/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "oat/runtime/oat_support_entrypoints.h" namespace art { /* * This source files contains "gen" codegen routines that should * be applicable to most targets. Only mid-level support utilities * and "op" calls may be used here. */ typedef int (*NextCallInsn)(CompilationUnit*, CallInfo*, int, uint32_t dexIdx, uint32_t methodIdx, uintptr_t directCode, uintptr_t directMethod, InvokeType type); LIR* opCondBranch(CompilationUnit* cUnit, ConditionCode cc, LIR* target); /* * If there are any ins passed in registers that have not been promoted * to a callee-save register, flush them to the frame. Perform intial * assignment of promoted arguments. * * argLocs is an array of location records describing the incoming arguments * with one location record per word of argument. */ void flushIns(CompilationUnit* cUnit, RegLocation* argLocs, RegLocation rlMethod) { /* * Dummy up a RegLocation for the incoming Method* * It will attempt to keep rARG0 live (or copy it to home location * if promoted). */ RegLocation rlSrc = rlMethod; rlSrc.location = kLocPhysReg; rlSrc.lowReg = rARG0; rlSrc.home = false; oatMarkLive(cUnit, rlSrc.lowReg, rlSrc.sRegLow); storeValue(cUnit, rlMethod, rlSrc); // If Method* has been promoted, explicitly flush if (rlMethod.location == kLocPhysReg) { storeWordDisp(cUnit, rSP, 0, rARG0); } if (cUnit->numIns == 0) return; const int numArgRegs = 3; static int argRegs[] = {rARG1, rARG2, rARG3}; int startVReg = cUnit->numDalvikRegisters - cUnit->numIns; /* * Copy incoming arguments to their proper home locations. * NOTE: an older version of dx had an issue in which * it would reuse static method argument registers. * This could result in the same Dalvik virtual register * being promoted to both core and fp regs. To account for this, * we only copy to the corresponding promoted physical register * if it matches the type of the SSA name for the incoming * argument. It is also possible that long and double arguments * end up half-promoted. In those cases, we must flush the promoted * half to memory as well. */ for (int i = 0; i < cUnit->numIns; i++) { PromotionMap* vMap = &cUnit->promotionMap[startVReg + i]; if (i < numArgRegs) { // If arriving in register bool needFlush = true; RegLocation* tLoc = &argLocs[i]; if ((vMap->coreLocation == kLocPhysReg) && !tLoc->fp) { opRegCopy(cUnit, vMap->coreReg, argRegs[i]); needFlush = false; } else if ((vMap->fpLocation == kLocPhysReg) && tLoc->fp) { opRegCopy(cUnit, vMap->fpReg, argRegs[i]); needFlush = false; } else { needFlush = true; } // For wide args, force flush if only half is promoted if (tLoc->wide) { PromotionMap* pMap = vMap + (tLoc->highWord ? -1 : +1); needFlush |= (pMap->coreLocation != vMap->coreLocation) || (pMap->fpLocation != vMap->fpLocation); } if (needFlush) { storeBaseDisp(cUnit, rSP, oatSRegOffset(cUnit, startVReg + i), argRegs[i], kWord); } } else { // If arriving in frame & promoted if (vMap->coreLocation == kLocPhysReg) { loadWordDisp(cUnit, rSP, oatSRegOffset(cUnit, startVReg + i), vMap->coreReg); } if (vMap->fpLocation == kLocPhysReg) { loadWordDisp(cUnit, rSP, oatSRegOffset(cUnit, startVReg + i), vMap->fpReg); } } } } void scanMethodLiteralPool(CompilationUnit* cUnit, LIR** methodTarget, LIR** codeTarget, const DexFile* dexFile, uint32_t dexMethodIdx) { LIR* curTarget = cUnit->methodLiteralList; LIR* nextTarget = curTarget != NULL ? curTarget->next : NULL; while (curTarget != NULL && nextTarget != NULL) { if (curTarget->operands[0] == (int)dexFile && nextTarget->operands[0] == (int)dexMethodIdx) { *codeTarget = curTarget; *methodTarget = nextTarget; DCHECK((*codeTarget)->next == *methodTarget); DCHECK_EQ((*codeTarget)->operands[0], (int)dexFile); DCHECK_EQ((*methodTarget)->operands[0], (int)dexMethodIdx); break; } curTarget = nextTarget->next; nextTarget = curTarget != NULL ? curTarget->next : NULL; } } /* * Bit of a hack here - in the absence of a real scheduling pass, * emit the next instruction in static & direct invoke sequences. */ int nextSDCallInsn(CompilationUnit* cUnit, CallInfo* info, int state, uint32_t dexIdx, uint32_t unused, uintptr_t directCode, uintptr_t directMethod, InvokeType type) { #if !defined(TARGET_ARM) directCode = 0; directMethod = 0; #endif if (directCode != 0 && directMethod != 0) { switch (state) { case 0: // Get the current Method* [sets rARG0] if (directCode != (uintptr_t)-1) { loadConstant(cUnit, rINVOKE_TGT, directCode); } else { LIR* dataTarget = scanLiteralPool(cUnit->codeLiteralList, dexIdx, 0); if (dataTarget == NULL) { dataTarget = addWordData(cUnit, &cUnit->codeLiteralList, dexIdx); dataTarget->operands[1] = type; } #if defined(TARGET_ARM) LIR* loadPcRel = rawLIR(cUnit, cUnit->currentDalvikOffset, kThumb2LdrPcRel12, rINVOKE_TGT, 0, 0, 0, 0, dataTarget); oatAppendLIR(cUnit, loadPcRel); #else UNIMPLEMENTED(FATAL) << (void*)dataTarget; #endif } if (directMethod != (uintptr_t)-1) { loadConstant(cUnit, rARG0, directMethod); } else { LIR* dataTarget = scanLiteralPool(cUnit->methodLiteralList, dexIdx, 0); if (dataTarget == NULL) { dataTarget = addWordData(cUnit, &cUnit->methodLiteralList, dexIdx); dataTarget->operands[1] = type; } #if defined(TARGET_ARM) LIR* loadPcRel = rawLIR(cUnit, cUnit->currentDalvikOffset, kThumb2LdrPcRel12, rARG0, 0, 0, 0, 0, dataTarget); oatAppendLIR(cUnit, loadPcRel); #else UNIMPLEMENTED(FATAL) << (void*)dataTarget; #endif } break; default: return -1; } } else { switch (state) { case 0: // Get the current Method* [sets rARG0] // TUNING: we can save a reg copy if Method* has been promoted loadCurrMethodDirect(cUnit, rARG0); break; case 1: // Get method->dex_cache_resolved_methods_ loadWordDisp(cUnit, rARG0, Method::DexCacheResolvedMethodsOffset().Int32Value(), rARG0); // Set up direct code if known. if (directCode != 0) { if (directCode != (uintptr_t)-1) { loadConstant(cUnit, rINVOKE_TGT, directCode); } else { LIR* dataTarget = scanLiteralPool(cUnit->codeLiteralList, dexIdx, 0); if (dataTarget == NULL) { dataTarget = addWordData(cUnit, &cUnit->codeLiteralList, dexIdx); dataTarget->operands[1] = type; } #if defined(TARGET_ARM) LIR* loadPcRel = rawLIR(cUnit, cUnit->currentDalvikOffset, kThumb2LdrPcRel12, rINVOKE_TGT, 0, 0, 0, 0, dataTarget); oatAppendLIR(cUnit, loadPcRel); #else UNIMPLEMENTED(FATAL) << (void*)dataTarget; #endif } } break; case 2: // Grab target method* loadWordDisp(cUnit, rARG0, Array::DataOffset(sizeof(Object*)).Int32Value() + dexIdx * 4, rARG0); break; #if !defined(TARGET_X86) case 3: // Grab the code from the method* if (directCode == 0) { loadWordDisp(cUnit, rARG0, Method::GetCodeOffset().Int32Value(), rINVOKE_TGT); } break; #endif default: return -1; } } return state + 1; } /* * Bit of a hack here - in the absence of a real scheduling pass, * emit the next instruction in a virtual invoke sequence. * We can use rLR as a temp prior to target address loading * Note also that we'll load the first argument ("this") into * rARG1 here rather than the standard loadArgRegs. */ int nextVCallInsn(CompilationUnit* cUnit, CallInfo* info, int state, uint32_t dexIdx, uint32_t methodIdx, uintptr_t unused, uintptr_t unused2, InvokeType unused3) { RegLocation rlArg; /* * This is the fast path in which the target virtual method is * fully resolved at compile time. */ switch (state) { case 0: // Get "this" [set rARG1] rlArg = info->args[0]; loadValueDirectFixed(cUnit, rlArg, rARG1); break; case 1: // Is "this" null? [use rARG1] genNullCheck(cUnit, info->args[0].sRegLow, rARG1, info->optFlags); // get this->klass_ [use rARG1, set rINVOKE_TGT] loadWordDisp(cUnit, rARG1, Object::ClassOffset().Int32Value(), rINVOKE_TGT); break; case 2: // Get this->klass_->vtable [usr rINVOKE_TGT, set rINVOKE_TGT] loadWordDisp(cUnit, rINVOKE_TGT, Class::VTableOffset().Int32Value(), rINVOKE_TGT); break; case 3: // Get target method [use rINVOKE_TGT, set rARG0] loadWordDisp(cUnit, rINVOKE_TGT, (methodIdx * 4) + Array::DataOffset(sizeof(Object*)).Int32Value(), rARG0); break; #if !defined(TARGET_X86) case 4: // Get the compiled code address [uses rARG0, sets rINVOKE_TGT] loadWordDisp(cUnit, rARG0, Method::GetCodeOffset().Int32Value(), rINVOKE_TGT); break; #endif default: return -1; } return state + 1; } int nextInvokeInsnSP(CompilationUnit* cUnit, CallInfo* info, int trampoline, int state, uint32_t dexIdx, uint32_t methodIdx) { /* * This handles the case in which the base method is not fully * resolved at compile time, we bail to a runtime helper. */ if (state == 0) { #if !defined(TARGET_X86) // Load trampoline target loadWordDisp(cUnit, rSELF, trampoline, rINVOKE_TGT); #endif // Load rARG0 with method index loadConstant(cUnit, rARG0, dexIdx); return 1; } return -1; } int nextStaticCallInsnSP(CompilationUnit* cUnit, CallInfo* info, int state, uint32_t dexIdx, uint32_t methodIdx, uintptr_t