/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "compiler.h" #include #include #include #include "class_linker.h" #include "class_loader.h" #include "dex_cache.h" #include "jni_internal.h" #include "oat_compilation_unit.h" #include "oat_file.h" #include "object_utils.h" #include "runtime.h" #include "space.h" #include "stl_util.h" #include "timing_logger.h" #include "verifier/method_verifier.h" #if defined(__APPLE__) #include #endif namespace art { namespace arm { ByteArray* CreateAbstractMethodErrorStub(); ByteArray* ArmCreateResolutionTrampoline(Runtime::TrampolineType type); ByteArray* CreateJniDlsymLookupStub(); } namespace x86 { ByteArray* CreateAbstractMethodErrorStub(); ByteArray* X86CreateResolutionTrampoline(Runtime::TrampolineType type); ByteArray* CreateJniDlsymLookupStub(); } static double Percentage(size_t x, size_t y) { return 100.0 * (static_cast(x)) / (static_cast(x + y)); } static void DumpStat(size_t x, size_t y, const char* str) { if (x == 0 && y == 0) { return; } LOG(INFO) << Percentage(x, y) << "% of " << str << " for " << (x + y) << " cases"; } class AOTCompilationStats { public: AOTCompilationStats() : stats_lock_("AOT compilation statistics lock"), types_in_dex_cache_(0), types_not_in_dex_cache_(0), strings_in_dex_cache_(0), strings_not_in_dex_cache_(0), resolved_types_(0), unresolved_types_(0), resolved_instance_fields_(0), unresolved_instance_fields_(0), resolved_local_static_fields_(0), resolved_static_fields_(0), unresolved_static_fields_(0) { for (size_t i = 0; i <= kMaxInvokeType; i++) { resolved_methods_[i] = 0; unresolved_methods_[i] = 0; virtual_made_direct_[i] = 0; direct_calls_to_boot_[i] = 0; direct_methods_to_boot_[i] = 0; } } void Dump() { DumpStat(types_in_dex_cache_, types_not_in_dex_cache_, "types known to be in dex cache"); DumpStat(strings_in_dex_cache_, strings_not_in_dex_cache_, "strings known to be in dex cache"); DumpStat(resolved_types_, unresolved_types_, "types resolved"); DumpStat(resolved_instance_fields_, unresolved_instance_fields_, "instance fields resolved"); DumpStat(resolved_local_static_fields_ + resolved_static_fields_, unresolved_static_fields_, "static fields resolved"); DumpStat(resolved_local_static_fields_, resolved_static_fields_ + unresolved_static_fields_, "static fields local to a class"); for (size_t i = 0; i <= kMaxInvokeType; i++) { std::ostringstream oss; oss << static_cast(i) << " methods were AOT resolved"; DumpStat(resolved_methods_[i], unresolved_methods_[i], oss.str().c_str()); if (virtual_made_direct_[i] > 0) { std::ostringstream oss2; oss2 << static_cast(i) << " methods made direct"; DumpStat(virtual_made_direct_[i], resolved_methods_[i] + unresolved_methods_[i] - virtual_made_direct_[i], oss2.str().c_str()); } if (direct_calls_to_boot_[i] > 0) { std::ostringstream oss2; oss2 << static_cast(i) << " method calls are direct into boot"; DumpStat(direct_calls_to_boot_[i], resolved_methods_[i] + unresolved_methods_[i] - direct_calls_to_boot_[i], oss2.str().c_str()); } if (direct_methods_to_boot_[i] > 0) { std::ostringstream oss2; oss2 << static_cast(i) << " method calls have methods in boot"; DumpStat(direct_methods_to_boot_[i], resolved_methods_[i] + unresolved_methods_[i] - direct_methods_to_boot_[i], oss2.str().c_str()); } } } // Allow lossy statistics in non-debug builds #ifndef NDEBUG #define STATS_LOCK() MutexLock mu(stats_lock_) #else #define STATS_LOCK() #endif void TypeInDexCache() { STATS_LOCK(); types_in_dex_cache_++; } void TypeNotInDexCache() { STATS_LOCK(); types_not_in_dex_cache_++; } void StringInDexCache() { STATS_LOCK(); strings_in_dex_cache_++; } void StringNotInDexCache() { STATS_LOCK(); strings_not_in_dex_cache_++; } void TypeDoesntNeedAccessCheck() { STATS_LOCK(); resolved_types_++; } void TypeNeedsAccessCheck() { STATS_LOCK(); unresolved_types_++; } void ResolvedInstanceField() { STATS_LOCK(); resolved_instance_fields_++; } void