/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ namespace art { void setMemRefType(LIR* lir, bool isLoad, int memType) { u8 *maskPtr; u8 mask = ENCODE_MEM;; DCHECK(EncodingMap[lir->opcode].flags & (IS_LOAD | IS_STORE)); if (isLoad) { maskPtr = &lir->useMask; } else { maskPtr = &lir->defMask; } /* Clear out the memref flags */ *maskPtr &= ~mask; /* ..and then add back the one we need */ switch(memType) { case kLiteral: DCHECK(isLoad); *maskPtr |= ENCODE_LITERAL; break; case kDalvikReg: *maskPtr |= ENCODE_DALVIK_REG; break; case kHeapRef: *maskPtr |= ENCODE_HEAP_REF; break; case kMustNotAlias: /* Currently only loads can be marked as kMustNotAlias */ DCHECK(!(EncodingMap[lir->opcode].flags & IS_STORE)); *maskPtr |= ENCODE_MUST_NOT_ALIAS; break; default: LOG(FATAL) << "Oat: invalid memref kind - " << memType; } } /* * Mark load/store instructions that access Dalvik registers through r5FP + * offset. */ void annotateDalvikRegAccess(LIR* lir, int regId, bool isLoad) { setMemRefType(lir, isLoad, kDalvikReg); /* * Store the Dalvik register id in aliasInfo. Mark he MSB if it is a 64-bit * access. */ lir->aliasInfo = regId; if (DOUBLEREG(lir->operands[0])) { lir->aliasInfo |= 0x80000000; } } /* * Decode the register id. */ inline u8 getRegMaskCommon(int reg) { u8 seed; int shift; int regId = reg & 0x1f; /* * Each double register is equal to a pair of single-precision FP registers */ seed = DOUBLEREG(reg) ? 3 : 1; /* FP register starts at bit position 16 */ shift = FPREG(reg) ? kFPReg0 : 0; /* Expand the double register id into single offset */ shift += regId; return (seed << shift); } /* * Mark the corresponding bit(s). */ inline void setupRegMask(u8* mask, int reg) { *mask |= getRegMaskCommon(reg); } /* * Set up the proper fields in the resource mask */ void setupResourceMasks(LIR* lir) { int opcode = lir->opcode; int flags; if (opcode <= 0) { lir->useMask = lir->defMask = 0; return; } flags = EncodingMap[lir->opcode].flags; if (flags & NEEDS_FIXUP) { lir->flags.pcRelFixup = true; } /* Set up the mask for resources that are updated */ if (flags & (IS_LOAD | IS_STORE)) { /* Default to heap - will catch specialized classes later */ setMemRefType(lir, flags & IS_LOAD, kHeapRef); } /* * Conservatively assume the branch here will call out a function that in * turn will trash everything. */ if (flags & IS_BRANCH) { lir->defMask = lir->useMask = ENCODE_ALL; return; } if (flags & REG_DEF0) { setupRegMask(&lir->defMask, lir->operands[0]); } if (flags & REG_DEF1) { setupRegMask(&lir->defMask, lir->operands[1]); } if (flags & REG_DEF_SP) { lir->defMask |= ENCODE_REG_SP; } if (flags & REG_DEF_LR) { lir->defMask |= ENCODE_REG_LR; } if (flags & REG_DEF_LIST0) { lir->defMask |= ENCODE_REG_LIST(lir->operands[0]); } if (flags & REG_DEF_LIST1) { lir->defMask |= ENCODE_REG_LIST(lir->operands[1]); } if (flags & REG_DEF_FPCS_LIST0) { lir->defMask |= ENCODE_REG_FPCS_LIST(lir->operands[0]); } if (flags & REG_DEF_FPCS_LIST2) { for (int i = 0; i < lir->operands[2]; i++) { setupRegMask(&lir->defMask, lir->operands[1] + i); } } if (flags & SETS_CCODES) { lir->defMask |= ENCODE_CCODE; } #if defined(TARGET_ARM) /* Conservatively treat the IT block */ if (flags & IS_IT) { lir->defMask = ENCODE_ALL; } #endif if (flags & (REG_USE0 | REG_USE1 | REG_USE2 | REG_USE3)) { int i; for (i = 0; i < 4; i++) { if (flags & (1 << (kRegUse0 + i))) { setupRegMask(&lir->useMask, lir->operands[i]); } } } if (flags & REG_USE_PC) { lir->useMask |= ENCODE_REG_PC; } if (flags & REG_USE_SP) { lir->useMask |= ENCODE_REG_SP; } if (flags & REG_USE_LIST0) { lir->useMask |= ENCODE_REG_LIST(lir->operands[0]); } if (flags & REG_USE_LIST1) { lir->useMask |= ENCODE_REG_LIST(lir->operands[1]); } if (flags & REG_USE_FPCS_LIST0) { lir->useMask |= ENCODE_REG_FPCS_LIST(lir->operands[0]); } if (flags & REG_USE_FPCS_LIST2) { for (int i = 0; i < lir->operands[2]; i++) { setupRegMask(&lir->useMask, lir->operands[1] + i); } } if (flags & USES_CCODES) { lir->useMask |= ENCODE_CCODE; } #if defined(TARGET_ARM) /* Fixup for kThumbPush/lr and kThumbPop/pc */ if (opcode == kThumbPush || opcode == kThumbPop) { u8 r8Mask = getRegMaskCommon(r8); if ((opcode == kThumbPush) && (lir->useMask & r8Mask)) { lir->useMask &= ~r8Mask; lir->useMask |= ENCODE_REG_LR; } else if ((opcode == kThumbPop) && (lir->defMask & r8Mask)) { lir->defMask &= ~r8Mask; lir->defMask |= ENCODE_REG_PC; } } #endif } /* * The following are building blocks to construct low-level IRs with 0 - 4 * operands. */ LIR* newLIR0(CompilationUnit* cUnit, ArmOpcode opcode) { LIR* insn = (LIR* ) oatNew(cUnit, sizeof(LIR), true, kAllocLIR); DCHECK(isPseudoOpcode(opcode) || (EncodingMap[opcode].flags & NO_OPERAND)); insn->opcode = opcode; setupResourceMasks(insn); insn->dalvikOffset = cUnit->currentDalvikOffset; oatAppendLIR(cUnit, (LIR*) insn); return insn; } LIR* newLIR1(CompilationUnit* cUnit, ArmOpcode opcode, int dest) { LIR* insn = (LIR* ) oatNew(cUnit, sizeof(LIR), true, kAllocLIR); DCHECK(isPseudoOpcode(opcode) || (EncodingMap[opcode].flags & IS_UNARY_OP)); insn->opcode = opcode; insn->operands[0] = dest; setupResourceMasks(insn); insn->dalvikOffset = cUnit->currentDalvikOffset; oatAppendLIR(cUnit, (LIR*) insn); return insn; } LIR* newLIR2(CompilationUnit* cUnit, ArmOpcode opcode, int dest, int src1) { LIR* insn = (LIR* ) oatNew(cUnit, sizeof(LIR), true, kAllocLIR); DCHECK(isPseudoOpcode(opcode) || (EncodingMap[opcode].flags & IS_BINARY_OP)); insn->opcode = opcode; insn->operands[0] = dest; insn->operands[1] = src1; setupResourceMasks(insn); insn->dalvikOffset = cUnit->currentDalvikOffset; oatAppendLIR(cUnit, (LIR*) insn); return insn; } LIR* newLIR3(CompilationUnit* cUnit, ArmOpcode opcode, int dest, int src1, int src2) { LIR* insn = (LIR* ) oatNew(cUnit, sizeof(LIR), true, kAllocLIR); DCHECK(isPseudoOpcode(opcode) || (EncodingMap[opcode].flags & IS_TERTIARY_OP)) << (int)opcode << " " << PrettyMethod(cUnit->method_idx, *cUnit->dex_file) << " " << cUnit->currentDalvikOffset; insn->opcode = opcode; insn->operands[0] = dest; insn->operands[1] = src1; insn->operands[2] = src2; setupResourceMasks(insn); insn->dalvikOffset = cUnit->currentDalvikOffset; oatAppendLIR(cUnit, (LIR*) insn); return insn; } #if defined(TARGET_ARM) LIR* newLIR4(CompilationUnit* cUnit, ArmOpcode opcode, int dest, int src1, int src2, int info) { LIR* insn = (LIR* ) oatNew(cUnit, sizeof(LIR), true, kAllocLIR); DCHECK(isPseudoOpcode(opcode) || (EncodingMap[opcode].flags & IS_QUAD_OP)); insn->opcode = opcode; insn->operands[0] = dest; insn->operands[1] = src1; insn->operands[2] = src2; insn->operands[3] = info; setupResourceMasks(insn); insn->dalvikOffset = cUnit->currentDalvikOffset; oatAppendLIR(cUnit, (LIR*) insn); return insn; } #endif /* * Search the existing constants in the literal pool for an exact or close match * within specified delta (greater or equal to 0). */ LIR* scanLiteralPool(LIR* dataTarget, int value, unsigned int delta) { while (dataTarget) { if (((unsigned) (value - ((LIR* ) dataTarget)->operands[0])) <= delta) return (LIR* ) dataTarget; dataTarget = dataTarget->next; } return NULL; } /* Search the existing constants in the literal pool for an exact wide match */ LIR* scanLiteralPoolWide(LIR* dataTarget, int valLo, int valHi) { bool loMatch = false; LIR* loTarget = NULL; while (dataTarget) { if (loMatch && (((LIR*)dataTarget)->operands[0] == valHi)) { return (LIR*)loTarget; } loMatch = false; if (((LIR*)dataTarget)->operands[0] == valLo) { loMatch = true; loTarget = dataTarget; } dataTarget = dataTarget->next; } return NULL; } /* * The following are building blocks to insert constants into the pool or * instruction streams. */ /* Add a 32-bit constant either in the constant pool or mixed with code */ LIR* addWordData(CompilationUnit* cUnit, LIR* *constantListP, int value) { /* Add the constant to the literal pool */ if (constantListP) { LIR* newValue = (LIR* ) oatNew(cUnit, sizeof(LIR), true, kAllocData); newValue->operands[0] = value; newValue->next = *constantListP; *constantListP = (LIR*) newValue; return newValue; } else { /* Add the constant in the middle of code stream */ newLIR1(cUnit, kArm16BitData, (value & 0xffff)); newLIR1(cUnit, kArm16BitData, (value >> 16)); } return NULL; } /* Add a 64-bit constant to the constant pool or mixed with code */ LIR* addWideData(CompilationUnit* cUnit, LIR* *constantListP, int valLo, int valHi) { LIR* res; //FIXME: hard-coded little endian, need BE variant if (constantListP == NULL) { res = addWordData(cUnit, NULL, valLo); addWordData(cUnit, NULL, valHi); } else { // Insert high word into list first addWordData(cUnit, constantListP, valHi); res = addWordData(cUnit, constantListP, valLo); } return res; } void pushWord(std::vector&buf, int data) { buf.push_back( data & 0xffff); buf.push_back( (data >> 16) & 0xffff); } void alignBuffer(std::vector&buf, size_t offset) { while (buf.size() < (offset/2)) buf.push_back(0); } /* Write the literal pool to the output stream */ void installLiteralPools(CompilationUnit* cUnit) { alignBuffer(cUnit->codeBuffer, cUnit->dataOffset); LIR* dataLIR = (LIR*) cUnit->literalList; while (dataLIR != NULL) { pushWord(cUnit->codeBuffer, dataLIR->operands[0]); dataLIR = NEXT_LIR(dataLIR); } } /* Write the switch tables to the output stream */ void installSwitchTables(CompilationUnit* cUnit) { GrowableListIterator iterator; oatGrowableListIteratorInit(&cUnit->switchTables, &iterator); while (true) { SwitchTable* tabRec = (SwitchTable *) oatGrowableListIteratorNext( &iterator); if (tabRec == NULL) break; alignBuffer(cUnit->codeBuffer, tabRec->offset); int bxOffset = tabRec->bxInst->offset + 4; if (cUnit->printMe) { LOG(INFO) << "Switch table for offset 0x" << std::hex << bxOffset; } if (tabRec->table[0] == kSparseSwitchSignature) { int* keys = (int*)&(tabRec->table[2]); for (int elems = 0; elems < tabRec->table[1]; elems++) { int disp = tabRec->targets[elems]->offset - bxOffset; if (cUnit->printMe) { LOG(INFO) << " Case[" << elems << "] key: 0x" << std::hex << keys[elems] << ", disp: 0x" << std::hex << disp; } pushWord(cUnit->codeBuffer, keys[elems]); pushWord(cUnit->codeBuffer, tabRec->targets[elems]->offset - bxOffset); } } else { DCHECK_EQ(tabRec->table[0], kPackedSwitchSignature); for (int elems = 0; elems < tabRec->table[1]; elems++) { int disp = tabRec->targets[elems]->offset - bxOffset; if (cUnit->printMe) { LOG(INFO) << " Case[" << elems << "] disp: 0x" << std::hex << disp; } pushWord(cUnit->codeBuffer, tabRec->targets[elems]->offset - bxOffset); } } } } /* Write the fill array dta to the output stream */ void