/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "oat/runtime/oat_support_entrypoints.h" namespace art { /* * This source files contains "gen" codegen routines that should * be applicable to most targets. Only mid-level support utilities * and "op" calls may be used here. */ typedef int (*NextCallInsn)(CompilationUnit*, MIR*, int, uint32_t dexIdx, uint32_t methodIdx, uintptr_t directCode, uintptr_t directMethod, InvokeType type); LIR* opCondBranch(CompilationUnit* cUnit, ConditionCode cc, LIR* target); /* * If there are any ins passed in registers that have not been promoted * to a callee-save register, flush them to the frame. Perform intial * assignment of promoted arguments. */ void flushIns(CompilationUnit* cUnit) { /* * Dummy up a RegLocation for the incoming Method* * It will attempt to keep rARG0 live (or copy it to home location * if promoted). */ RegLocation rlSrc = cUnit->regLocation[cUnit->methodSReg]; RegLocation rlMethod = cUnit->regLocation[cUnit->methodSReg]; rlSrc.location = kLocPhysReg; rlSrc.lowReg = rARG0; rlSrc.home = false; oatMarkLive(cUnit, rlSrc.lowReg, rlSrc.sRegLow); storeValue(cUnit, rlMethod, rlSrc); // If Method* has been promoted, explicitly flush if (rlMethod.location == kLocPhysReg) { storeWordDisp(cUnit, rSP, 0, rARG0); } if (cUnit->numIns == 0) return; const int numArgRegs = 3; static int argRegs[] = {rARG1, rARG2, rARG3}; int startVReg = cUnit->numDalvikRegisters - cUnit->numIns; /* * Copy incoming arguments to their proper home locations. * NOTE: an older version of dx had an issue in which * it would reuse static method argument registers. * This could result in the same Dalvik virtual register * being promoted to both core and fp regs. To account for this, * we only copy to the corresponding promoted physical register * if it matches the type of the SSA name for the incoming * argument. It is also possible that long and double arguments * end up half-promoted. In those cases, we must flush the promoted * half to memory as well. */ for (int i = 0; i < cUnit->numIns; i++) { PromotionMap* vMap = &cUnit->promotionMap[startVReg + i]; if (i < numArgRegs) { // If arriving in register bool needFlush = true; RegLocation* tLoc = &cUnit->regLocation[startVReg + i]; if ((vMap->coreLocation == kLocPhysReg) && !tLoc->fp) { opRegCopy(cUnit, vMap->coreReg, argRegs[i]); needFlush = false; } else if ((vMap->fpLocation == kLocPhysReg) && tLoc->fp) { opRegCopy(cUnit, vMap->fpReg, argRegs[i]); needFlush = false; } else { needFlush = true; } // For wide args, force flush if only half is promoted if (tLoc->wide) { PromotionMap* pMap = vMap + (tLoc->highWord ? -1 : +1); needFlush |= (pMap->coreLocation != vMap->coreLocation) || (pMap->fpLocation != vMap->fpLocation); } if (needFlush) { storeBaseDisp(cUnit, rSP, oatSRegOffset(cUnit, startVReg + i), argRegs[i], kWord); } } else { // If arriving in frame & promoted if (vMap->coreLocation == kLocPhysReg) { loadWordDisp(cUnit, rSP, oatSRegOffset(cUnit, startVReg + i), vMap->coreReg); } if (vMap->fpLocation == kLocPhysReg) { loadWordDisp(cUnit, rSP, oatSRegOffset(cUnit, startVReg + i), vMap->fpReg); } } } } void scanMethodLiteralPool(CompilationUnit* cUnit, LIR** methodTarget, LIR** codeTarget, const DexFile* dexFile, uint32_t dexMethodIdx) { LIR* curTarget = cUnit->methodLiteralList; LIR* nextTarget = curTarget != NULL ? curTarget->next : NULL; while (curTarget != NULL && nextTarget != NULL) { if (curTarget->operands[0] == (int)dexFile && nextTarget->operands[0] == (int)dexMethodIdx) { *codeTarget = curTarget; *methodTarget = nextTarget; DCHECK((*codeTarget)->next == *methodTarget); DCHECK_EQ((*codeTarget)->operands[0], (int)dexFile); DCHECK_EQ((*methodTarget)->operands[0], (int)dexMethodIdx); break; } curTarget = nextTarget->next; nextTarget = curTarget != NULL ? curTarget->next : NULL; } } /* * Bit of a hack here - in the absence of a real scheduling pass, * emit the next instruction in static & direct invoke sequences. */ int nextSDCallInsn(CompilationUnit* cUnit, MIR* mir, int state, uint32_t dexIdx, uint32_t unused, uintptr_t directCode, uintptr_t directMethod, InvokeType type) { #if !defined(TARGET_ARM) directCode = 0; directMethod = 0; #endif if (directCode != 0 && directMethod != 0) { switch (state) { case 0: // Get the current Method* [sets rARG0] if (directCode != (uintptr_t)-1) { loadConstant(cUnit, rINVOKE_TGT, directCode); } else { LIR* dataTarget = scanLiteralPool(cUnit->codeLiteralList, dexIdx, 0); if (dataTarget == NULL) { dataTarget = addWordData(cUnit, &cUnit->codeLiteralList, dexIdx); dataTarget->operands[1] = type; } #if defined(TARGET_ARM) LIR* loadPcRel = rawLIR(cUnit, cUnit->currentDalvikOffset, kThumb2LdrPcRel12, rINVOKE_TGT, 0, 0, 0, 0, dataTarget); oatAppendLIR(cUnit, loadPcRel); #else UNIMPLEMENTED(FATAL) << (void*)dataTarget; #endif } if (directMethod != (uintptr_t)-1) { loadConstant(cUnit, rARG0, directMethod); } else { LIR* dataTarget = scanLiteralPool(cUnit->methodLiteralList, dexIdx, 0); if (dataTarget == NULL) { dataTarget = addWordData(cUnit, &cUnit->methodLiteralList, dexIdx); dataTarget->operands[1] = type; } #if defined(TARGET_ARM) LIR* loadPcRel = rawLIR(cUnit, cUnit->currentDalvikOffset, kThumb2LdrPcRel12, rARG0, 0, 0, 0, 0, dataTarget); oatAppendLIR(cUnit, loadPcRel); #else UNIMPLEMENTED(FATAL) << (void*)dataTarget; #endif } break; default: return -1; } } else { switch (state) { case 0: // Get the current Method* [sets rARG0] // TUNING: we can save a reg copy if Method* has been promoted loadCurrMethodDirect(cUnit, rARG0); break; case 1: // Get method->dex_cache_resolved_methods_ loadWordDisp(cUnit, rARG0, Method::DexCacheResolvedMethodsOffset().Int32Value(), rARG0); // Set up direct code if known. if (directCode != 0) { if (directCode != (uintptr_t)-1) { loadConstant(cUnit, rINVOKE_TGT, directCode); } else { LIR* dataTarget = scanLiteralPool(cUnit->codeLiteralList, dexIdx, 0); if (dataTarget == NULL) { dataTarget = addWordData(cUnit, &cUnit->codeLiteralList, dexIdx); dataTarget->operands[1] = type; } #if defined(TARGET_ARM) LIR* loadPcRel = rawLIR(cUnit, cUnit->currentDalvikOffset, kThumb2LdrPcRel12, rINVOKE_TGT, 0, 0, 0, 0, dataTarget); oatAppendLIR(cUnit, loadPcRel); #else UNIMPLEMENTED(FATAL) << (void*)dataTarget; #endif } } break; case 2: // Grab target method* loadWordDisp(cUnit, rARG0, Array::DataOffset(sizeof(Object*)).Int32Value() + dexIdx * 4, rARG0); break; #if !defined(TARGET_X86) case 3: // Grab the code from the method* if (directCode == 0) { loadWordDisp(cUnit, rARG0, Method::GetCodeOffset().Int32Value(), rINVOKE_TGT); } break; #endif default: return -1; } } return state + 1; } /* * Bit of a hack here - in the absence of a real scheduling pass, * emit the next instruction in a virtual invoke sequence. * We can use rLR as a temp prior to target address loading * Note also that we'll load the first argument ("this") into * rARG1 here rather than the standard loadArgRegs. */ int nextVCallInsn(CompilationUnit* cUnit, MIR* mir, int state, uint32_t dexIdx, uint32_t methodIdx, uintptr_t unused, uintptr_t unused2, InvokeType unused3) { RegLocation rlArg; /* * This is the fast path in which the target virtual method is * fully resolved at compile time. */ switch (state) { case 0: // Get "this" [set rARG1] rlArg = oatGetSrc(cUnit, mir, 0); loadValueDirectFixed(cUnit, rlArg, rARG1); break; case 1: // Is "this" null? [use