UnresolvedInstanceField() { STATS_LOCK(); unresolved_instance_fields_++; } void ResolvedLocalStaticField() { STATS_LOCK(); resolved_local_static_fields_++; } void ResolvedStaticField() { STATS_LOCK(); resolved_static_fields_++; } void UnresolvedStaticField() { STATS_LOCK(); unresolved_static_fields_++; } void ResolvedMethod(InvokeType type) { DCHECK_LE(type, kMaxInvokeType); STATS_LOCK(); resolved_methods_[type]++; } void UnresolvedMethod(InvokeType type) { DCHECK_LE(type, kMaxInvokeType); STATS_LOCK(); unresolved_methods_[type]++; } void VirtualMadeDirect(InvokeType type) { DCHECK_LE(type, kMaxInvokeType); STATS_LOCK(); virtual_made_direct_[type]++; } void DirectCallsToBoot(InvokeType type) { DCHECK_LE(type, kMaxInvokeType); STATS_LOCK(); direct_calls_to_boot_[type]++; } void DirectMethodsToBoot(InvokeType type) { DCHECK_LE(type, kMaxInvokeType); STATS_LOCK(); direct_methods_to_boot_[type]++; } private: Mutex stats_lock_; size_t types_in_dex_cache_; size_t types_not_in_dex_cache_; size_t strings_in_dex_cache_; size_t strings_not_in_dex_cache_; size_t resolved_types_; size_t unresolved_types_; size_t resolved_instance_fields_; size_t unresolved_instance_fields_; size_t resolved_local_static_fields_; size_t resolved_static_fields_; size_t unresolved_static_fields_; size_t resolved_methods_[kMaxInvokeType + 1]; size_t unresolved_methods_[kMaxInvokeType + 1]; size_t virtual_made_direct_[kMaxInvokeType + 1]; size_t direct_calls_to_boot_[kMaxInvokeType + 1]; size_t direct_methods_to_boot_[kMaxInvokeType + 1]; DISALLOW_COPY_AND_ASSIGN(AOTCompilationStats); }; static std::string MakeCompilerSoName(InstructionSet instruction_set) { // TODO: is the ARM/Thumb2 instruction set distinction really buying us anything, // or just causing hassle like this? if (instruction_set == kThumb2) { instruction_set = kArm; } // Lower case the instruction set, because that's what we do in the build system. std::string instruction_set_name(ToStr(instruction_set).str()); for (size_t i = 0; i < instruction_set_name.size(); ++i) { instruction_set_name[i] = tolower(instruction_set_name[i]); } // Bad things happen if we pull in the libartd-compiler to a libart dex2oat or vice versa, // because we end up with both libart and libartd in the same address space! const char* suffix = (kIsDebugBuild ? "d" : ""); // Work out the filename for the compiler library. #if defined(ART_USE_LLVM_COMPILER) std::string library_name(StringPrintf("art%s-compiler-llvm", suffix)); #elif defined(ART_USE_GREENLAND_COMPILER) std::string library_name(StringPrintf("art%s-compiler-greenland", suffix)); #else std::string library_name(StringPrintf("art%s-compiler-%s", suffix, instruction_set_name.c_str())); #endif std::string filename(StringPrintf(OS_SHARED_LIB_FORMAT_STR, library_name.c_str())); #if defined(__APPLE__) // On Linux, dex2oat will have been built with an RPATH of $ORIGIN/../lib, so dlopen(3) will find // the .so by itself. On Mac OS, there isn't really an equivalent, so we have to manually do the // same work. uint32_t executable_path_length = 0; _NSGetExecutablePath(NULL, &executable_path_length); std::string path(executable_path_length, static_cast(0)); CHECK_EQ(_NSGetExecutablePath(&path[0], &executable_path_length), 0); // Strip the "/dex2oat". size_t last_slash = path.find_last_of('/'); CHECK_NE(last_slash, std::string::npos) << path; path.resize(last_slash); // Strip the "/bin". last_slash = path.find_last_of('/'); path.resize(last_slash); filename = path + "/lib/" + filename; #endif return filename; } template static Fn FindFunction(const std::string& compiler_so_name, void* library, const char* name) { Fn fn = reinterpret_cast(dlsym(library, name)); if (fn == NULL) { LOG(FATAL) << "Couldn't find \"" << name << "\" in compiler library " << compiler_so_name << ": " << dlerror(); } VLOG(compiler) << "Found \"" << name << "\" at " << reinterpret_cast(fn); return