unused, uintptr_t unused2, InvokeType unused3) { int trampoline = ENTRYPOINT_OFFSET(pInvokeStaticTrampolineWithAccessCheck); return nextInvokeInsnSP(cUnit, info, trampoline, state, dexIdx, 0); } int nextDirectCallInsnSP(CompilationUnit* cUnit, CallInfo* info, int state, uint32_t dexIdx, uint32_t methodIdx, uintptr_t unused, uintptr_t unused2, InvokeType unused3) { int trampoline = ENTRYPOINT_OFFSET(pInvokeDirectTrampolineWithAccessCheck); return nextInvokeInsnSP(cUnit, info, trampoline, state, dexIdx, 0); } int nextSuperCallInsnSP(CompilationUnit* cUnit, CallInfo* info, int state, uint32_t dexIdx, uint32_t methodIdx, uintptr_t unused, uintptr_t unused2, InvokeType unused3) { int trampoline = ENTRYPOINT_OFFSET(pInvokeSuperTrampolineWithAccessCheck); return nextInvokeInsnSP(cUnit, info, trampoline, state, dexIdx, 0); } int nextVCallInsnSP(CompilationUnit* cUnit, CallInfo* info, int state, uint32_t dexIdx, uint32_t methodIdx, uintptr_t unused, uintptr_t unused2, InvokeType unused3) { int trampoline = ENTRYPOINT_OFFSET(pInvokeVirtualTrampolineWithAccessCheck); return nextInvokeInsnSP(cUnit, info, trampoline, state, dexIdx, 0); } /* * All invoke-interface calls bounce off of art_invoke_interface_trampoline, * which will locate the target and continue on via a tail call. */ int nextInterfaceCallInsn(CompilationUnit* cUnit, CallInfo* info, int state, uint32_t dexIdx, uint32_t unused, uintptr_t unused2, uintptr_t unused3, InvokeType unused4) { int trampoline = ENTRYPOINT_OFFSET(pInvokeInterfaceTrampoline); return nextInvokeInsnSP(cUnit, info, trampoline, state, dexIdx, 0); } int nextInterfaceCallInsnWithAccessCheck(CompilationUnit* cUnit, CallInfo* info, int state, uint32_t dexIdx, uint32_t unused, uintptr_t unused2, uintptr_t unused3, InvokeType unused4) { int trampoline = ENTRYPOINT_OFFSET(pInvokeInterfaceTrampolineWithAccessCheck); return nextInvokeInsnSP(cUnit, info, trampoline, state, dexIdx, 0); } int loadArgRegs(CompilationUnit* cUnit, CallInfo* info, int callState, NextCallInsn nextCallInsn, uint32_t dexIdx, uint32_t methodIdx, uintptr_t directCode, uintptr_t directMethod, InvokeType type, bool skipThis) { int lastArgReg = rARG3; int nextReg = rARG1; int nextArg = 0; if (skipThis) { nextReg++; nextArg++; } for (; (nextReg <= lastArgReg) && (nextArg < info->numArgWords); nextReg++) { RegLocation rlArg = info->args[nextArg++]; rlArg = oatUpdateRawLoc(cUnit, rlArg); if (rlArg.wide && (nextReg <= rARG2)) { loadValueDirectWideFixed(cUnit, rlArg, nextReg, nextReg + 1); nextReg++; nextArg++; } else { rlArg.wide = false; loadValueDirectFixed(cUnit, rlArg, nextReg); } callState = nextCallInsn(cUnit, info, callState, dexIdx, methodIdx, directCode, directMethod, type); } return callState; } /* * Load up to 5 arguments, the first three of which will be in * rARG1 .. rARG3. On entry rARG0 contains the current method pointer, * and as part of the load sequence, it must be replaced with * the target method pointer. Note, this may also be called * for "range" variants if the number of arguments is 5 or fewer. */ int genDalvikArgsNoRange(CompilationUnit* cUnit, CallInfo* info, int callState, LIR** pcrLabel, NextCallInsn nextCallInsn, uint32_t dexIdx, uint32_t methodIdx, uintptr_t directCode, uintptr_t directMethod, InvokeType type, bool skipThis) { RegLocation rlArg; /* If no arguments, just return */ if (info->numArgWords == 0) return callState; callState = nextCallInsn(cUnit, info, callState, dexIdx, methodIdx, directCode, directMethod, type); DCHECK_LE(info->numArgWords, 5); if (info->numArgWords > 3) { int32_t nextUse = 3; //Detect special case of wide arg spanning arg3/arg4 RegLocation rlUse0 = info->args[0]; RegLocation rlUse1 = info->args[1]; RegLocation rlUse2 = info->args[2]; if (((!rlUse0.wide && !rlUse1.wide) || rlUse0.wide) && rlUse2.wide) { int reg = -1; // Wide spans, we need the 2nd half of uses[2]. rlArg = oatUpdateLocWide(cUnit, rlUse2); if (rlArg.location == kLocPhysReg) { reg = rlArg.highReg; } else { // rARG2 & rARG3 can safely be used here reg = rARG3; loadWordDisp(cUnit, rSP, oatSRegOffset(cUnit, rlArg.sRegLow) + 4, reg); callState = nextCallInsn(cUnit, info, callState, dexIdx, methodIdx, directCode, directMethod, type); } storeBaseDisp(cUnit, rSP, (nextUse + 1) * 4, reg, kWord); storeBaseDisp(cUnit, rSP, 16 /* (3+1)*4 */, reg, kWord); callState = nextCallInsn(cUnit, info, callState, dexIdx, methodIdx, directCode, directMethod, type); nextUse++; } // Loop