rARG1] genNullCheck(cUnit, oatSSASrc(mir,0), rARG1, mir); // get this->klass_ [use rARG1, set rINVOKE_TGT] loadWordDisp(cUnit, rARG1, Object::ClassOffset().Int32Value(), rINVOKE_TGT); break; case 2: // Get this->klass_->vtable [usr rINVOKE_TGT, set rINVOKE_TGT] loadWordDisp(cUnit, rINVOKE_TGT, Class::VTableOffset().Int32Value(), rINVOKE_TGT); break; case 3: // Get target method [use rINVOKE_TGT, set rARG0] loadWordDisp(cUnit, rINVOKE_TGT, (methodIdx * 4) + Array::DataOffset(sizeof(Object*)).Int32Value(), rARG0); break; #if !defined(TARGET_X86) case 4: // Get the compiled code address [uses rARG0, sets rINVOKE_TGT] loadWordDisp(cUnit, rARG0, Method::GetCodeOffset().Int32Value(), rINVOKE_TGT); break; #endif default: return -1; } return state + 1; } int nextInvokeInsnSP(CompilationUnit* cUnit, MIR* mir, int trampoline, int state, uint32_t dexIdx, uint32_t methodIdx) { /* * This handles the case in which the base method is not fully * resolved at compile time, we bail to a runtime helper. */ if (state == 0) { #if !defined(TARGET_X86) // Load trampoline target loadWordDisp(cUnit, rSELF, trampoline, rINVOKE_TGT); #endif // Load rARG0 with method index loadConstant(cUnit, rARG0, dexIdx); return 1; } return -1; } int nextStaticCallInsnSP(CompilationUnit* cUnit, MIR* mir, int state, uint32_t dexIdx, uint32_t methodIdx, uintptr_t unused, uintptr_t unused2, InvokeType unused3) { int trampoline = ENTRYPOINT_OFFSET(pInvokeStaticTrampolineWithAccessCheck); return nextInvokeInsnSP(cUnit, mir, trampoline, state, dexIdx, 0); } int nextDirectCallInsnSP(CompilationUnit* cUnit, MIR* mir, int state, uint32_t dexIdx, uint32_t methodIdx, uintptr_t unused, uintptr_t unused2, InvokeType unused3) { int trampoline = ENTRYPOINT_OFFSET(pInvokeDirectTrampolineWithAccessCheck); return nextInvokeInsnSP(cUnit, mir, trampoline, state, dexIdx, 0); } int nextSuperCallInsnSP(CompilationUnit* cUnit, MIR* mir, int state, uint32_t dexIdx, uint32_t methodIdx, uintptr_t unused, uintptr_t unused2, InvokeType unused3) { int trampoline = ENTRYPOINT_OFFSET(pInvokeSuperTrampolineWithAccessCheck); return nextInvokeInsnSP(cUnit, mir, trampoline, state, dexIdx, 0); } int nextVCallInsnSP(CompilationUnit* cUnit, MIR* mir, int state, uint32_t dexIdx, uint32_t methodIdx, uintptr_t unused, uintptr_t unused2, InvokeType unused3) { int trampoline = ENTRYPOINT_OFFSET(pInvokeVirtualTrampolineWithAccessCheck); return nextInvokeInsnSP(cUnit, mir, trampoline, state, dexIdx, 0); } /* * All invoke-interface calls bounce off of art_invoke_interface_trampoline, * which will locate the target and continue on via a tail call. */ int nextInterfaceCallInsn(CompilationUnit* cUnit, MIR* mir, int state, uint32_t dexIdx, uint32_t unused, uintptr_t unused2, uintptr_t unused3, InvokeType unused4) { int trampoline = ENTRYPOINT_OFFSET(pInvokeInterfaceTrampoline); return nextInvokeInsnSP(cUnit, mir, trampoline, state, dexIdx, 0); } int nextInterfaceCallInsnWithAccessCheck(CompilationUnit* cUnit, MIR* mir, int state, uint32_t dexIdx, uint32_t unused, uintptr_t unused2, uintptr_t unused3, InvokeType unused4) { int trampoline = ENTRYPOINT_OFFSET(pInvokeInterfaceTrampolineWithAccessCheck); return nextInvokeInsnSP(cUnit, mir, trampoline, state, dexIdx, 0); } int loadArgRegs(CompilationUnit* cUnit, MIR* mir, DecodedInstruction* dInsn, int callState, NextCallInsn nextCallInsn, uint32_t dexIdx, uint32_t methodIdx, uintptr_t directCode, uintptr_t directMethod, InvokeType type, bool skipThis) { int lastArgReg = rARG3; int nextReg = rARG1; int nextArg = 0; if (skipThis) { nextReg++; nextArg++; } for (; (nextReg <= lastArgReg) && (nextArg < mir->ssaRep->numUses); nextReg++) { RegLocation rlArg = oatGetRawSrc(cUnit, mir, nextArg++); rlArg = oatUpdateRawLoc(cUnit, rlArg); if (rlArg.wide && (nextReg <= rARG2)) { loadValueDirectWideFixed(cUnit, rlArg, nextReg, nextReg + 1); nextReg++; nextArg++; } else { rlArg.wide = false; loadValueDirectFixed(cUnit, rlArg, nextReg); } callState = nextCallInsn(cUnit, mir, callState, dexIdx, methodIdx, directCode, directMethod, type); } return callState; } /* * Load up to 5 arguments, the first three of which will be in * rARG1 .. rARG3. On entry rARG0 contains the current method pointer, * and as part of the load sequence, it must be replaced with * the target method pointer. Note, this may also be called * for "range" variants if the number of arguments is 5 or fewer. */ int genDalvikArgsNoRange(CompilationUnit* cUnit, MIR* mir, DecodedInstruction* dInsn, int callState, LIR** pcrLabel, NextCallInsn nextCallInsn, uint32_t dexIdx, uint32_t methodIdx, uintptr_t directCode, uintptr_t directMethod, InvokeType type, bool skipThis) { RegLocation rlArg; /* If no arguments, just return */ if (dInsn->vA == 0) return callState; callState = nextCallInsn(cUnit, mir, callState, dexIdx, methodIdx, directCode, directMethod, type); DCHECK_LE(dInsn->vA, 5U); if (dInsn->vA > 3) { uint32_t nextUse = 3; //Detect special case of wide arg spanning arg3/arg4 RegLocation rlUse0 = oatGetRawSrc(cUnit, mir, 0); RegLocation rlUse1 = oatGetRawSrc(cUnit, mir, 1); RegLocation rlUse2 = oatGetRawSrc(cUnit, mir, 2); if (((!rlUse0.wide && !rlUse1.wide) || rlUse0.wide) && rlUse2.wide) { int reg = -1; // Wide spans, we need the 2nd half of uses[2]. rlArg = oatUpdateLocWide(cUnit, rlUse2); if (rlArg.location == kLocPhysReg) { reg = rlArg.highReg; } else { // rARG2 & rARG3 can safely be used here reg = rARG3; loadWordDisp(cUnit, rSP, oatSRegOffset(cUnit, rlArg.sRegLow) + 4, reg); callState = nextCallInsn(cUnit, mir, callState, dexIdx, methodIdx, directCode, directMethod, type); } storeBaseDisp(cUnit, rSP, (nextUse + 1) * 4, reg, kWord); storeBaseDisp(cUnit, rSP, 16 /* (3+1)*4 */, reg, kWord); callState = nextCallInsn(cUnit, mir, callState, dexIdx, methodIdx, directCode, directMethod, type); nextUse++; } // Loop through the rest while (nextUse < dInsn->vA) { int lowReg; int highReg = -1; rlArg = oatGetRawSrc(cUnit, mir, nextUse); rlArg = oatUpdateRawLoc(cUnit, rlArg); if (rlArg.location == kLocPhysReg) { lowReg = rlArg.lowReg; highReg = rlArg.highReg; } else { lowReg = rARG2; if (rlArg.wide) { highReg = rARG3; loadValueDirectWideFixed(cUnit, rlArg, lowReg, highReg); } else { loadValueDirectFixed(cUnit, rlArg, lowReg); } callState = nextCallInsn(cUnit, mir, callState, dexIdx, methodIdx, directCode, directMethod, type); } int outsOffset = (nextUse + 1) * 4; if (rlArg.wide) { storeBaseDispWide(cUnit, rSP, outsOffset, lowReg, highReg); nextUse += 2; } else { storeWordDisp(cUnit, rSP, outsOffset, lowReg); nextUse++; } callState = nextCallInsn(cUnit, mir, callState, dexIdx, methodIdx, directCode, directMethod, type); } } callState = loadArgRegs(cUnit, mir, dInsn, callState, nextCallInsn, dexIdx, methodIdx, directCode, directMethod, type, skipThis); if (pcrLabel) { *pcrLabel = genNullCheck(cUnit, oatSSASrc(mir,0), rARG1, mir); } return callState; } /* * May have 0+ arguments (also used for jumbo). Note that * source virtual registers may be in physical registers, so may * need to be flushed to home location before copying. This * applies to arg3 and above (see below). * * Two general strategies: * If < 20 arguments * Pass args 3-18 using vldm/vstm block copy * Pass arg0, arg1 & arg2 in rARG1-rARG3 * If 20+ arguments * Pass args arg19+ using memcpy block copy * Pass arg0, arg1 & arg2 in rARG1-rARG3 * */ int genDalvikArgsRange(CompilationUnit* cUnit, MIR* mir, DecodedInstruction* dInsn, int