installFillArrayData(CompilationUnit* cUnit) { GrowableListIterator iterator; oatGrowableListIteratorInit(&cUnit->fillArrayData, &iterator); while (true) { FillArrayData *tabRec = (FillArrayData *) oatGrowableListIteratorNext( &iterator); if (tabRec == NULL) break; alignBuffer(cUnit->codeBuffer, tabRec->offset); for (int i = 0; i < ((tabRec->size + 1) / 2) ; i++) { cUnit->codeBuffer.push_back( tabRec->table[i]); } } } int assignLiteralOffsetCommon(LIR* lir, int offset) { for (;lir != NULL; lir = lir->next) { lir->offset = offset; offset += 4; } return offset; } void createMappingTable(CompilationUnit* cUnit) { LIR* tgtLIR; int currentDalvikOffset = -1; for (tgtLIR = (LIR *) cUnit->firstLIRInsn; tgtLIR; tgtLIR = NEXT_LIR(tgtLIR)) { if ((tgtLIR->opcode >= 0) && !tgtLIR->flags.isNop && (currentDalvikOffset != tgtLIR->dalvikOffset)) { // Changed - need to emit a record cUnit->mappingTable.push_back(tgtLIR->offset); cUnit->mappingTable.push_back(tgtLIR->dalvikOffset); currentDalvikOffset = tgtLIR->dalvikOffset; } } } /* Determine the offset of each literal field */ int assignLiteralOffset(CompilationUnit* cUnit, int offset) { offset = assignLiteralOffsetCommon(cUnit->literalList, offset); return offset; } int assignSwitchTablesOffset(CompilationUnit* cUnit, int offset) { GrowableListIterator iterator; oatGrowableListIteratorInit(&cUnit->switchTables, &iterator); while (true) { SwitchTable *tabRec = (SwitchTable *) oatGrowableListIteratorNext( &iterator); if (tabRec == NULL) break; tabRec->offset = offset; if (tabRec->table[0] == kSparseSwitchSignature) { offset += tabRec->table[1] * (sizeof(int) * 2); } else { DCHECK_EQ(tabRec->table[0], kPackedSwitchSignature); offset += tabRec->table[1] * sizeof(int); } } return offset; } int assignFillArrayDataOffset(CompilationUnit* cUnit, int offset) { GrowableListIterator iterator; oatGrowableListIteratorInit(&cUnit->fillArrayData, &iterator); while (true) { FillArrayData *tabRec = (FillArrayData *) oatGrowableListIteratorNext( &iterator); if (tabRec == NULL) break; tabRec->offset = offset; offset += tabRec->size; // word align offset = (offset + 3) & ~3; } return offset; } /* * Walk the compilation unit and assign offsets to instructions * and literals and compute the total size of the compiled unit. */ void oatAssignOffsets(CompilationUnit* cUnit) { int offset = oatAssignInsnOffsets(cUnit); /* Const values have to be word aligned */ offset = (offset + 3) & ~3; /* Set up offsets for literals */ cUnit->dataOffset = offset; offset = assignLiteralOffset(cUnit, offset); offset = assignSwitchTablesOffset(cUnit, offset); offset = assignFillArrayDataOffset(cUnit, offset); cUnit->totalSize = offset; } /* * Go over each instruction in the list and calculate the offset from the top * before sending them off to the assembler. If out-of-range branch distance is * seen rearrange the instructions a bit to correct it. */ void oatAssembleLIR(CompilationUnit* cUnit) { oatAssignOffsets(cUnit); /* * Assemble here. Note that we generate code with optimistic assumptions * and if found now to work, we'll have to redo the sequence and retry. */ while (true) { AssemblerStatus res = oatAssembleInstructions(cUnit, 0); if (res == kSuccess) { break; } else { cUnit->assemblerRetries++; if (cUnit->assemblerRetries > MAX_ASSEMBLER_RETRIES) { LOG(FATAL) << "Assembler error - too many retries"; } // Redo offsets and try again oatAssignOffsets(cUnit); cUnit->codeBuffer.clear(); } } // Install literals installLiteralPools(cUnit); // Install switch tables