through the rest while (nextUse < info->numArgWords) { int lowReg; int highReg = -1; rlArg = info->args[nextUse]; rlArg = oatUpdateRawLoc(cUnit, rlArg); if (rlArg.location == kLocPhysReg) { lowReg = rlArg.lowReg; highReg = rlArg.highReg; } else { lowReg = rARG2; if (rlArg.wide) { highReg = rARG3; loadValueDirectWideFixed(cUnit, rlArg, lowReg, highReg); } else { loadValueDirectFixed(cUnit, rlArg, lowReg); } callState = nextCallInsn(cUnit, info, callState, dexIdx, methodIdx, directCode, directMethod, type); } int outsOffset = (nextUse + 1) * 4; if (rlArg.wide) { storeBaseDispWide(cUnit, rSP, outsOffset, lowReg, highReg); nextUse += 2; } else { storeWordDisp(cUnit, rSP, outsOffset, lowReg); nextUse++; } callState = nextCallInsn(cUnit, info, callState, dexIdx, methodIdx, directCode, directMethod, type); } } callState = loadArgRegs(cUnit, info, callState, nextCallInsn, dexIdx, methodIdx, directCode, directMethod, type, skipThis); if (pcrLabel) { *pcrLabel = genNullCheck(cUnit, info->args[0].sRegLow, rARG1, info->optFlags); } return callState; } /* * May have 0+ arguments (also used for jumbo). Note that * source virtual registers may be in physical registers, so may * need to be flushed to home location before copying. This * applies to arg3 and above (see below). * * Two general strategies: * If < 20 arguments * Pass args 3-18 using vldm/vstm block copy * Pass arg0, arg1 & arg2 in rARG1-rARG3 * If 20+ arguments * Pass args arg19+ using memcpy block copy * Pass arg0, arg1 & arg2 in rARG1-rARG3 * */ int genDalvikArgsRange(CompilationUnit* cUnit, CallInfo* info, int callState, LIR** pcrLabel, NextCallInsn nextCallInsn, uint32_t dexIdx, uint32_t methodIdx, uintptr_t directCode, uintptr_t directMethod, InvokeType type, bool skipThis) { // If we can treat it as non-range (Jumbo ops will use range form) if (info->numArgWords <= 5) return genDalvikArgsNoRange(cUnit, info, callState, pcrLabel, nextCallInsn, dexIdx, methodIdx, directCode, directMethod, type, skipThis); /* * First load the non-register arguments. Both forms expect all * of the source arguments to be in their home frame location, so * scan the sReg names and flush any that have been promoted to * frame backing storage. */ // Scan the rest of the args - if in physReg flush to memory for (int nextArg = 0; nextArg < info->numArgWords;) { RegLocation loc = info->args[nextArg]; if (loc.wide) { loc = oatUpdateLocWide(cUnit, loc); if ((nextArg >= 2) && (loc.location == kLocPhysReg)) { storeBaseDispWide(cUnit, rSP, oatSRegOffset(cUnit, loc.sRegLow), loc.lowReg, loc.highReg); } nextArg += 2; } else { loc = oatUpdateLoc(cUnit, loc); if ((nextArg >= 3) && (loc.location == kLocPhysReg)) { storeBaseDisp(cUnit, rSP, oatSRegOffset(cUnit, loc.sRegLow), loc.lowReg, kWord); } nextArg++; } } int startOffset = oatSRegOffset(cUnit, info->args[3].sRegLow); int outsOffset = 4 /* Method* */ + (3 * 4); #if defined(TARGET_MIPS) || defined(TARGET_X86) // Generate memcpy opRegRegImm(cUnit, kOpAdd, rARG0, rSP, outsOffset); opRegRegImm(cUnit, kOpAdd, rARG1, rSP, startOffset); callRuntimeHelperRegRegImm(cUnit, ENTRYPOINT_OFFSET(pMemcpy), rARG0, rARG1, (info->numArgWords - 3) * 4, false); #else if (info->numArgWords >= 20) { // Generate memcpy opRegRegImm(cUnit, kOpAdd, rARG0, rSP, outsOffset); opRegRegImm(cUnit, kOpAdd, rARG1, rSP, startOffset); callRuntimeHelperRegRegImm(cUnit, ENTRYPOINT_OFFSET(pMemcpy), rARG0, rARG1, (info->numArgWords - 3) * 4, false); } else { // Use vldm/vstm pair using rARG3 as a temp int regsLeft = std::min(info->numArgWords - 3, 16); callState = nextCallInsn(cUnit, info, callState, dexIdx, methodIdx, directCode, directMethod, type); opRegRegImm(cUnit, kOpAdd, rARG3, rSP, startOffset); LIR* ld = newLIR3(cUnit, kThumb2Vldms, rARG3, fr0, regsLeft); //TUNING: loosen barrier ld->defMask = ENCODE_ALL; setMemRefType(ld, true /* isLoad */, kDalvikReg); callState = nextCallInsn(cUnit, info, callState, dexIdx, methodIdx, directCode, directMethod, type); opRegRegImm(cUnit, kOpAdd, rARG3, rSP, 4 /* Method* */ + (3 * 4)); callState = nextCallInsn(cUnit, info, callState, dexIdx, methodIdx, directCode, directMethod, type); LIR* st = newLIR3(cUnit, kThumb2Vstms, rARG3, fr0, regsLeft); setMemRefType(st, false /* isLoad */, kDalvikReg); st->defMask = ENCODE_ALL; callState = nextCallInsn(cUnit, info, callState, dexIdx, methodIdx, directCode, directMethod, type); } #endif