// Copyright 2011 Google Inc. All Rights Reserved. #ifndef ART_SRC_COMPILER_H_ #define ART_SRC_COMPILER_H_ #include "compiled_method.h" #include "constants.h" #include "dex_cache.h" #include "dex_file.h" #include "jni_compiler.h" #include "oat_file.h" #include "object.h" #include "runtime.h" #include "unordered_map.h" #include #include namespace art { class Compiler { public: // Create a compiler targeting the requested "instruction_set". // "image" should be true if image specific optimizations should be // enabled. "image_classes" lets the compiler know what classes it // can assume will be in the image, with NULL implying all available // classes. explicit Compiler(InstructionSet instruction_set, bool image, const std::set* image_classes); ~Compiler(); void CompileAll(const ClassLoader* class_loader, const std::vector& dex_files); // Compile a single Method void CompileOne(const Method* method); InstructionSet GetInstructionSet() const { return instruction_set_; } bool IsImage() const { return image_; } void SetVerbose(bool verbose) { verbose_ = verbose; } bool IsVerbose() const { return verbose_; } // Stub to throw AbstractMethodError static ByteArray* CreateAbstractMethodErrorStub(InstructionSet instruction_set); // Generate the trampoline that's invoked by unresolved direct methods static ByteArray* CreateResolutionStub(InstructionSet instruction_set, Runtime::TrampolineType type); static ByteArray* CreateJniDlysmLookupStub(InstructionSet instruction_set); // A method is uniquely located by its DexFile and index into the method_id table of that dex file typedef std::pair MethodReference; CompiledMethod* GetCompiledMethod(MethodReference ref) const; const CompiledInvokeStub* FindInvokeStub(bool is_static, const char* shorty) const; // Callbacks from OAT/ART compiler to see what runtime checks must be generated bool CanAssumeTypeIsPresentInDexCache(const DexCache* dex_cache, uint32_t type_idx) const; bool CanAssumeStringIsPresentInDexCache(const DexCache* dex_cache, uint32_t string_idx) const { // TODO: Add support for loading strings referenced by image_classes_ // See also Compiler::ResolveDexFile return IsImage() && image_classes_ == NULL && dex_cache->GetResolvedString(string_idx) != NULL; } bool CanAccessTypeWithoutChecks(uint32_t referrer_idx, const DexCache* dex_cache, const DexFile& dex_file, uint32_t type_idx) const { Class* resolved_class = dex_cache->GetResolvedType(type_idx); // We should never ask whether a type needs access checks to raise a verification error, // all other cases where this following test could fail should have been rewritten by the // verifier to verification errors. Also need to handle a lack of knowledge at compile time. #ifndef NDEBUG const DexFile::MethodId& method_id = dex_file.GetMethodId(referrer_idx); Class* referrer_class = dex_cache->GetResolvedType(method_id.class_idx_); DCHECK(resolved_class == NULL || referrer_class == NULL || referrer_class->CanAccess(resolved_class)); #endif return resolved_class != NULL; } private: // Checks if class specified by type_idx is one of the image_classes_ bool IsImageClass(const std::string& descriptor) const; void PreCompile(const ClassLoader* class_loader, const std::vector& dex_files); void PostCompile(const ClassLoader* class_loader, const std::vector& dex_files); // Attempt to resolve all type, methods, fields, and strings // referenced from code in the dex file following PathClassLoader // ordering semantics. void Resolve(const ClassLoader* class_loader, const std::vector& dex_files); void ResolveDexFile(const ClassLoader* class_loader, const DexFile& dex_file); void Verify(const ClassLoader* class_loader, const std::vector& dex_files); void VerifyDexFile(const ClassLoader* class_loader, const DexFile& dex_file); void InitializeClassesWithoutClinit(const ClassLoader* class_loader, const std::vector& dex_files); void InitializeClassesWithoutClinit(const ClassLoader* class_loader, const DexFile& dex_file); void Compile(const ClassLoader* class_loader, const std::vector& dex_files); void CompileDexFile(const ClassLoader* class_loader, const DexFile& dex_file); void CompileClass(const DexFile::ClassDef& class_def, const ClassLoader* class_loader, const DexFile& dex_file); void CompileMethod(const DexFile::CodeItem* code_item, uint32_t access_flags, uint32_t method_idx, const ClassLoader* class_loader, const DexFile& dex_file); // After compiling, walk all the DexCaches and set the code and // method pointers of CodeAndDirectMethods entries in the DexCaches. void SetCodeAndDirectMethods(const std::vector& dex_files); void SetCodeAndDirectMethodsDexFile(const DexFile& dex_file); void InsertInvokeStub(bool is_static, const char* shorty, const CompiledInvokeStub* compiled_invoke_stub); InstructionSet instruction_set_; JniCompiler jni_compiler_; struct MethodReferenceHash { size_t operator()(const MethodReference id) const { size_t dex = reinterpret_cast(id.first); DCHECK_NE(dex, static_cast(0)); dex += 33; // dex is an aligned pointer, get some non-zero low bits size_t idx = id.second; if (idx == 0) { // special case of a method index of 0 return dex * 5381; } else { return dex * idx; } } }; typedef std::tr1::unordered_map MethodTable; // All method references that this compiler has compiled MethodTable compiled_methods_; typedef std::tr1::unordered_map InvokeStubTable; // Invocation stubs created to allow invocation of the compiled methods InvokeStubTable compiled_invoke_stubs_; bool image_; const std::set* image_classes_; bool verbose_; DISALLOW_COPY_AND_ASSIGN(Compiler); }; } // namespace art #endif // ART_SRC_COMPILER_H_