callState, LIR** pcrLabel, NextCallInsn nextCallInsn, uint32_t dexIdx, uint32_t methodIdx, uintptr_t directCode, uintptr_t directMethod, InvokeType type, bool skipThis) { int firstArg = dInsn->vC; int numArgs = dInsn->vA; // If we can treat it as non-range (Jumbo ops will use range form) if (numArgs <= 5) return genDalvikArgsNoRange(cUnit, mir, dInsn, callState, pcrLabel, nextCallInsn, dexIdx, methodIdx, directCode, directMethod, type, skipThis); /* * Make sure range list doesn't span the break between in normal * Dalvik vRegs and the ins. */ int highestArg = oatGetSrc(cUnit, mir, numArgs-1).sRegLow; int boundaryReg = cUnit->numDalvikRegisters - cUnit->numIns; if ((firstArg < boundaryReg) && (highestArg >= boundaryReg)) { LOG(FATAL) << "Argument list spanned locals & args"; } /* * First load the non-register arguments. Both forms expect all * of the source arguments to be in their home frame location, so * scan the sReg names and flush any that have been promoted to * frame backing storage. */ // Scan the rest of the args - if in physReg flush to memory for (int nextArg = 0; nextArg < numArgs;) { RegLocation loc = oatGetRawSrc(cUnit, mir, nextArg); if (loc.wide) { loc = oatUpdateLocWide(cUnit, loc); if ((nextArg >= 2) && (loc.location == kLocPhysReg)) { storeBaseDispWide(cUnit, rSP, oatSRegOffset(cUnit, loc.sRegLow), loc.lowReg, loc.highReg); } nextArg += 2; } else { loc = oatUpdateLoc(cUnit, loc); if ((nextArg >= 3) && (loc.location == kLocPhysReg)) { storeBaseDisp(cUnit, rSP, oatSRegOffset(cUnit, loc.sRegLow), loc.lowReg, kWord); } nextArg++; } } int startOffset = oatSRegOffset(cUnit, cUnit->regLocation[mir->ssaRep->uses[3]].sRegLow); int outsOffset = 4 /* Method* */ + (3 * 4); #if defined(TARGET_MIPS) || defined(TARGET_X86) // Generate memcpy opRegRegImm(cUnit, kOpAdd, rARG0, rSP, outsOffset); opRegRegImm(cUnit, kOpAdd, rARG1, rSP, startOffset); callRuntimeHelperRegRegImm(cUnit, ENTRYPOINT_OFFSET(pMemcpy), rARG0, rARG1, (numArgs - 3) * 4); #else if (numArgs >= 20) { // Generate memcpy opRegRegImm(cUnit, kOpAdd, rARG0, rSP, outsOffset); opRegRegImm(cUnit, kOpAdd, rARG1, rSP, startOffset); callRuntimeHelperRegRegImm(cUnit, ENTRYPOINT_OFFSET(pMemcpy), rARG0, rARG1, (numArgs - 3) * 4); } else { // Use vldm/vstm pair using rARG3 as a temp int regsLeft = std::min(numArgs - 3, 16); callState = nextCallInsn(cUnit, mir, callState, dexIdx, methodIdx, directCode, directMethod, type); opRegRegImm(cUnit, kOpAdd, rARG3, rSP, startOffset); LIR* ld = newLIR3(cUnit, kThumb2Vldms, rARG3, fr0, regsLeft); //TUNING: loosen barrier ld->defMask = ENCODE_ALL; setMemRefType(ld, true /* isLoad */, kDalvikReg); callState = nextCallInsn(cUnit, mir, callState, dexIdx, methodIdx, directCode, directMethod, type); opRegRegImm(cUnit, kOpAdd, rARG3, rSP, 4 /* Method* */ + (3 * 4)); callState = nextCallInsn(cUnit, mir, callState, dexIdx, methodIdx, directCode, directMethod, type); LIR* st = newLIR3(cUnit, kThumb2Vstms, rARG3, fr0, regsLeft); setMemRefType(st, false /* isLoad */, kDalvikReg); st->defMask = ENCODE_ALL; callState = nextCallInsn(cUnit, mir, callState, dexIdx, methodIdx, directCode, directMethod, type); } #endif callState = loadArgRegs(cUnit, mir, dInsn, callState, nextCallInsn, dexIdx, methodIdx, directCode, directMethod, type, skipThis); callState = nextCallInsn(cUnit, mir, callState, dexIdx, methodIdx, directCode, directMethod, type); if (pcrLabel) { *pcrLabel = genNullCheck(cUnit, oatSSASrc(mir,0), rARG1, mir); } return callState; } RegLocation inlineTarget(CompilationUnit* cUnit, BasicBlock* bb, MIR* mir) { RegLocation res; mir = oatFindMoveResult(cUnit, bb, mir, false); if (mir == NULL) { res = oatGetReturn(cUnit, false); } else { res = oatGetDest(cUnit, mir, 0); mir->dalvikInsn.opcode = Instruction::NOP; } return res; } RegLocation inlineTargetWide(CompilationUnit* cUnit, BasicBlock* bb, MIR* mir) { RegLocation res; mir = oatFindMoveResult(cUnit, bb, mir, true); if (mir == NULL) { res = oatGetReturnWide(cUnit, false); } else { res = oatGetDestWide(cUnit, mir, 0, 1); mir->dalvikInsn.opcode = Instruction::NOP; } return res; } bool genInlinedCharAt(CompilationUnit* cUnit, BasicBlock* bb, MIR* mir, InvokeType type, bool isRange) { #if defined(TARGET_ARM) // Location of reference to data array int valueOffset = String::ValueOffset().Int32Value(); // Location of count int countOffset = String::CountOffset().Int32Value(); // Starting offset within data array int offsetOffset = String::OffsetOffset().Int32Value(); // Start of char data with array_ int dataOffset = Array::DataOffset(sizeof(uint16_t)).Int32Value(); RegLocation rlObj = oatGetSrc(cUnit, mir, 0); RegLocation rlIdx = oatGetSrc(cUnit, mir, 1); rlObj = loadValue(cUnit, rlObj, kCoreReg); rlIdx = loadValue(cUnit, rlIdx, kCoreReg); int regMax; int regOff = oatAllocTemp(cUnit); int regPtr = oatAllocTemp(cUnit); genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir); bool rangeCheck = (!(mir->optimizationFlags & MIR_IGNORE_RANGE_CHECK)); if (rangeCheck) { regMax = oatAllocTemp(cUnit); loadWordDisp(cUnit, rlObj.lowReg, countOffset, regMax); } loadWordDisp(cUnit, rlObj.lowReg, offsetOffset, regOff); loadWordDisp(cUnit, rlObj.lowReg, valueOffset, regPtr); LIR* launchPad = NULL; if (rangeCheck) { // Set up a launch pad to allow retry in case of bounds violation */ launchPad = rawLIR(cUnit, 0, kPseudoIntrinsicRetry, (int)mir, type); oatInsertGrowableList(cUnit, &cUnit->intrinsicLaunchpads, (intptr_t)launchPad); opRegReg(cUnit, kOpCmp, rlIdx.lowReg, regMax); oatFreeTemp(cUnit, regMax); opCondBranch(cUnit, kCondCs, launchPad); } opRegImm(cUnit, kOpAdd, regPtr, dataOffset); opRegReg(cUnit, kOpAdd, regOff, rlIdx.lowReg); RegLocation rlDest = inlineTarget(cUnit, bb, mir); RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); loadBaseIndexed(cUnit, regPtr, regOff, rlResult.lowReg, 1, kUnsignedHalf); oatFreeTemp(cUnit, regOff); oatFreeTemp(cUnit, regPtr); storeValue(cUnit, rlDest, rlResult); if (rangeCheck) { launchPad->operands[2] = NULL; // no resumption launchPad->operands[3] = (uintptr_t)bb; } // Record that we've already inlined & null checked mir->optimizationFlags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK); return true; #else return false; #endif } bool genInlinedMinMaxInt(CompilationUnit *cUnit, BasicBlock* bb, MIR *mir, bool isMin) { #if defined(TARGET_ARM) RegLocation rlSrc1 = oatGetSrc(cUnit, mir, 0); RegLocation rlSrc2 = oatGetSrc(cUnit, mir, 1); rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg); rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg); RegLocation rlDest = inlineTarget(cUnit, bb, mir); RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); opRegReg(cUnit, kOpCmp, rlSrc1.lowReg, rlSrc2.lowReg); opIT(cUnit, (isMin) ? kArmCondGt : kArmCondLt, "E"); opRegReg(cUnit, kOpMov, rlResult.lowReg, rlSrc2.lowReg); opRegReg(cUnit, kOpMov, rlResult.lowReg, rlSrc1.lowReg); genBarrier(cUnit); storeValue(cUnit, rlDest, rlResult); return true; #else return false; #endif } // Generates an inlined String.isEmpty or String.length. bool genInlinedStringIsEmptyOrLength(CompilationUnit* cUnit, BasicBlock* bb, MIR* mir, bool isEmpty) { #if defined(TARGET_ARM) // dst = src.length(); RegLocation rlObj = oatGetSrc(cUnit, mir, 0); rlObj = loadValue(cUnit, rlObj, kCoreReg); RegLocation rlDest = inlineTarget(cUnit, bb, mir); RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir); loadWordDisp(cUnit, rlObj.lowReg, String::CountOffset().Int32Value(), rlResult.lowReg); if (isEmpty) { // dst = (dst == 0); int tReg = oatAllocTemp(cUnit); opRegReg(cUnit, kOpNeg, tReg, rlResult.lowReg); opRegRegReg(cUnit, kOpAdc, rlResult.lowReg, rlResult.lowReg, tReg); } storeValue(cUnit, rlDest, rlResult); return true; #else return false; #endif } bool genInlinedAbsInt(CompilationUnit *cUnit, BasicBlock* bb, MIR *mir) { #if defined(TARGET_ARM) RegLocation rlSrc = oatGetSrc(cUnit, mir, 0); rlSrc = loadValue(cUnit, rlSrc, kCoreReg); RegLocation rlDest = inlineTarget(cUnit, bb, mir); RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); int signReg = oatAllocTemp(cUnit); // abs(x) = y<=x>>31, (x+y)^y. opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.lowReg, 31); opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg); opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg); storeValue(cUnit, rlDest, rlResult); return true; #else return false; #endif } bool genInlinedAbsLong(CompilationUnit *cUnit, BasicBlock* bb, MIR *mir) { #if defined(TARGET_ARM) RegLocation rlSrc = oatGetSrcWide(cUnit, mir, 0, 1); rlSrc = loadValueWide(cUnit, rlSrc, kCoreReg); RegLocation rlDest = inlineTargetWide(cUnit, bb, mir); RegLocation rlResult = oatEvalLoc(cUnit, rlDest, kCoreReg, true); int signReg = oatAllocTemp(cUnit); // abs(x) = y<=x>>31, (x+y)^y. opRegRegImm(cUnit, kOpAsr, signReg, rlSrc.highReg, 31); opRegRegReg(cUnit, kOpAdd, rlResult.lowReg, rlSrc.lowReg, signReg); opRegRegReg(cUnit, kOpAdc, rlResult.highReg, rlSrc.highReg, signReg); opRegReg(cUnit, kOpXor, rlResult.lowReg, signReg); opRegReg(cUnit, kOpXor, rlResult.highReg, signReg); storeValueWide(cUnit, rlDest, rlResult); return true; #else return false; #endif } bool genInlinedFloatCvt(CompilationUnit *cUnit, BasicBlock* bb, MIR *mir) { #if defined(TARGET_ARM) RegLocation rlSrc = oatGetSrc(cUnit, mir, 0); RegLocation rlDest = inlineTarget(cUnit, bb, mir); storeValue(cUnit, rlDest, rlSrc); return true; #else return false; #endif } bool genInlinedDoubleCvt(CompilationUnit *cUnit, BasicBlock* bb, MIR *mir) { #if defined(TARGET_ARM) RegLocation rlSrc = oatGetSrcWide(cUnit, mir, 0, 1); RegLocation rlDest = inlineTargetWide(cUnit, bb, mir); storeValueWide(cUnit, rlDest, rlSrc); return true; #else return false; #endif } /* * Fast string.indexOf(I) & (II). Tests for simple case of char <= 0xffff, * otherwise bails to standard library code. */ bool genInlinedIndexOf(CompilationUnit* cUnit, BasicBlock* bb, MIR* mir, InvokeType type, bool zeroBased) { #if defined(TARGET_ARM) oatClobberCalleeSave(cUnit); oatLockCallTemps(cUnit); // Using fixed registers int regPtr = rARG0; int regChar = rARG1; int regStart = rARG2; RegLocation rlObj = oatGetSrc(cUnit, mir, 0); RegLocation rlChar = oatGetSrc(cUnit, mir, 1); RegLocation rlStart = oatGetSrc(cUnit, mir, 2); loadValueDirectFixed(cUnit, rlObj, regPtr); loadValueDirectFixed(cUnit, rlChar, regChar); if (zeroBased) { loadConstant(cUnit, regStart, 0); } else { loadValueDirectFixed(cUnit, rlStart, regStart); } int rTgt = loadHelper(cUnit, ENTRYPOINT_OFFSET(pIndexOf)); genNullCheck(cUnit, rlObj.sRegLow, regPtr, mir); LIR* launchPad = rawLIR(cUnit, 0, kPseudoIntrinsicRetry, (int)mir, type); oatInsertGrowableList(cUnit, &cUnit->intrinsicLaunchpads, (intptr_t)launchPad); opCmpImmBranch(cUnit, kCondGt, regChar, 0xFFFF, launchPad); opReg(cUnit, kOpBlx, rTgt); LIR* resumeTgt = newLIR0(cUnit, kPseudoTargetLabel); launchPad->operands[2] = (uintptr_t)resumeTgt; launchPad->operands[3] = (uintptr_t)bb; // Record that we've already inlined & null checked mir->optimizationFlags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK); return true; #else return false; #endif } /* Fast