callState = loadArgRegs(cUnit, info, callState, nextCallInsn, dexIdx, methodIdx, directCode, directMethod, type, skipThis); callState = nextCallInsn(cUnit, info, callState, dexIdx, methodIdx, directCode, directMethod, type); if (pcrLabel) { *pcrLabel = genNullCheck(cUnit, info->args[0].sRegLow, rARG1, info->optFlags); } return callState; } RegLocation inlineTarget(CompilationUnit* cUnit, CallInfo* info) { RegLocation res; if (info->result.location == kLocInvalid) { res = oatGetReturn(cUnit, false); } else { res = info->result; } return res; } RegLocation inlineTargetWide(CompilationUnit* cUnit, CallInfo* info) { RegLocation res; if (info->result.location == kLocInvalid) { res = oatGetReturnWide(cUnit, false); } else { res = info->result; } return res; } bool genInlinedCharAt(CompilationUnit* cUnit, CallInfo* info) { #if defined(TARGET_ARM) || defined(TARGET_X86) // Location of reference to data array int valueOffset = String::ValueOffset().Int32Value(); // Location of count int countOffset = String::CountOffset().Int32Value(); // Starting offset within data array int offsetOffset = String::OffsetOffset().Int32Value(); // Start of char data with array_ int dataOffset = Array::DataOffset(sizeof(uint16_t)).Int32Value(); RegLocation rlObj = info->args[0]; RegLocation rlIdx = info->args[1]; rlObj = loadValue(cUnit, rlObj, kCoreReg); rlIdx = loadValue(cUnit, rlIdx, kCoreReg); int regMax; genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, info->optFlags); bool rangeCheck = (!(info->optFlags & MIR_IGNORE_RANGE_CHECK)); LIR* launchPad = NULL; #if !defined(TARGET_X86) int regOff = oatAllocTemp(cUnit); int regPtr = oatAllocTemp(cUnit); if (rangeCheck) { regMax = oatAllocTemp(cUnit); loadWordDisp(cUnit, rlObj.lowReg, countOffset, regMax); } loadWordDisp(cUnit, rlObj.lowReg, offsetOffset, regOff); loadWordDisp(cUnit, rlObj.lowReg, valueOffset, regPtr); if (rangeCheck) { // Set up a launch pad to allow retry in case of bounds violation */ launchPad = rawLIR(cUnit, 0, kPseudoIntrinsicRetry, (uintptr_t)info); oatInsertGrowableList(cUnit, &cUnit->intrinsicLaunchpads, (intptr_t)launchPad); opRegReg(cUnit, kOpCmp, rlIdx.lowReg, regMax); oatFreeTemp(cUnit, regMax); opCondBranch(cUnit, kCondCs, launchPad); } #else if (rangeCheck) { regMax = oatAllocTemp(cUnit); loadWordDisp(cUnit, rlObj.lowReg, countOffset, regMax); // Set up a launch pad to allow retry in case of bounds violation */ launchPad = rawLIR(cUnit, 0, kPseudoIntrinsicRetry, (uintptr_t)info); oatInsertGrowableList(cUnit, &cUnit->intrinsicLaunchpads, (intptr_t)launchPad); opRegReg(cUnit, kOpCmp, rlIdx.lowReg, regMax); oatFreeTemp(cUnit, regMax); opCondBranch(cUnit, kCondCc, launchPad); } int regOff = oatAllocTemp(cUnit); int regPtr = oatAllocTemp(cUnit); loadWordDisp(cUnit, rlObj.lowReg, offsetOffset, regOff); loadWordDisp(cUnit, rlObj.lowReg, valueOffset, regPtr); #endif opRegImm(cUnit, kOpAdd, regPtr, dataOffset); opRegReg(cUnit, kOpAdd, regOff, rlIdx.lowReg); oatFreeTemp(cUnit, rlObj.lowReg); oatFreeTemp(cUnit, rlIdx.lowReg); RegLocation rlDest = inlineTarget(cUnit, info); RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); loadBaseIndexed(cUnit, regPtr, regOff, rlResult.lowReg, 1, kUnsignedHalf); oatFreeTemp(cUnit, regOff); oatFreeTemp(cUnit, regPtr); storeValue(cUnit, rlDest, rlResult); if (rangeCheck) { launchPad->operands[2] = 0; // no resumption } // Record that we've already inlined & null checked info->optFlags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK); return true; #else return false; #endif } bool genInlinedMinMaxInt(CompilationUnit *cUnit, CallInfo* info, bool isMin) { #if defined(TARGET_ARM) || defined(TARGET_X86) RegLocation rlSrc1 = info->args[0]; RegLocation rlSrc2 = info->args[1]; rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg); rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg); RegLocation rlDest = inlineTarget(cUnit, info); RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); opRegReg(cUnit, kOpCmp, rlSrc1.lowReg, rlSrc2.lowReg); #if defined(TARGET_ARM) opIT(cUnit, (isMin) ? kArmCondGt : kArmCondLt, "E"); opRegReg(cUnit, kOpMov, rlResult.lowReg, rlSrc2.lowReg); opRegReg(cUnit, kOpMov, rlResult.lowReg, rlSrc1.lowReg); genBarrier(cUnit); #elif defined(TARGET_X86) LIR* branch = newLIR2(cUnit, kX86Jcc8, 0, isMin ? kX86CondG : kX86CondL); opRegReg(cUnit, kOpMov, rlResult.lowReg, rlSrc1.lowReg); LIR* branch2 = newLIR1(cUnit, kX86Jmp8, 0); branch->target = newLIR0(cUnit, kPseudoTargetLabel); opRegReg(cUnit, kOpMov, rlResult.lowReg, rlSrc2.lowReg); branch2->target = newLIR0(cUnit, kPseudoTargetLabel); #endif storeValue(cUnit, rlDest, rlResult); return true; #else return false; #endif } // Generates an inlined String.isEmpty or String.length. bool genInlinedStringIsEmptyOrLength(CompilationUnit* cUnit, CallInfo* info, bool isEmpty) { #if defined(TARGET_ARM) || defined(TARGET_X86) // dst = src.length(); RegLocation rlObj = info->args[0]; rlObj = loadValue(cUnit, rlObj, kCoreReg); RegLocation rlDest = inlineTarget(cUnit, info); RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, info->optFlags); loadWordDisp(cUnit, rlObj.lowReg, String::CountOffset().Int32Value(), rlResult.lowReg); if (isEmpty) { // dst = (dst == 0); #if defined(TARGET_ARM) int tReg = oatAllocTemp(cUnit); opRegReg(cUnit, kOpNeg, tReg, rlResult.lowReg); opRegRegReg(cUnit, kOpAdc, rlResult.lowReg, rlResult.lowReg, tReg); #elif defined(TARGET_X86) opRegImm(cUnit, kOpSub, rlResult.lowReg, 1); opRegImm(cUnit, kOpLsr, rlResult.lowReg, 31); #endif } storeValue(cUnit, rlDest, rlResult); return true; #else return false; #endif } bool genInlinedAbsInt(CompilationUnit *cUnit, CallInfo* info) { #if defined(TARGET_ARM) || defined(TARGET_X86) RegLocation rlSrc = info->args[0]; rlSrc = loadValue(cUnit, rlSrc, kCoreReg); RegLocation rlDest = inlineTarget(cUnit, info); RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); int signReg = oatAllocTemp(cUnit); // abs(x) = y<=x>>31, (x+y)^y. opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.lowReg, 31); opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg); opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg); storeValue(cUnit, rlDest, rlResult); return true; #else return false; #endif } bool genInlinedAbsLong(CompilationUnit *cUnit, CallInfo* info) { #if defined(TARGET_ARM) RegLocation rlSrc = info->args[0]; rlSrc = loadValueWide(cUnit, rlSrc, kCoreReg); RegLocation rlDest = inlineTargetWide(cUnit, info); RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); int signReg = oatAllocTemp(cUnit); // abs(x) = y<=x>>31, (x+y)^y. opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.highReg, 31); opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg); opRegRegReg(cUnit, kOpAdc, rlResult.highReg, rlSrc.highReg, signReg); opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg); opRegReg(cUnit, kOpXor, rlResult.highReg, signReg); storeValueWide(cUnit, rlDest, rlResult); return true; #elif defined(TARGET_X86) // Reuse source registers to avoid running out of temps RegLocation rlSrc = info->args[0]; rlSrc = loadValueWide(cUnit, rlSrc, kCoreReg); RegLocation rlDest = inlineTargetWide(cUnit, info); RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); opRegCopyWide(cUnit, rlResult.lowReg, rlResult.highReg, rlSrc.lowReg, rlSrc.highReg); oatFreeTemp(cUnit, rlSrc.lowReg); oatFreeTemp(cUnit, rlSrc.highReg); int signReg = oatAllocTemp(cUnit); // abs(x) = y<=x>>31, (x+y)^y. opRegRegImm(cUnit, kOpAsr, signReg, rlResult.highReg, 31); opRegReg(cUnit, kOpAdd, rlResult.lowReg, signReg); opRegReg(cUnit, kOpAdc, rlResult.highReg, signReg); opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg); opRegReg(cUnit, kOpXor, rlResult.highReg, signReg); storeValueWide(cUnit, rlDest, rlResult); return true; #else return false; #endif } bool genInlinedFloatCvt(CompilationUnit *cUnit, CallInfo* info) { #if defined(TARGET_ARM) || defined(TARGET_X86) RegLocation rlSrc = info->args[0]; RegLocation rlDest = inlineTarget(cUnit, info); storeValue(cUnit, rlDest, rlSrc); return true; #else return false; #endif } bool genInlinedDoubleCvt(CompilationUnit *cUnit, CallInfo* info) { #if defined(TARGET_ARM) || defined(TARGET_X86) RegLocation rlSrc = info->args[0]; RegLocation rlDest = inlineTargetWide(cUnit, info); storeValueWide(cUnit, rlDest, rlSrc); return true; #else return false; #endif } /* * Fast string.indexOf(I) & (II). Tests for simple case of char <= 0xffff, * otherwise bails to standard library code. */ bool genInlinedIndexOf(CompilationUnit* cUnit, CallInfo* info, bool zeroBased) { #if defined(TARGET_ARM) || defined(TARGET_X86) oatClobberCalleeSave(cUnit); oatLockCallTemps(cUnit); // Using fixed registers int regPtr = rARG0; int regChar = rARG1; int regStart = rARG2; RegLocation rlObj = info->args[0]; RegLocation rlChar = info->args[1]; RegLocation