fn; } Compiler::Compiler(InstructionSet instruction_set, bool image, size_t thread_count, bool support_debugging, const std::set* image_classes, bool dump_stats, bool dump_timings) : instruction_set_(instruction_set), compiled_classes_lock_("compiled classes lock"), compiled_methods_lock_("compiled method lock"), compiled_invoke_stubs_lock_("compiled invoke stubs lock"), #if defined(ART_USE_LLVM_COMPILER) compiled_proxy_stubs_lock_("compiled proxy stubs lock"), #endif image_(image), thread_count_(thread_count), support_debugging_(support_debugging), stats_(new AOTCompilationStats), dump_stats_(dump_stats), dump_timings_(dump_timings), image_classes_(image_classes), compiler_library_(NULL), compiler_(NULL), compiler_context_(NULL), jni_compiler_(NULL), create_invoke_stub_(NULL) { std::string compiler_so_name(MakeCompilerSoName(instruction_set_)); compiler_library_ = dlopen(compiler_so_name.c_str(), RTLD_LAZY); if (compiler_library_ == NULL) { LOG(FATAL) << "Couldn't find compiler library " << compiler_so_name << ": " << dlerror(); } VLOG(compiler) << "dlopen(\"" << compiler_so_name << "\", RTLD_LAZY) returned " << compiler_library_; #if defined(ART_USE_LLVM_COMPILER) || defined(ART_USE_GREENLAND_COMPILER) // Initialize compiler_context_ typedef void (*InitCompilerContextFn)(Compiler&); InitCompilerContextFn init_compiler_context = FindFunction(compiler_so_name, compiler_library_, "ArtInitCompilerContext"); init_compiler_context(*this); #endif compiler_ = FindFunction(compiler_so_name, compiler_library_, "ArtCompileMethod"); jni_compiler_ = FindFunction(compiler_so_name, compiler_library_, "ArtJniCompileMethod"); create_invoke_stub_ = FindFunction(compiler_so_name, compiler_library_, "ArtCreateInvokeStub"); #if defined(ART_USE_LLVM_COMPILER) create_proxy_stub_ = FindFunction( compiler_so_name, compiler_library_, "ArtCreateProxyStub"); #endif CHECK(!Runtime::Current()->IsStarted()); if (!image_) { CHECK(image_classes_ == NULL); } } Compiler::~Compiler() { { MutexLock mu(compiled_classes_lock_); STLDeleteValues(&compiled_classes_); } { MutexLock mu(compiled_methods_lock_); STLDeleteValues(&compiled_methods_); } { MutexLock mu(compiled_invoke_stubs_lock_); STLDeleteValues(&compiled_invoke_stubs_); } #if defined(ART_USE_LLVM_COMPILER) { MutexLock mu(compiled_proxy_stubs_lock_); STLDeleteValues(&compiled_proxy_stubs_); } #endif { MutexLock mu(compiled_methods_lock_); STLDeleteElements(&code_to_patch_); } { MutexLock mu(compiled_methods_lock_); STLDeleteElements(&methods_to_patch_); } #if defined(ART_USE_LLVM_COMPILER) // Uninitialize compiler_context_ typedef void (*UninitCompilerContextFn)(Compiler&); std::string compiler_so_name(MakeCompilerSoName(instruction_set_)); UninitCompilerContextFn uninit_compiler_context = FindFunction(compiler_so_name, compiler_library_, "ArtUnInitCompilerContext"); uninit_compiler_context(*this); #endif if (compiler_library_ != NULL) { VLOG(compiler) << "dlclose(" << compiler_library_ << ")"; dlclose(compiler_library_); } } ByteArray* Compiler::CreateResolutionStub(InstructionSet instruction_set, Runtime::TrampolineType type) { if (instruction_set == kX86) { return x86::X86CreateResolutionTrampoline(type); } else { CHECK(instruction_set == kArm || instruction_set == kThumb2); // Generates resolution stub using ARM instruction set return arm::ArmCreateResolutionTrampoline(type); } } ByteArray* Compiler::CreateJniDlsymLookupStub(InstructionSet instruction_set) { switch (instruction_set) { case kArm: case kThumb2: return arm::CreateJniDlsymLookupStub(); case kX86: return x86::CreateJniDlsymLookupStub(); default: LOG(FATAL) << "Unknown InstructionSet: " << instruction_set; return NULL; } } ByteArray* Compiler::CreateAbstractMethodErrorStub(InstructionSet instruction_set) { if (instruction_set == kX86) { return x86::CreateAbstractMethodErrorStub(); } else { CHECK(instruction_set == kArm || instruction_set == kThumb2); // Generates