/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "Dalvik.h" #include "Dataflow.h" namespace art { // Make sure iterative dfs recording matches old recursive version //#define TEST_DFS inline BasicBlock* needsVisit(BasicBlock* bb) { if (bb != NULL) { if (bb->visited || bb->hidden) { bb = NULL; } } return bb; } BasicBlock* nextUnvisitedSuccessor(BasicBlock* bb) { BasicBlock* res = needsVisit(bb->fallThrough); if (res == NULL) { res = needsVisit(bb->taken); if (res == NULL) { if (bb->successorBlockList.blockListType != kNotUsed) { GrowableListIterator iterator; oatGrowableListIteratorInit(&bb->successorBlockList.blocks, &iterator); while (true) { SuccessorBlockInfo *sbi = (SuccessorBlockInfo*) oatGrowableListIteratorNext(&iterator); if (sbi == NULL) break; res = needsVisit(sbi->block); if (res != NULL) break; } } } } return res; } void markPreOrder(CompilationUnit* cUnit, BasicBlock* block) { block->visited = true; /* Enqueue the preOrder block id */ oatInsertGrowableList(cUnit, &cUnit->dfsOrder, block->id); } void recordDFSOrders(CompilationUnit* cUnit, BasicBlock* block) { std::vector succ; markPreOrder(cUnit, block); succ.push_back(block); while (!succ.empty()) { BasicBlock* curr = succ.back(); BasicBlock* nextSuccessor = nextUnvisitedSuccessor(curr); if (nextSuccessor != NULL) { markPreOrder(cUnit, nextSuccessor); succ.push_back(nextSuccessor); continue; } curr->dfsId = cUnit->dfsPostOrder.numUsed; oatInsertGrowableList(cUnit, &cUnit->dfsPostOrder, curr->id); succ.pop_back(); } } #if defined(TEST_DFS) /* Enter the node to the dfsOrder list then visit its successors */ void recursiveRecordDFSOrders(CompilationUnit* cUnit, BasicBlock* block) { if (block->visited || block->hidden) return; block->visited = true; // Can this block be reached only via previous block fallthrough? if ((block->blockType == kDalvikByteCode) && (block->predecessors->numUsed == 1)) { DCHECK_GE(cUnit->dfsOrder.numUsed, 1U); int prevIdx = cUnit->dfsOrder.numUsed - 1; int prevId = cUnit->dfsOrder.elemList[prevIdx]; BasicBlock* predBB = (BasicBlock*)block->predecessors->elemList[0]; } /* Enqueue the preOrder block id */ oatInsertGrowableList(cUnit, &cUnit->dfsOrder, block->id); if (block->fallThrough) { recursiveRecordDFSOrders(cUnit, block->fallThrough); } if (block->taken) recursiveRecordDFSOrders(cUnit, block->taken); if (block->successorBlockList.blockListType != kNotUsed) { GrowableListIterator iterator; oatGrowableListIteratorInit(&block->successorBlockList.blocks, &iterator); while (true) { SuccessorBlockInfo *successorBlockInfo = (SuccessorBlockInfo *) oatGrowableListIteratorNext(&iterator); if (successorBlockInfo == NULL) break; BasicBlock* succBB = successorBlockInfo->block; recursiveRecordDFSOrders(cUnit, succBB); } } /* Record postorder in basic block and enqueue normal id in dfsPostOrder */ block->dfsId = cUnit->dfsPostOrder.numUsed; oatInsertGrowableList(cUnit, &cUnit->dfsPostOrder, block->id); return; } #endif /* Sort the blocks by the Depth-First-Search */ void computeDFSOrders(CompilationUnit* cUnit) { /* Initialize or reset the DFS preOrder list */ if (cUnit->dfsOrder.elemList == NULL) { oatInitGrowableList(cUnit, &cUnit->dfsOrder, cUnit->numBlocks, kListDfsOrder); } else { /* Just reset the used length on the counter */ cUnit->dfsOrder.numUsed = 0; } /* Initialize or reset the DFS postOrder list */ if (cUnit->dfsPostOrder.elemList == NULL) { oatInitGrowableList(cUnit, &cUnit->dfsPostOrder, cUnit->numBlocks, kListDfsPostOrder); } else { /* Just reset the used length on the counter */ cUnit->dfsPostOrder.numUsed = 0; } #if defined(TEST_DFS) // Reset visited flags oatDataFlowAnalysisDispatcher(cUnit, oatClearVisitedFlag, kAllNodes, false /* isIterative */); // Record pre and post order dfs recursiveRecordDFSOrders(cUnit, cUnit->entryBlock); // Copy the results for later comparison and reset the lists GrowableList recursiveDfsOrder; GrowableList recursiveDfsPostOrder; oatInitGrowableList(cUnit, &recursiveDfsOrder, cUnit->dfsOrder.numUsed, kListDfsOrder); for (unsigned int i = 0; i < cUnit->dfsOrder.numUsed; i++) { oatInsertGrowableList(cUnit, &recursiveDfsOrder, cUnit->dfsOrder.elemList[i]); } cUnit->dfsOrder.numUsed = 0; oatInitGrowableList(cUnit, &recursiveDfsPostOrder, cUnit->dfsPostOrder.numUsed, kListDfsOrder); for (unsigned int i = 0; i < cUnit->dfsPostOrder.numUsed; i++) { oatInsertGrowableList(cUnit, &recursiveDfsPostOrder, cUnit->dfsPostOrder.elemList[i]); } cUnit->dfsPostOrder.numUsed = 0; #endif // Reset visited flags from all nodes oatDataFlowAnalysisDispatcher(cUnit, oatClearVisitedFlag, kAllNodes, false /* isIterative */); // Record dfs orders recordDFSOrders(cUnit, cUnit->entryBlock); #if defined(TEST_DFS) bool mismatch = false; mismatch |= (cUnit->dfsOrder.numUsed != recursiveDfsOrder.numUsed); for (unsigned int i = 0; i < cUnit->dfsOrder.numUsed; i++) { mismatch |= (cUnit->dfsOrder.elemList[i] != recursiveDfsOrder.elemList[i]); } mismatch |= (cUnit->dfsPostOrder.numUsed != recursiveDfsPostOrder.numUsed); for (unsigned int i = 0; i < cUnit->dfsPostOrder.numUsed; i++) { mismatch |= (cUnit->dfsPostOrder.elemList[i] != recursiveDfsPostOrder.elemList[i]); } if (mismatch) { LOG(INFO) << "Mismatch for " << PrettyMethod(cUnit->method_idx, *cUnit->dex_file); LOG(INFO) << "New dfs"; for (unsigned int i = 0; i < cUnit->dfsOrder.numUsed; i++) { LOG(INFO) << i << " - " << cUnit->dfsOrder.elemList[i]; } LOG(INFO) << "Recursive dfs"; for (unsigned int i = 0; i < recursiveDfsOrder.numUsed; i++) { LOG(INFO) << i << " - " << recursiveDfsOrder.elemList[i]; } LOG(INFO) << "New post dfs"; for (unsigned int i = 0; i < cUnit->dfsPostOrder.numUsed; i++) { LOG(INFO) << i << " - " << cUnit->dfsPostOrder.elemList[i]; } LOG(INFO) << "Recursive post dfs"; for (unsigned int i = 0; i < recursiveDfsPostOrder.numUsed; i++) { LOG(INFO) << i << " - " << recursiveDfsPostOrder.elemList[i]; } } CHECK_EQ(cUnit->dfsOrder.numUsed, recursiveDfsOrder.numUsed); for (unsigned int i = 0; i < cUnit->dfsOrder.numUsed; i++) { CHECK_EQ(cUnit->dfsOrder.elemList[i], recursiveDfsOrder.elemList[i]); } CHECK_EQ(cUnit->dfsPostOrder.numUsed, recursiveDfsPostOrder.numUsed); for (unsigned int i = 0; i < cUnit->dfsPostOrder.numUsed; i++) { CHECK_EQ(cUnit->dfsPostOrder.elemList[i], recursiveDfsPostOrder.elemList[i]); } #endif cUnit->numReachableBlocks = cUnit->dfsOrder.numUsed; } /* * Mark block bit on the per-Dalvik register vector to denote that Dalvik * register idx is defined in BasicBlock bb. */ bool fillDefBlockMatrix(CompilationUnit* cUnit, BasicBlock* bb) { if (bb->dataFlowInfo == NULL) return false; ArenaBitVectorIterator iterator; oatBitVectorIteratorInit(bb->dataFlowInfo->defV, &iterator); while (true) { int idx = oatBitVectorIteratorNext(&iterator); if (idx == -1) break; /* Block bb defines register idx */ oatSetBit(cUnit, cUnit->defBlockMatrix[idx], bb->id); } return true; } void