installSwitchTables(cUnit); // Install fill array data installFillArrayData(cUnit); /* * Create the mapping table */ createMappingTable(cUnit); } /* * Insert a kPseudoCaseLabel at the beginning of the Dalvik * offset vaddr. This label will be used to fix up the case * branch table during the assembly phase. Be sure to set * all resource flags on this to prevent code motion across * target boundaries. KeyVal is just there for debugging. */ LIR* insertCaseLabel(CompilationUnit* cUnit, int vaddr, int keyVal) { std::map::iterator it; it = cUnit->boundaryMap.find(vaddr); if (it == cUnit->boundaryMap.end()) { LOG(FATAL) << "Error: didn't find vaddr 0x" << std::hex << vaddr; } LIR* newLabel = (LIR*)oatNew(cUnit, sizeof(LIR), true, kAllocLIR); newLabel->dalvikOffset = vaddr; newLabel->opcode = kPseudoCaseLabel; newLabel->operands[0] = keyVal; oatInsertLIRAfter(it->second, (LIR*)newLabel); return newLabel; } void markPackedCaseLabels(CompilationUnit* cUnit, SwitchTable *tabRec) { const u2* table = tabRec->table; int baseVaddr = tabRec->vaddr; int *targets = (int*)&table[4]; int entries = table[1]; int lowKey = s4FromSwitchData(&table[2]); for (int i = 0; i < entries; i++) { tabRec->targets[i] = insertCaseLabel(cUnit, baseVaddr + targets[i], i + lowKey); } } void markSparseCaseLabels(CompilationUnit* cUnit, SwitchTable *tabRec) { const u2* table = tabRec->table; int baseVaddr = tabRec->vaddr; int entries = table[1]; int* keys = (int*)&table[2]; int* targets = &keys[entries]; for (int i = 0; i < entries; i++) { tabRec->targets[i] = insertCaseLabel(cUnit, baseVaddr + targets[i], keys[i]); } } void oatProcessSwitchTables(CompilationUnit* cUnit) { GrowableListIterator iterator; oatGrowableListIteratorInit(&cUnit->switchTables, &iterator); while (true) { SwitchTable *tabRec = (SwitchTable *) oatGrowableListIteratorNext( &iterator); if (tabRec == NULL) break; if (tabRec->table[0] == kPackedSwitchSignature) markPackedCaseLabels(cUnit, tabRec); else if (tabRec->table[0] == kSparseSwitchSignature) markSparseCaseLabels(cUnit, tabRec); else { LOG(FATAL) << "Invalid switch table"; } } } //FIXME: Do we have endian issues here? void dumpSparseSwitchTable(const u2* table) /* * Sparse switch data format: * ushort ident = 0x0200 magic value * ushort size number of entries in the table; > 0 * int keys[size] keys, sorted low-to-high; 32-bit aligned * int targets[size] branch targets, relative to switch opcode * * Total size is (2+size*4) 16-bit code units. */ { u2 ident = table[0]; int entries = table[1]; int* keys = (int*)&table[2]; int* targets = &keys[entries]; LOG(INFO) << "Sparse switch table - ident:0x" << std::hex << ident << ", entries: " << std::dec << entries; for (int i = 0; i < entries; i++) { LOG(INFO) << " Key[" << keys[i] << "] -> 0x" << std::hex << targets[i]; } } void dumpPackedSwitchTable(const u2* table) /* * Packed switch data format: * ushort ident = 0x0100 magic value * ushort size number of entries in the table * int first_key first (and lowest) switch case value * int targets[size] branch targets, relative to switch opcode * * Total size is (4+size*2) 16-bit code units. */ { u2 ident = table[0]; int* targets = (int*)&table[4]; int entries = table[1]; int lowKey = s4FromSwitchData(&table[2]); LOG(INFO) << "Packed switch table - ident:0x" << std::hex << ident << ", entries: " << std::dec << entries << ", lowKey: " << lowKey; for (int i = 0; i < entries; i++) { LOG(INFO) << " Key[" << (i + lowKey) << "] -> 0x" << std::hex << targets[i]; } } } // namespace art