resolution stub using ARM instruction set return arm::CreateAbstractMethodErrorStub(); } } void Compiler::CompileAll(ClassLoader* class_loader, const std::vector& dex_files) { DCHECK(!Runtime::Current()->IsStarted()); TimingLogger timings("compiler"); // TODO: make the verifier thread-safe and remove this workaround. size_t thread_count = thread_count_; thread_count_ = 1; PreCompile(class_loader, dex_files, timings); thread_count_ = thread_count; Compile(class_loader, dex_files); timings.AddSplit("Compile"); PostCompile(class_loader, dex_files); timings.AddSplit("PostCompile"); if (dump_timings_ && timings.GetTotalNs() > MsToNs(1000)) { timings.Dump(); } if (dump_stats_) { stats_->Dump(); } } void Compiler::CompileOne(const Method* method) { DCHECK(!Runtime::Current()->IsStarted()); ClassLoader* class_loader = method->GetDeclaringClass()->GetClassLoader(); // Find the dex_file const DexCache* dex_cache = method->GetDeclaringClass()->GetDexCache(); const DexFile& dex_file = Runtime::Current()->GetClassLinker()->FindDexFile(dex_cache); std::vector dex_files; dex_files.push_back(&dex_file); TimingLogger timings("CompileOne"); PreCompile(class_loader, dex_files, timings); uint32_t method_idx = method->GetDexMethodIndex(); const DexFile::CodeItem* code_item = dex_file.GetCodeItem(method->GetCodeItemOffset()); CompileMethod(code_item, method->GetAccessFlags(), method_idx, class_loader, dex_file); PostCompile(class_loader, dex_files); } void Compiler::Resolve(ClassLoader* class_loader, const std::vector& dex_files, TimingLogger& timings) { for (size_t i = 0; i != dex_files.size(); ++i) { const DexFile* dex_file = dex_files[i]; CHECK(dex_file != NULL); ResolveDexFile(class_loader, *dex_file, timings); } } void Compiler::PreCompile(ClassLoader* class_loader, const std::vector& dex_files, TimingLogger& timings) { Resolve(class_loader, dex_files, timings); Verify(class_loader, dex_files); timings.AddSplit("PreCompile.Verify"); InitializeClassesWithoutClinit(class_loader, dex_files); timings.AddSplit("PreCompile.InitializeClassesWithoutClinit"); } void Compiler::PostCompile(ClassLoader* class_loader, const std::vector& dex_files) { SetGcMaps(class_loader, dex_files); } bool Compiler::IsImageClass(const std::string& descriptor) const { if (image_classes_ == NULL) { return true; } return image_classes_->find(descriptor) != image_classes_->end(); } bool Compiler::CanAssumeTypeIsPresentInDexCache(const DexCache* dex_cache, uint32_t type_idx) { if (!IsImage()) { stats_->TypeNotInDexCache(); return false; } Class* resolved_class = dex_cache->GetResolvedType(type_idx); if (resolved_class == NULL) { stats_->TypeNotInDexCache(); return false; } bool result = IsImageClass(ClassHelper(resolved_class).GetDescriptor()); if (result) { stats_->TypeInDexCache(); } else { stats_->TypeNotInDexCache(); } return result; } bool Compiler::CanAssumeStringIsPresentInDexCache(const DexCache* dex_cache, uint32_t string_idx) { // TODO: Add support for loading strings referenced by image_classes_ // See also Compiler::ResolveDexFile // The following is a test saying that if we're building the image without a restricted set of // image classes then we can assume the string is present in the dex cache if it is there now bool result = IsImage() && image_classes_ == NULL && dex_cache->GetResolvedString(string_idx) != NULL; if (result) { stats_->StringInDexCache(); } else { stats_->StringNotInDexCache(); } return result; } bool Compiler::CanAccessTypeWithoutChecks(uint32_t referrer_idx, const DexCache* dex_cache, const DexFile& dex_file, uint32_t type_idx) { // Get type from dex cache assuming it was populated by the verifier Class* resolved_class = dex_cache->GetResolvedType(type_idx); if (resolved_class == NULL) { stats_->TypeNeedsAccessCheck(); return false; // Unknown class needs access checks. } const DexFile::MethodId& method_id = dex_file.GetMethodId(referrer_idx); Class* referrer_class = dex_cache->GetResolvedType(method_id.class_idx_); if (referrer_class == NULL) { stats_->TypeNeedsAccessCheck(); return false; // Incomplete referrer knowledge needs access check. } // Perform access check, will return true if access is ok or false if we're going to have to // check this at runtime (for example for class loaders). bool result = referrer_class->CanAccess(resolved_class); if (result) { stats_->TypeDoesntNeedAccessCheck(); } else { stats_->TypeNeedsAccessCheck(); } return result; } bool Compiler::CanAccessInstantiableTypeWithoutChecks(uint32_t referrer_idx, const DexCache* dex_cache, const DexFile& dex_file, uint32_t type_idx) { // Get type from dex cache assuming it was populated by the verifier. Class* resolved_class = dex_cache->GetResolvedType(type_idx); if (resolved_class == NULL) { stats_->TypeNeedsAccessCheck(); return false; // Unknown class needs access checks. } const DexFile::MethodId& method_id = dex_file.GetMethodId(referrer_idx); Class* referrer_class = dex_cache->GetResolvedType(method_id.class_idx_); if (referrer_class == NULL) { stats_->TypeNeedsAccessCheck(); return false; // Incomplete referrer knowledge needs access check. } // Perform access and instantiable checks, will return true if access is ok or false if we're // going to have to check this at runtime (for example for class loaders). bool result = referrer_class->CanAccess(resolved_class) && resolved_class->IsInstantiable(); if (result) { stats_->TypeDoesntNeedAccessCheck(); } else { stats_->TypeNeedsAccessCheck(); } return result; } static Class* ComputeReferrerClass(OatCompilationUnit* mUnit) { const DexFile::MethodId& referrer_method_id = mUnit->dex_file_->GetMethodId(mUnit->method_idx_); return mUnit->class_linker_->ResolveType( *mUnit->dex_file_, referrer_method_id.class_idx_, mUnit->dex_cache_, mUnit->class_loader_); } static Field* ComputeReferrerField(OatCompilationUnit* mUnit, uint32_t field_idx) { return mUnit->class_linker_->ResolveField( *mUnit->dex_file_, field_idx, mUnit->dex_cache_, mUnit->class_loader_, false); } static Method* ComputeReferrerMethod(OatCompilationUnit* mUnit, uint32_t method_idx) { return mUnit->class_linker_->ResolveMethod( *mUnit->dex_file_, method_idx, mUnit->dex_cache_, mUnit->class_loader_, true); } bool Compiler::ComputeInstanceFieldInfo(uint32_t field_idx, OatCompilationUnit* mUnit, int& field_offset, bool& is_volatile, bool is_put) { // Conservative defaults field_offset = -1; is_volatile = true; // Try to resolve field Field* resolved_field = ComputeReferrerField(mUnit, field_idx); if (resolved_field != NULL) { Class* referrer_class = ComputeReferrerClass(mUnit); if (referrer_class != NULL) { Class* fields_class = resolved_field->GetDeclaringClass(); bool access_ok = referrer_class->CanAccess(fields_class) && referrer_class->CanAccessMember(fields_class, resolved_field->GetAccessFlags()); if (!access_ok) { // The referring class can't access the resolved field, this may occur as a result of a // protected field being made public by a sub-class. Resort to the dex file to determine // the correct class for the access check. const DexFile& dex_file = mUnit->class_linker_->FindDexFile(referrer_class->GetDexCache()); Class* dex_fields_class = mUnit->class_linker_->ResolveType(dex_file, dex_file.GetFieldId(field_idx).class_idx_, referrer_class); access_ok = referrer_class->CanAccess(dex_fields_class) && referrer_class->CanAccessMember(dex_fields_class, resolved_field->GetAccessFlags()); } bool is_write_to_final_from_wrong_class = is_put && resolved_field->IsFinal() && fields_class != referrer_class; if (access_ok && !is_write_to_final_from_wrong_class) { field_offset = resolved_field->GetOffset().Int32Value(); is_volatile = resolved_field->IsVolatile(); stats_->ResolvedInstanceField(); return true; // Fast path. } } } // Clean up any exception left by field/type resolution Thread* thread = Thread::Current(); if (thread->IsExceptionPending()) { thread->ClearException(); } stats_->UnresolvedInstanceField(); return false; // Incomplete knowledge needs slow path. } bool Compiler::ComputeStaticFieldInfo(uint32_t field_idx, OatCompilationUnit* mUnit, int& field_offset, int& ssb_index, bool& is_referrers_class, bool& is_volatile, bool is_put) { // Conservative defaults field_offset = -1; ssb_index = -1; is_referrers_class = false; is_volatile = true; // Try to resolve field Field* resolved_field = ComputeReferrerField(mUnit, field_idx); if (resolved_field != NULL) { DCHECK(resolved_field->IsStatic()); Class* referrer_class = ComputeReferrerClass(mUnit); if (referrer_class != NULL) { Class* fields_class = resolved_field->GetDeclaringClass(); if (fields_class == referrer_class) { is_referrers_class = true; // implies no worrying about class initialization field_offset = resolved_field->GetOffset().Int32Value(); is_volatile = resolved_field->IsVolatile(); stats_->ResolvedLocalStaticField(); return true; // fast path } else { bool access_ok = referrer_class->CanAccess(fields_class) && referrer_class->CanAccessMember(fields_class, resolved_field->GetAccessFlags()); if (!access_ok) { // The referring class can't access the resolved field, this may occur as a result of a // protected field being made public by a sub-class. Resort to the dex file to determine // the correct class for the access check. Don't change the field's class as that is // used to identify the SSB. const DexFile& dex_file = mUnit->class_linker_->FindDexFile(referrer_class->GetDexCache()); Class* dex_fields_class = mUnit->class_linker_->ResolveType(dex_file, dex_file.GetFieldId(field_idx).class_idx_, referrer_class); access_ok = referrer_class->CanAccess(dex_fields_class) && referrer_class->CanAccessMember(dex_fields_class, resolved_field->GetAccessFlags()); } bool is_write_to_final_from_wrong_class = is_put && resolved_field->IsFinal(); if (access_ok && !is_write_to_final_from_wrong_class) { // We have the resolved field, we must make it into a ssbIndex for the referrer // in its static storage base (which may fail if it doesn't have a slot for it) // TODO: for images we can elide the static storage base null check // if we know there's a non-null entry in the image if (fields_class->GetDexCache() == mUnit->dex_cache_) { // common case where the dex cache of both the referrer and the field are the same, // no need to search the dex file ssb_index = fields_class->GetDexTypeIndex(); field_offset = resolved_field->GetOffset().Int32Value(); is_volatile = resolved_field->IsVolatile(); stats_->ResolvedStaticField(); return true; } // Search dex file for localized ssb index, may fail if field's class is a parent // of the class mentioned in the dex file and there is no dex cache entry. std::string descriptor(FieldHelper(resolved_field).GetDeclaringClassDescriptor()); const DexFile::StringId* string_id = mUnit->dex_file_->FindStringId(descriptor); if (string_id != NULL) { const DexFile::TypeId* type_id = mUnit->dex_file_->FindTypeId(mUnit->dex_file_->GetIndexForStringId(*string_id)); if (type_id != NULL) { // medium path, needs check of static storage base being initialized ssb_index = mUnit->dex_file_->GetIndexForTypeId(*type_id); field_offset = resolved_field->GetOffset().Int32Value(); is_volatile = resolved_field->IsVolatile(); stats_->ResolvedStaticField(); return true; } } } } } } // Clean up any exception left by field/type resolution Thread* thread = Thread::Current(); if (thread->IsExceptionPending()) { thread->ClearException(); } stats_->UnresolvedStaticField(); return false; // Incomplete knowledge needs slow path. } void Compiler::GetCodeAndMethodForDirectCall(InvokeType type, InvokeType sharp_type, Method* method, uintptr_t& direct_code, uintptr_t& direct_method) { direct_code = 0; direct_method = 0; if (sharp_type != kStatic && sharp_type != kDirect) { return; } bool method_code_in_boot = method->GetDeclaringClass()->GetClassLoader() == NULL; if (!method_code_in_boot) { return; } bool has_clinit_trampoline = method->IsStatic() && !method->GetDeclaringClass()->IsInitialized(); if (has_clinit_trampoline) { return; } stats_->DirectCallsToBoot(type); stats_->DirectMethodsToBoot(type); bool compiling_boot = Runtime::Current()->GetHeap()->GetSpaces().size() == 1; if (compiling_boot) { const bool kSupportBootImageFixup = true; if (kSupportBootImageFixup) { MethodHelper mh(method); if (IsImageClass(mh.GetDeclaringClassDescriptor())) { // We can only branch directly to Methods that are resolved in the DexCache. // Otherwise we won't invoke the resolution trampoline. direct_method = -1; direct_code = -1; } } } else { if (Runtime::Current()->GetHeap()->FindSpaceFromObject(method)->IsImageSpace()) { direct_method = reinterpret_cast(method); } direct_code = reinterpret_cast(method->GetCode()); } } bool Compiler::ComputeInvokeInfo(uint32_t method_idx, OatCompilationUnit* mUnit, InvokeType& type, int& vtable_idx, uintptr_t& direct_code, uintptr_t& direct_method) { vtable_idx = -1; direct_code = 0; direct_method = 0; Method* resolved_method = ComputeReferrerMethod(mUnit, method_idx); if (resolved_method != NULL) { Class* referrer_class = ComputeReferrerClass(mUnit); if (referrer_class != NULL) { Class* methods_class = resolved_method->GetDeclaringClass(); if (!referrer_class->CanAccess(methods_class) || !referrer_class->CanAccessMember(methods_class, resolved_method->GetAccessFlags())) { // The referring class can't access the resolved method, this may occur as a result of a // protected method being made public by implementing an interface that re-declares the // method public. Resort to the dex file to determine the correct class for the access check const DexFile& dex_file = mUnit->class_linker_->FindDexFile(referrer_class->GetDexCache()); methods_class = mUnit->class_linker_->ResolveType(dex_file, dex_file.GetMethodId(method_idx).class_idx_, referrer_class); } if (referrer_class->CanAccess(methods_class) && referrer_class->CanAccessMember(methods_class, resolved_method->GetAccessFlags())) { vtable_idx = resolved_method->GetMethodIndex(); const bool kEnableSharpening = true; // Sharpen a virtual call into a direct call when the target is known. bool can_sharpen = type == kVirtual && (resolved_method->IsFinal() || methods_class->IsFinal()); // ensure the vtable index will be correct to dispatch in the vtable of the super class can_sharpen = can_sharpen || (type == kSuper && referrer_class != methods_class && referrer_class->IsSubClass(methods_class) && vtable_idx < methods_class->GetVTable()->GetLength() && methods_class->GetVTable()->Get(vtable_idx) == resolved_method); if (kEnableSharpening && can_sharpen) { stats_->ResolvedMethod(type); // Sharpen a virtual call into a direct call. The method_idx is into referrer's // dex cache, check that this resolved method is where we expect it. CHECK(referrer_class->GetDexCache()->GetResolvedMethod(method_idx) == resolved_method) << PrettyMethod(resolved_method); stats_->VirtualMadeDirect(type); GetCodeAndMethodForDirectCall(type, kDirect, resolved_method, direct_code, direct_method); type = kDirect; return true; } else if (type == kSuper) { // Unsharpened super calls are suspicious so go slowpath. } else { stats_->ResolvedMethod(type); GetCodeAndMethodForDirectCall(type, type, resolved_method, direct_code, direct_method); return true; } } } } // Clean up any exception left by method/type resolution Thread* thread = Thread::Current(); if (thread->IsExceptionPending()) { thread->ClearException(); } stats_->UnresolvedMethod(type); return false; // Incomplete knowledge needs slow path. } void Compiler::AddCodePatch(DexCache* dex_cache, const DexFile* dex_file, uint32_t referrer_method_idx, uint32_t referrer_access_flags, uint32_t target_method_idx, bool