computeDefBlockMatrix(CompilationUnit* cUnit) { int numRegisters = cUnit->numDalvikRegisters; /* Allocate numDalvikRegisters bit vector pointers */ cUnit->defBlockMatrix = (ArenaBitVector **) oatNew(cUnit, sizeof(ArenaBitVector *) * numRegisters, true, kAllocDFInfo); int i; /* Initialize numRegister vectors with numBlocks bits each */ for (i = 0; i < numRegisters; i++) { cUnit->defBlockMatrix[i] = oatAllocBitVector(cUnit, cUnit->numBlocks, false, kBitMapBMatrix); } oatDataFlowAnalysisDispatcher(cUnit, oatFindLocalLiveIn, kAllNodes, false /* isIterative */); oatDataFlowAnalysisDispatcher(cUnit, fillDefBlockMatrix, kAllNodes, false /* isIterative */); /* * Also set the incoming parameters as defs in the entry block. * Only need to handle the parameters for the outer method. */ int numRegs = cUnit->numDalvikRegisters; int inReg = numRegs - cUnit->numIns; for (; inReg < numRegs; inReg++) { oatSetBit(cUnit, cUnit->defBlockMatrix[inReg], cUnit->entryBlock->id); } } /* Compute the post-order traversal of the CFG */ void computeDomPostOrderTraversal(CompilationUnit* cUnit, BasicBlock* bb) { ArenaBitVectorIterator bvIterator; oatBitVectorIteratorInit(bb->iDominated, &bvIterator); GrowableList* blockList = &cUnit->blockList; /* Iterate through the dominated blocks first */ while (true) { //TUNING: hot call to oatBitVectorIteratorNext int bbIdx = oatBitVectorIteratorNext(&bvIterator); if (bbIdx == -1) break; BasicBlock* dominatedBB = (BasicBlock* ) oatGrowableListGetElement(blockList, bbIdx); computeDomPostOrderTraversal(cUnit, dominatedBB); } /* Enter the current block id */ oatInsertGrowableList(cUnit, &cUnit->domPostOrderTraversal, bb->id); /* hacky loop detection */ if (bb->taken && oatIsBitSet(bb->dominators, bb->taken->id)) { cUnit->hasLoop = true; } } void checkForDominanceFrontier(CompilationUnit* cUnit, BasicBlock* domBB, const BasicBlock* succBB) { /* * TODO - evaluate whether phi will ever need to be inserted into exit * blocks. */ if (succBB->iDom != domBB && succBB->blockType == kDalvikByteCode && succBB->hidden == false) { oatSetBit(cUnit, domBB->domFrontier, succBB->id); } } /* Worker function to compute the dominance frontier */ bool computeDominanceFrontier(CompilationUnit* cUnit, BasicBlock* bb) { GrowableList* blockList = &cUnit->blockList; /* Calculate DF_local */ if (bb->taken) { checkForDominanceFrontier(cUnit, bb, bb->taken); } if (bb->fallThrough) { checkForDominanceFrontier(cUnit, bb, bb->fallThrough); } if (bb->successorBlockList.blockListType != kNotUsed) { GrowableListIterator iterator; oatGrowableListIteratorInit(&bb->successorBlockList.blocks, &iterator); while (true) { SuccessorBlockInfo *successorBlockInfo = (SuccessorBlockInfo *) oatGrowableListIteratorNext(&iterator); if (successorBlockInfo == NULL) break; BasicBlock* succBB = successorBlockInfo->block; checkForDominanceFrontier(cUnit, bb, succBB); } } /* Calculate DF_up */ ArenaBitVectorIterator bvIterator; oatBitVectorIteratorInit(bb->iDominated, &bvIterator); while (true) { //TUNING: hot call to oatBitVectorIteratorNext int dominatedIdx = oatBitVectorIteratorNext(&bvIterator); if (dominatedIdx == -1) break; BasicBlock* dominatedBB = (BasicBlock* ) oatGrowableListGetElement(blockList, dominatedIdx); ArenaBitVectorIterator dfIterator; oatBitVectorIteratorInit(dominatedBB->domFrontier, &dfIterator); while (true) { //TUNING: hot call to oatBitVectorIteratorNext int dfUpIdx = oatBitVectorIteratorNext(&dfIterator); if (dfUpIdx == -1) break; BasicBlock* dfUpBlock = (BasicBlock* ) oatGrowableListGetElement(blockList, dfUpIdx); checkForDominanceFrontier(cUnit, bb, dfUpBlock); } } return true; } /* Worker function for initializing domination-related data structures */ bool initializeDominationInfo(CompilationUnit* cUnit, BasicBlock* bb) { int numTotalBlocks = cUnit->blockList.numUsed; if (bb->dominators == NULL ) { bb->dominators = oatAllocBitVector(cUnit, numTotalBlocks, false /* expandable */, kBitMapDominators); bb->iDominated = oatAllocBitVector(cUnit, numTotalBlocks, false /* expandable */, kBitMapIDominated); bb->domFrontier = oatAllocBitVector(cUnit, numTotalBlocks, false /* expandable */, kBitMapDomFrontier); } else { oatClearAllBits(bb->dominators); oatClearAllBits(bb->iDominated); oatClearAllBits(bb->domFrontier); } /* Set all bits in the dominator vector */ oatSetInitialBits(bb->dominators, numTotalBlocks); return true; } /* * Worker function to compute each block's dominators. This implementation * is only used when kDebugVerifyDataflow is active and should compute * the same dominator sets as computeBlockDominators. */ bool slowComputeBlockDominators(CompilationUnit* cUnit, BasicBlock* bb) { GrowableList* blockList = &cUnit->blockList; int numTotalBlocks = blockList->numUsed; ArenaBitVector* tempBlockV = cUnit->tempBlockV; GrowableListIterator iter; /* * The dominator of the entry block has been preset to itself and we need * to skip the calculation here. */ if (bb == cUnit->entryBlock) return false; oatSetInitialBits(tempBlockV, numTotalBlocks); /* Iterate through the predecessors */ oatGrowableListIteratorInit(bb->predecessors, &iter); while (true) { BasicBlock* predBB = (BasicBlock*)oatGrowableListIteratorNext(&iter); if (!predBB) break; /* tempBlockV = tempBlockV ^ dominators */ if (predBB->dominators != NULL) { oatIntersectBitVectors(tempBlockV, tempBlockV, predBB->dominators); } } oatSetBit(cUnit, tempBlockV, bb->id); if (oatCompareBitVectors(tempBlockV, bb->dominators)) { oatCopyBitVector(bb->dominators, tempBlockV); return true; } return false; } /* * Worker function to compute the idom. This implementation is only * used when kDebugVerifyDataflow is active and should compute the * same iDom as computeBlockIDom. */ bool slowComputeBlockIDom(CompilationUnit* cUnit, BasicBlock* bb) { GrowableList* blockList = &cUnit->blockList; ArenaBitVector* tempBlockV = cUnit->tempBlockV; ArenaBitVectorIterator bvIterator; BasicBlock* iDom; if (bb == cUnit->entryBlock) return false; oatCopyBitVector(tempBlockV, bb->dominators); oatClearBit(tempBlockV, bb->id); oatBitVectorIteratorInit(tempBlockV, &bvIterator); /* Should not see any dead block */ DCHECK_NE(oatCountSetBits(tempBlockV), 0); if (oatCountSetBits(tempBlockV) == 1) { iDom = (BasicBlock* ) oatGrowableListGetElement(blockList, oatBitVectorIteratorNext(&bvIterator)); bb->iDom = iDom; } else { int iDomIdx = oatBitVectorIteratorNext(&bvIterator); DCHECK_NE(iDomIdx, -1); while (true) { int nextDom = oatBitVectorIteratorNext(&bvIterator); if (nextDom == -1) break; BasicBlock* nextDomBB = (BasicBlock* ) oatGrowableListGetElement(blockList, nextDom); /* iDom dominates nextDom - set new iDom */ if (oatIsBitSet(nextDomBB->dominators, iDomIdx)) { iDomIdx = nextDom; } } iDom = (BasicBlock* ) oatGrowableListGetElement(blockList, iDomIdx); /* Set the immediate dominator block for bb */ bb->iDom = iDom; } /* Add bb to