string.compareTo(Ljava/lang/string;)I. */ bool genInlinedStringCompareTo(CompilationUnit* cUnit, BasicBlock* bb, MIR* mir, InvokeType type) { #if defined(TARGET_ARM) oatClobberCalleeSave(cUnit); oatLockCallTemps(cUnit); // Using fixed registers int regThis = rARG0; int regCmp = rARG1; RegLocation rlThis = oatGetSrc(cUnit, mir, 0); RegLocation rlCmp = oatGetSrc(cUnit, mir, 1); loadValueDirectFixed(cUnit, rlThis, regThis); loadValueDirectFixed(cUnit, rlCmp, regCmp); int rTgt = loadHelper(cUnit, ENTRYPOINT_OFFSET(pStringCompareTo)); genNullCheck(cUnit, rlThis.sRegLow, regThis, mir); //TUNING: check if rlCmp.sRegLow is already null checked LIR* launchPad = rawLIR(cUnit, 0, kPseudoIntrinsicRetry, (int)mir, type); oatInsertGrowableList(cUnit, &cUnit->intrinsicLaunchpads, (intptr_t)launchPad); opCmpImmBranch(cUnit, kCondEq, regCmp, 0, launchPad); opReg(cUnit, kOpBlx, rTgt); launchPad->operands[2] = NULL; // No return possible launchPad->operands[3] = (uintptr_t)bb; // Record that we've already inlined & null checked mir->optimizationFlags |= (MIR_INLINED | MIR_IGNORE_NULL_CHECK); return true; #else return false; #endif } bool genIntrinsic(CompilationUnit* cUnit, BasicBlock* bb, MIR* mir, InvokeType type, bool isRange) { if ((mir->optimizationFlags & MIR_INLINED) || isRange) { return false; } /* * TODO: move these to a target-specific structured constant array * and use a generic match function. The list of intrinsics may be * slightly different depending on target. * TODO: Fold this into a matching function that runs during * basic block building. This should be part of the action for * small method inlining and recognition of the special object init * method. By doing this during basic block construction, we can also * take advantage of/generate new useful dataflow info. */ std::string tgtMethod(PrettyMethod(mir->dalvikInsn.vB, *cUnit->dex_file)); if (tgtMethod.compare("char java.lang.String.charAt(int)") == 0) { return genInlinedCharAt(cUnit, bb, mir, type, isRange); } if (tgtMethod.compare("int java.lang.Math.min(int, int)") == 0) { return genInlinedMinMaxInt(cUnit, bb, mir, true /* isMin */); } if (tgtMethod.compare("int java.lang.Math.max(int, int)") == 0) { return genInlinedMinMaxInt(cUnit, bb, mir, false /* isMin */); } if (tgtMethod.compare("int java.lang.String.length()") == 0) { return genInlinedStringIsEmptyOrLength(cUnit, bb, mir, false /* isEmpty */); } if (tgtMethod.compare("boolean java.lang.String.isEmpty()") == 0) { return genInlinedStringIsEmptyOrLength(cUnit, bb, mir, true /* isEmpty */); } if (tgtMethod.compare("int java.lang.Math.abs(int)") == 0) { return genInlinedAbsInt(cUnit, bb, mir); } if (tgtMethod.compare("long java.lang.Math.abs(long)") == 0) { return genInlinedAbsLong(cUnit, bb, mir); } if (tgtMethod.compare("int java.lang.Float.floatToRawIntBits(float)") == 0) { return genInlinedFloatCvt(cUnit, bb, mir); } if (tgtMethod.compare("float java.lang.Float.intBitsToFloat(int)") == 0) { return genInlinedFloatCvt(cUnit, bb, mir); } if (tgtMethod.compare("long java.lang.Double.doubleToRawLongBits(double)") == 0) { return genInlinedDoubleCvt(cUnit, bb, mir); } if (tgtMethod.compare("double java.lang.Double.longBitsToDouble(long)") == 0) { return genInlinedDoubleCvt(cUnit, bb, mir); } if (tgtMethod.compare("int java.lang.String.indexOf(int, int)") == 0) { return genInlinedIndexOf(cUnit, bb, mir, type, false /* base 0 */); } if (tgtMethod.compare("int java.lang.String.indexOf(int)") == 0) { return genInlinedIndexOf(cUnit, bb, mir, type, true /* base 0 */); } if (tgtMethod.compare("int java.lang.String.compareTo(java.lang.String)") == 0) { return genInlinedStringCompareTo(cUnit, bb, mir, type); } return false; } } // namespace art