rlStart = info->args[2]; loadValueDirectFixed(cUnit, rlObj, regPtr); loadValueDirectFixed(cUnit, rlChar, regChar); if (zeroBased) { loadConstant(cUnit, regStart, 0); } else { loadValueDirectFixed(cUnit, rlStart, regStart); } #if !defined(TARGET_X86) int rTgt = loadHelper(cUnit, ENTRYPOINT_OFFSET(pIndexOf)); #endif genNullCheck(cUnit, rlObj.sRegLow, regPtr, info->optFlags); LIR* launchPad = rawLIR(cUnit, 0, kPseudoIntrinsicRetry, (uintptr_t)info); oatInsertGrowableList(cUnit, &cUnit->intrinsicLaunchpads, (intptr_t)launchPad); opCmpImmBranch(cUnit, kCondGt, regChar, 0xFFFF, launchPad); // NOTE: not a safepoint #if !defined(TARGET_X86) opReg(cUnit, kOpBlx, rTgt); #else opThreadMem(cUnit, kOpBlx, ENTRYPOINT_OFFSET(pIndexOf)); #endif LIR* resumeTgt = newLIR0(cUnit, kPseudoTargetLabel); launchPad->operands[2] = (uintptr_t)resumeTgt; // Record that we've already inlined & null checked info->optFlags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK); RegLocation rlReturn = oatGetReturn(cUnit, false); RegLocation rlDest = inlineTarget(cUnit, info); storeValue(cUnit, rlDest, rlReturn); return true; #else return false; #endif } /* Fast string.compareTo(Ljava/lang/string;)I. */ bool genInlinedStringCompareTo(CompilationUnit* cUnit, CallInfo* info) { #if defined(TARGET_ARM) || defined(TARGET_X86) oatClobberCalleeSave(cUnit); oatLockCallTemps(cUnit); // Using fixed registers int regThis = rARG0; int regCmp = rARG1; RegLocation rlThis = info->args[0]; RegLocation rlCmp = info->args[1]; loadValueDirectFixed(cUnit, rlThis, regThis); loadValueDirectFixed(cUnit, rlCmp, regCmp); #if !defined(TARGET_X86) int rTgt = loadHelper(cUnit, ENTRYPOINT_OFFSET(pStringCompareTo)); #endif genNullCheck(cUnit, rlThis.sRegLow, regThis, info->optFlags); //TUNING: check if rlCmp.sRegLow is already null checked LIR* launchPad = rawLIR(cUnit, 0, kPseudoIntrinsicRetry, (uintptr_t)info); oatInsertGrowableList(cUnit, &cUnit->intrinsicLaunchpads, (intptr_t)launchPad); opCmpImmBranch(cUnit, kCondEq, regCmp, 0, launchPad); // NOTE: not a safepoint #if !defined(TARGET_X86) opReg(cUnit, kOpBlx, rTgt); #else opThreadMem(cUnit, kOpBlx, ENTRYPOINT_OFFSET(pStringCompareTo)); #endif launchPad->operands[2] = 0; // No return possible // Record that we've already inlined & null checked info->optFlags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK); RegLocation rlReturn = oatGetReturn(cUnit, false); RegLocation rlDest = inlineTarget(cUnit, info); storeValue(cUnit, rlDest, rlReturn); return true; #else return false; #endif } bool genInlinedCas32(CompilationUnit* cUnit, CallInfo* info, bool need_write_barrier) { #if defined(TARGET_ARM) // Unused - RegLocation rlSrcUnsafe = info->args[0]; RegLocation rlSrcObj= info->args[1]; // Object - known non-null RegLocation rlSrcOffset= info->args[2]; // long low rlSrcOffset.wide = 0; // ignore high half in info->args[3] RegLocation rlSrcExpected= info->args[4]; // int or Object RegLocation rlSrcNewValue= info->args[5]; // int or Object RegLocation rlDest = inlineTarget(cUnit, info); // boolean place for result // Release store semantics, get the barrier out of the way. oatGenMemBarrier(cUnit, kSY); RegLocation rlObject = loadValue(cUnit, rlSrcObj, kCoreReg); RegLocation rlNewValue = loadValue(cUnit, rlSrcNewValue, kCoreReg); if (need_write_barrier) { // Mark card for object assuming new value is stored. markGCCard(cUnit, rlNewValue.lowReg, rlObject.lowReg); } RegLocation rlOffset = loadValue(cUnit, rlSrcOffset, kCoreReg); int rPtr = oatAllocTemp(cUnit); opRegRegReg(cUnit, kOpAdd, rPtr, rlObject.lowReg, rlOffset.lowReg); // Free now unneeded rlObject and rlOffset to give more temps. oatClobberSReg(cUnit, rlObject.sRegLow); oatFreeTemp(cUnit, rlObject.lowReg); oatClobberSReg(cUnit, rlOffset.sRegLow); oatFreeTemp(cUnit, rlOffset.lowReg); int rOldValue = oatAllocTemp(cUnit); newLIR3(cUnit, kThumb2Ldrex, rOldValue, rPtr, 0); // rOldValue := [rPtr] RegLocation rlExpected = loadValue(cUnit, rlSrcExpected, kCoreReg); // if (rOldValue == rExpected) { // [rPtr] <- rNewValue && rResult := success ? 