the iDominated set of the immediate dominator block */ oatSetBit(cUnit, iDom->iDominated, bb->id); return true; } /* * Walk through the ordered iDom list until we reach common parent. * Given the ordering of iDomList, this common parent represents the * last element of the intersection of block1 and block2 dominators. */ int findCommonParent(CompilationUnit *cUnit, int block1, int block2) { while (block1 != block2) { while (block1 < block2) { block1 = cUnit->iDomList[block1]; DCHECK_NE(block1, NOTVISITED); } while (block2 < block1) { block2 = cUnit->iDomList[block2]; DCHECK_NE(block2, NOTVISITED); } } return block1; } /* Worker function to compute each block's immediate dominator */ bool computeBlockIDom(CompilationUnit* cUnit, BasicBlock* bb) { GrowableListIterator iter; int idom = -1; /* Special-case entry block */ if (bb == cUnit->entryBlock) { return false; } /* Iterate through the predecessors */ oatGrowableListIteratorInit(bb->predecessors, &iter); /* Find the first processed predecessor */ while (true) { BasicBlock* predBB = (BasicBlock*)oatGrowableListIteratorNext(&iter); CHECK(predBB != NULL); if (cUnit->iDomList[predBB->dfsId] != NOTVISITED) { idom = predBB->dfsId; break; } } /* Scan the rest of the predecessors */ while (true) { BasicBlock* predBB = (BasicBlock*)oatGrowableListIteratorNext(&iter); if (!predBB) break; if (cUnit->iDomList[predBB->dfsId] == NOTVISITED) { continue; } else { idom = findCommonParent(cUnit, predBB->dfsId, idom); } } DCHECK_NE(idom, NOTVISITED); /* Did something change? */ if (cUnit->iDomList[bb->dfsId] != idom) { cUnit->iDomList[bb->dfsId] = idom; return true; } return false; } /* Worker function to compute each block's domintors */ bool computeBlockDominators(CompilationUnit* cUnit, BasicBlock* bb) { if (bb == cUnit->entryBlock) { oatClearAllBits(bb->dominators); } else { oatCopyBitVector(bb->dominators, bb->iDom->dominators); } oatSetBit(cUnit, bb->dominators, bb->id); return false; } bool setDominators(CompilationUnit* cUnit, BasicBlock* bb) { if (bb != cUnit->entryBlock) { int iDomDFSIdx = cUnit->iDomList[bb->dfsId]; DCHECK_NE(iDomDFSIdx, NOTVISITED); int iDomIdx = cUnit->dfsPostOrder.elemList[iDomDFSIdx]; BasicBlock* iDom = (BasicBlock*) oatGrowableListGetElement(&cUnit->blockList, iDomIdx); if (cUnit->enableDebug & (1 << kDebugVerifyDataflow)) { DCHECK_EQ(bb->iDom->id, iDom->id); } bb->iDom = iDom; /* Add bb to the iDominated set of the immediate dominator block */ oatSetBit(cUnit, iDom->iDominated, bb->id); } return false; } /* Compute dominators, immediate dominator, and dominance fronter */ void computeDominators(CompilationUnit* cUnit) { int numReachableBlocks = cUnit->numReachableBlocks; int numTotalBlocks = cUnit->blockList.numUsed; /* Initialize domination-related data structures */ oatDataFlowAnalysisDispatcher(cUnit, initializeDominationInfo, kReachableNodes, false /* isIterative */); /* Initalize & Clear iDomList */ if (cUnit->iDomList == NULL) { cUnit->iDomList = (int*)oatNew(cUnit, sizeof(int) * numReachableBlocks, false, kAllocDFInfo); } for (int i = 0; i < numReachableBlocks; i++) { cUnit->iDomList[i] = NOTVISITED; } /* For post-order, last block is entry block. Set its iDom to istelf */ DCHECK_EQ(cUnit->entryBlock->dfsId, numReachableBlocks-1); cUnit->iDomList[cUnit->entryBlock->dfsId] = cUnit->entryBlock->dfsId; /* Compute the immediate dominators */ oatDataFlowAnalysisDispatcher(cUnit, computeBlockIDom, kReversePostOrderTraversal, true /* isIterative */); /* Set the dominator for the root node */ oatClearAllBits(cUnit->entryBlock->dominators); oatSetBit(cUnit, cUnit->entryBlock->dominators, cUnit->entryBlock->id); if (cUnit->tempBlockV == NULL) { cUnit->tempBlockV = oatAllocBitVector(cUnit, numTotalBlocks, false /* expandable */, kBitMapTmpBlockV); } else { oatClearAllBits(cUnit->tempBlockV); } cUnit->entryBlock->iDom = NULL; /* For testing, compute sets using alternate mechanism */ if (cUnit->enableDebug & (1 << kDebugVerifyDataflow)) { // Use alternate mechanism to compute dominators for comparison oatDataFlowAnalysisDispatcher(cUnit, slowComputeBlockDominators, kPreOrderDFSTraversal, true /* isIterative */); oatDataFlowAnalysisDispatcher(cUnit, slowComputeBlockIDom, kReachableNodes, false /* isIterative */); } oatDataFlowAnalysisDispatcher(cUnit, setDominators, kReachableNodes, false /* isIterative */); oatDataFlowAnalysisDispatcher(cUnit, computeBlockDominators, kReversePostOrderTraversal, false /* isIterative */); /* * Now go ahead and compute the post order traversal based on the * iDominated sets. */ if (cUnit->domPostOrderTraversal.elemList == NULL) { oatInitGrowableList(cUnit, &cUnit->domPostOrderTraversal, numReachableBlocks, kListDomPostOrderTraversal); } else { cUnit->domPostOrderTraversal.numUsed = 0; } computeDomPostOrderTraversal(cUnit, cUnit->entryBlock); DCHECK_EQ(cUnit->domPostOrderTraversal.numUsed, (unsigned) cUnit->numReachableBlocks); /* Now compute the dominance frontier for each block */ oatDataFlowAnalysisDispatcher(cUnit, computeDominanceFrontier, kPostOrderDOMTraversal, false /* isIterative */); } /* * Perform dest U= src1 ^ ~src2 * This is probably not general enough to be placed in BitVector.[ch]. */ void computeSuccLiveIn(ArenaBitVector* dest, const ArenaBitVector* src1, const ArenaBitVector* src2) { if (dest->storageSize != src1->storageSize || dest->storageSize != src2->storageSize || dest->expandable != src1->expandable || dest->expandable != src2->expandable) { LOG(FATAL) << "Incompatible set properties"; } unsigned int idx; for (idx = 0; idx < dest->storageSize; idx++) { dest->storage[idx] |= src1->storage[idx] & ~src2->storage[idx]; } } /* * Iterate through all successor blocks and propagate up the live-in sets. * The calculated result is used for phi-node pruning - where we only need to * insert a phi node if the variable is live-in to the block. */ bool computeBlockLiveIns(CompilationUnit* cUnit, BasicBlock* bb) { ArenaBitVector* tempDalvikRegisterV = cUnit->tempDalvikRegisterV; if (bb->dataFlowInfo == NULL) return false; oatCopyBitVector(tempDalvikRegisterV, bb->dataFlowInfo->liveInV); if (bb->taken && bb->taken->dataFlowInfo) computeSuccLiveIn(tempDalvikRegisterV, bb->taken->dataFlowInfo->liveInV, bb->dataFlowInfo->defV); if (bb->fallThrough && bb->fallThrough->dataFlowInfo) computeSuccLiveIn(tempDalvikRegisterV, bb->fallThrough->dataFlowInfo->liveInV, bb->dataFlowInfo->defV); if (bb->successorBlockList.blockListType != kNotUsed) { GrowableListIterator iterator; oatGrowableListIteratorInit(&bb->successorBlockList.blocks, &iterator); while (true) { SuccessorBlockInfo *successorBlockInfo = (SuccessorBlockInfo *) oatGrowableListIteratorNext(&iterator); if (successorBlockInfo == NULL) break; BasicBlock* succBB = successorBlockInfo->block; if (succBB->dataFlowInfo) { computeSuccLiveIn(tempDalvikRegisterV, succBB->dataFlowInfo->liveInV, bb->dataFlowInfo->defV); } } } if (oatCompareBitVectors(tempDalvikRegisterV, bb->dataFlowInfo->liveInV)) { oatCopyBitVector(bb->dataFlowInfo->liveInV, tempDalvikRegisterV); return true; } return false; } /* Insert phi nodes to for each variable to the dominance frontiers */ void insertPhiNodes(CompilationUnit* cUnit) { int dalvikReg; const GrowableList* blockList = &cUnit->blockList; ArenaBitVector* phiBlocks = oatAllocBitVector(cUnit, cUnit->numBlocks, false, kBitMapPhi); ArenaBitVector* tmpBlocks = oatAllocBitVector(cUnit, cUnit->numBlocks, false, kBitMapTmpBlocks); ArenaBitVector* inputBlocks = oatAllocBitVector(cUnit, cUnit->numBlocks, false, kBitMapInputBlocks); cUnit->tempDalvikRegisterV = oatAllocBitVector(cUnit, cUnit->numDalvikRegisters, false, kBitMapRegisterV); oatDataFlowAnalysisDispatcher(cUnit, computeBlockLiveIns, kPostOrderDFSTraversal, true /* isIterative */); /* Iterate through each Dalvik register */ for (dalvikReg = cUnit->numDalvikRegisters - 1; dalvikReg >= 0; dalvikReg--) { bool change; ArenaBitVectorIterator iterator; oatCopyBitVector(inputBlocks, cUnit->defBlockMatrix[dalvikReg]); oatClearAllBits(phiBlocks); /* Calculate the phi blocks for each Dalvik register */ do { change = false; oatClearAllBits(tmpBlocks); oatBitVectorIteratorInit(inputBlocks, &iterator); while (true) { int idx = oatBitVectorIteratorNext(&iterator); if (idx == -1) break; BasicBlock* defBB = (BasicBlock* ) oatGrowableListGetElement(blockList, idx); /* Merge the dominance frontier to tmpBlocks */ //TUNING: hot call to oatUnifyBitVectors if (defBB->domFrontier != NULL) { oatUnifyBitVectors(tmpBlocks, tmpBlocks, defBB->domFrontier); } } if (oatCompareBitVectors(phiBlocks, tmpBlocks)) { change = true; oatCopyBitVector(phiBlocks, tmpBlocks); /* * Iterate through the original blocks plus the new ones in * the dominance frontier. */ oatCopyBitVector(inputBlocks, phiBlocks); oatUnifyBitVectors(inputBlocks, inputBlocks, cUnit->defBlockMatrix[dalvikReg]); } } while (change); /* * Insert a phi node for dalvikReg in the phiBlocks if the Dalvik * register is in the live-in set. */ oatBitVectorIteratorInit(phiBlocks, &iterator); while (true) { int idx = oatBitVectorIteratorNext(&iterator); if (idx == -1) break; BasicBlock* phiBB = (BasicBlock* ) oatGrowableListGetElement(blockList, idx); /* Variable will be clobbered before being used - no need for phi */ if (!oatIsBitSet(phiBB->dataFlowInfo->liveInV, dalvikReg)) continue; MIR *phi = (MIR *) oatNew(cUnit, sizeof(MIR), true, kAllocDFInfo); phi->dalvikInsn.opcode = (Instruction::Code)kMirOpPhi; phi->dalvikInsn.vA = dalvikReg; phi->offset = phiBB->startOffset; phi->meta.phiNext = cUnit->phiList; cUnit->phiList = phi; oatPrependMIR(phiBB, phi); } } } /* * Worker function to insert phi-operands with latest SSA names from * predecessor blocks */ bool insertPhiNodeOperands(CompilationUnit* cUnit, BasicBlock* bb) { GrowableListIterator iter; MIR *mir; std::vector uses; std::vector incomingArc; /* Phi nodes are at the beginning of each block */ for (mir = bb->firstMIRInsn; mir; mir = mir->next) { if (mir->dalvikInsn.opcode != (Instruction::Code)kMirOpPhi) return true; int ssaReg = mir->ssaRep->defs[0]; DCHECK_GE(ssaReg, 0); // Shouldn't see compiler temps here int vReg = SRegToVReg(cUnit, ssaReg); uses.clear(); incomingArc.clear(); /* Iterate through the predecessors */ oatGrowableListIteratorInit(bb->predecessors, &iter); while (true) { BasicBlock* predBB = (BasicBlock*)oatGrowableListIteratorNext(&iter); if (!predBB) break; int ssaReg = predBB->dataFlowInfo->vRegToSSAMap[vReg]; uses.push_back(ssaReg); incomingArc.push_back(predBB->id); } /* Count the number of SSA registers for a Dalvik register */ int numUses = uses.size(); mir->ssaRep->numUses = numUses; mir->ssaRep->uses = (int*) oatNew(cUnit, sizeof(int) * numUses, false, kAllocDFInfo); mir->ssaRep->fpUse = (bool*) oatNew(cUnit, sizeof(bool) * numUses, true, kAllocDFInfo); int* incoming = (int*) oatNew(cUnit, sizeof(int) * numUses, false, kAllocDFInfo); // TODO: Ugly, rework (but don't burden each MIR/LIR for Phi-only needs) mir->dalvikInsn.vB = (intptr_t) incoming; /* Set the uses array for the phi node */ int *usePtr = mir->ssaRep->uses; for (int i = 0; i < numUses; i++) { *usePtr++ = uses[i]; *incoming++ = incomingArc[i]; } } return true; } void doDFSPreOrderSSARename(CompilationUnit* cUnit, BasicBlock* block) { if (block->visited || block->hidden) return; block->visited = true; /* Process this block */ oatDoSSAConversion(cUnit, block); int mapSize = sizeof(int) * cUnit->numDalvikRegisters; /* Save SSA map snapshot */ int* savedSSAMap = (int*)oatNew(cUnit, mapSize, false, kAllocDalvikToSSAMap); memcpy(savedSSAMap, cUnit->vRegToSSAMap, mapSize); if (block->fallThrough) { doDFSPreOrderSSARename(cUnit, block->fallThrough); /* Restore SSA map snapshot */ memcpy(cUnit->vRegToSSAMap, savedSSAMap, mapSize); } if (block->taken) { doDFSPreOrderSSARename(cUnit, block->taken); /* Restore SSA map snapshot */ memcpy(cUnit->vRegToSSAMap, savedSSAMap, mapSize); } if (block->successorBlockList.blockListType != kNotUsed) { GrowableListIterator iterator; oatGrowableListIteratorInit(&block->successorBlockList.blocks, &iterator); while (true) { SuccessorBlockInfo *successorBlockInfo = (SuccessorBlockInfo *) oatGrowableListIteratorNext(&iterator); if (successorBlockInfo == NULL) break; BasicBlock* succBB = successorBlockInfo->block; doDFSPreOrderSSARename(cUnit, succBB); /* Restore SSA map snapshot */ memcpy(cUnit->vRegToSSAMap, savedSSAMap, mapSize); } } cUnit->vRegToSSAMap = savedSSAMap; return; } /* Perform SSA transformation for the whole method */ void oatMethodSSATransformation(CompilationUnit* cUnit) { /* Compute the DFS order */ computeDFSOrders(cUnit); if (!cUnit->disableDataflow) { /* Compute the dominator info */ computeDominators(cUnit); } /* Allocate data structures in preparation for SSA conversion */ oatInitializeSSAConversion(cUnit); if (!cUnit->disableDataflow) { /* Find out the "Dalvik reg def x block" relation */ computeDefBlockMatrix(cUnit); /* Insert phi nodes to dominance frontiers for all variables */ insertPhiNodes(cUnit); } /* Rename register names by local defs and phi nodes */ oatDataFlowAnalysisDispatcher(cUnit, oatClearVisitedFlag, kAllNodes, false /* isIterative */); doDFSPreOrderSSARename(cUnit, cUnit->entryBlock); if (!cUnit->disableDataflow) { /* * Shared temp bit vector used by each block to count the number of defs * from all the predecessor blocks. */ cUnit->tempSSARegisterV = oatAllocBitVector(cUnit, cUnit->numSSARegs, false, kBitMapTempSSARegisterV); cUnit->tempSSABlockIdV = (int*)oatNew(cUnit, sizeof(int) * cUnit->numSSARegs, false, kAllocDFInfo); /* Insert phi-operands with latest SSA names from predecessor blocks */ oatDataFlowAnalysisDispatcher(cUnit, insertPhiNodeOperands, kReachableNodes, false /* isIterative */); } } } // namespace art