sequences. * o Convert the LLVM Value operands into RegLocations where applicable. * o Create ssaRep def/use operand arrays for each converted LLVM opcode * o Perform register promotion * o Iterate through the graph a basic block at a time, generating * LIR. * o Assemble LIR as usual. * o Profit. */ void oatMethodBitcode2LIR(CompilationUnit* cUnit) { llvm::Function* func = cUnit->func; int numBasicBlocks = func->getBasicBlockList().size(); // Allocate a list for LIR basic block labels cUnit->blockLabelList = (void*)oatNew(cUnit, sizeof(LIR) * numBasicBlocks, true, kAllocLIR); LIR* labelList = (LIR*)cUnit->blockLabelList; int nextLabel = 0; for (llvm::Function::iterator i = func->begin(), e = func->end(); i != e; ++i) { cUnit->blockToLabelMap.Put(static_cast(i), &labelList[nextLabel++]); } /* * Keep honest - clear regLocations, Value => RegLocation, * promotion map and VmapTables. */ cUnit->locMap.clear(); // Start fresh cUnit->regLocation = NULL; for (int i = 0; i < cUnit->numDalvikRegisters + cUnit->numCompilerTemps + 1; i++) { cUnit->promotionMap[i].coreLocation = kLocDalvikFrame; cUnit->promotionMap[i].fpLocation = kLocDalvikFrame; } cUnit->coreSpillMask = 0; cUnit->numCoreSpills = 0; cUnit->fpSpillMask = 0; cUnit->numFPSpills = 0; cUnit->coreVmapTable.clear(); cUnit->fpVmapTable.clear(); oatAdjustSpillMask(cUnit); cUnit->frameSize = oatComputeFrameSize(cUnit); /* * At this point, we've lost all knowledge of register promotion. * Rebuild that info from the MethodInfo intrinsic (if it * exists - not required for correctness). */ // TODO: find and recover MethodInfo. // Create RegLocations for arguments llvm::Function::arg_iterator it(cUnit->func->arg_begin()); llvm::Function::arg_iterator it_end(cUnit->func->arg_end()); for (; it != it_end; ++it) { llvm::Value* val = it; createLocFromValue(cUnit, val); } // Create RegLocations for all non-argument defintions for (llvm::inst_iterator i = llvm::inst_begin(func), e = llvm::inst_end(func); i != e; ++i) { llvm::Value* val = &*i; if (val->hasName() && (val->getName().str().c_str()[0] == 'v')) { createLocFromValue(cUnit, val); } } // Walk the blocks, generating code. for (llvm::Function::iterator i = cUnit->func->begin(), e = cUnit->func->end(); i != e; ++i) { methodBitcodeBlockCodeGen(cUnit, static_cast(i)); } handleSuspendLaunchpads(cUnit); handleThrowLaunchpads(cUnit); handleIntrinsicLaunchpads(cUnit); freeIR(cUnit); } } // namespace art #endif // ART_USE_QUICK_COMPILER