0 : 1 // rResult ^= 1 // } else { // rResult := 0 // } opRegReg(cUnit, kOpCmp, rOldValue, rlExpected.lowReg); oatFreeTemp(cUnit, rOldValue); // Now unneeded. RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); opIT(cUnit, kArmCondEq, "TE"); newLIR4(cUnit, kThumb2Strex, rlResult.lowReg, rlNewValue.lowReg, rPtr, 0); oatFreeTemp(cUnit, rPtr); // Now unneeded. opRegImm(cUnit, kOpXor, rlResult.lowReg, 1); opRegReg(cUnit, kOpXor, rlResult.lowReg, rlResult.lowReg); storeValue(cUnit, rlDest, rlResult); return true; #else return false; #endif } bool genInlinedSqrt(CompilationUnit* cUnit, CallInfo* info) { #if defined(TARGET_ARM) LIR *branch; RegLocation rlSrc = info->args[0]; RegLocation rlDest = inlineTargetWide(cUnit, info); // double place for result rlSrc = loadValueWide(cUnit, rlSrc, kFPReg); RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kFPReg, true); newLIR2(cUnit, kThumb2Vsqrtd, S2D(rlResult.lowReg, rlResult.highReg), S2D(rlSrc.lowReg, rlSrc.highReg)); newLIR2(cUnit, kThumb2Vcmpd, S2D(rlResult.lowReg, rlResult.highReg), S2D(rlResult.lowReg, rlResult.highReg)); newLIR0(cUnit, kThumb2Fmstat); branch = newLIR2(cUnit, kThumbBCond, 0, kArmCondEq); oatClobberCalleeSave(cUnit); oatLockCallTemps(cUnit); // Using fixed registers int rTgt = loadHelper(cUnit, ENTRYPOINT_OFFSET(pSqrt)); newLIR3(cUnit, kThumb2Fmrrd, r0, r1, S2D(rlSrc.lowReg, rlSrc.highReg)); newLIR1(cUnit, kThumbBlxR, rTgt); newLIR3(cUnit, kThumb2Fmdrr, S2D(rlResult.lowReg, rlResult.highReg), r0, r1); branch->target = newLIR0(cUnit, kPseudoTargetLabel); storeValueWide(cUnit, rlDest, rlResult); return true; #else return false; #endif } bool genIntrinsic(CompilationUnit* cUnit, CallInfo* info) { if (info->optFlags & MIR_INLINED) { return false; } /* * TODO: move these to a target-specific structured constant array * and use a generic match function. The list of intrinsics may be * slightly different depending on target. * TODO: Fold this into a matching function that runs during * basic block building. This should be part of the action for * small method inlining and recognition of the special object init * method. By doing this during basic block construction, we can also * take advantage of/generate new useful dataflow info. */ std::string tgtMethod(PrettyMethod(info->index, *cUnit->dex_file)); if (tgtMethod.find(" java.lang") != std::string::npos) { if (tgtMethod == "long java.lang.Double.doubleToRawLongBits(double)") { return genInlinedDoubleCvt(cUnit, info); } if (tgtMethod == "double java.lang.Double.longBitsToDouble(long)") { return genInlinedDoubleCvt(cUnit, info); } if (tgtMethod == "int java.lang.Float.floatToRawIntBits(float)") { return genInlinedFloatCvt(cUnit, info); } if (tgtMethod == "float java.lang.Float.intBitsToFloat(int)") { return genInlinedFloatCvt(cUnit, info); } if (tgtMethod == "int java.lang.Math.abs(int)" || tgtMethod == "int java.lang.StrictMath.abs(int)") { return genInlinedAbsInt(cUnit, info); } if (tgtMethod == "long java.lang.Math.abs(long)" || tgtMethod == "long java.lang.StrictMath.abs(long)") { return genInlinedAbsLong(cUnit, info); } if (tgtMethod == "int java.lang.Math.max(int, int)" || tgtMethod == "int java.lang.StrictMath.max(int, int)") { return genInlinedMinMaxInt(cUnit, info, false /* isMin */); } if (tgtMethod == "int java.lang.Math.min(int, int)" || tgtMethod == "int java.lang.StrictMath.min(int, int)") { return genInlinedMinMaxInt(cUnit, info, true /* isMin */); } if (tgtMethod == "double java.lang.Math.sqrt(double)" || tgtMethod == "double java.lang.StrictMath.sqrt(double)") { return genInlinedSqrt(cUnit, info); } if (tgtMethod == "char java.lang.String.charAt(int)") { return genInlinedCharAt(cUnit, info); } if (tgtMethod == "int java.lang.String.compareTo(java.lang.String)") { return genInlinedStringCompareTo(cUnit, info); } if (tgtMethod == "boolean java.lang.String.isEmpty()") { return genInlinedStringIsEmptyOrLength(cUnit, info, true /* isEmpty */); } if (tgtMethod == "int java.lang.String.indexOf(int, int)") { return genInlinedIndexOf(cUnit, info, false /* base 0 */); } if (tgtMethod == "int java.lang.String.indexOf(int)") { return genInlinedIndexOf(cUnit, info, true /* base 0 */); } if (tgtMethod == "int java.lang.String.length()") { return genInlinedStringIsEmptyOrLength(cUnit, info, false /* isEmpty */); } } else if (tgtMethod.find("boolean sun.misc.Unsafe.compareAndSwap") != std::string::npos) { if (tgtMethod == "boolean sun.misc.Unsafe.compareAndSwapInt(java.lang.Object, long, int, int)") { return genInlinedCas32(cUnit, info, false); } if (tgtMethod == "boolean sun.misc.Unsafe.compareAndSwapObject(java.lang.Object, long, java.lang.Object, java.lang.Object)") { return genInlinedCas32(cUnit, info, true); } } return false; } } // namespace art