target_is_direct, size_t literal_offset) { MutexLock mu(compiled_methods_lock_); code_to_patch_.push_back(new PatchInformation(dex_cache, dex_file, referrer_method_idx, referrer_access_flags, target_method_idx, target_is_direct, literal_offset)); } void Compiler::AddMethodPatch(DexCache* dex_cache, const DexFile* dex_file, uint32_t referrer_method_idx, uint32_t referrer_access_flags, uint32_t target_method_idx, bool target_is_direct, size_t literal_offset) { MutexLock mu(compiled_methods_lock_); methods_to_patch_.push_back(new PatchInformation(dex_cache, dex_file, referrer_method_idx, referrer_access_flags, target_method_idx, target_is_direct, literal_offset)); } // Return true if the class should be skipped during compilation. We // never skip classes in the boot class loader. However, if we have a // non-boot class loader and we can resolve the class in the boot // class loader, we do skip the class. This happens if an app bundles // classes found in the boot classpath. Since at runtime we will // select the class from the boot classpath, do not attempt to resolve // or compile it now. static bool SkipClass(ClassLoader* class_loader, const DexFile& dex_file, const DexFile::ClassDef& class_def) { if (class_loader == NULL) { return false; } const char* descriptor = dex_file.GetClassDescriptor(class_def); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); Class* klass = class_linker->FindClass(descriptor, NULL); if (klass == NULL) { Thread* self = Thread::Current(); CHECK(self->IsExceptionPending()); self->ClearException(); return false; } return true; } class CompilationContext { public: CompilationContext(ClassLinker* class_linker, ClassLoader* class_loader, Compiler* compiler, DexCache* dex_cache, const DexFile* dex_file) : class_linker_(class_linker), class_loader_(class_loader), compiler_(compiler), dex_cache_(dex_cache), dex_file_(dex_file) {} ClassLinker* GetClassLinker() { CHECK(class_linker_ != NULL); return class_linker_; } ClassLoader* GetClassLoader() { return class_loader_; } Compiler* GetCompiler() { CHECK(compiler_ != NULL); return compiler_; } DexCache* GetDexCache() { CHECK(dex_cache_ != NULL); return dex_cache_; } const DexFile* GetDexFile() { CHECK(dex_file_ != NULL); return dex_file_; } private: ClassLinker* class_linker_; ClassLoader* class_loader_; Compiler* compiler_; DexCache* dex_cache_; const DexFile* dex_file_; }; typedef void Callback(CompilationContext* context, size_t index); class WorkerThread { public: WorkerThread(CompilationContext* context, size_t begin, size_t end, Callback callback, size_t stripe, bool spawn) : spawn_(spawn), context_(context), begin_(begin), end_(end), callback_(callback), stripe_(stripe) { if (spawn_) { // Mac OS stacks are only 512KiB. Make sure we have the same stack size on all platforms. pthread_attr_t attr; CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new compiler worker thread"); CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, 1*MB), "new compiler worker thread"); CHECK_PTHREAD_CALL(pthread_create, (&pthread_, &attr, &Go, this), "new compiler worker thread"); CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new compiler worker thread"); } } ~WorkerThread() { if (spawn_) { CHECK_PTHREAD_CALL(pthread_join, (pthread_, NULL), "compiler worker shutdown"); } } private: static void* Go(void* arg) { WorkerThread* worker = reinterpret_cast(arg); Runtime* runtime = Runtime::Current(); if (worker->spawn_) { runtime->AttachCurrentThread("Compiler Worker", true, NULL); } Thread::Current()->SetState(kRunnable); worker->Run(); if (worker->spawn_) { Thread::Current()->SetState(kNative); runtime->DetachCurrentThread(); } return NULL; } void Go() { Go(this); } void Run() { Thread* self = Thread::Current(); for (size_t i = begin_; i < end_; i += stripe_) { callback_(context_, i); CHECK(!self->IsExceptionPending()) << PrettyTypeOf(self->GetException()) << " " << i; } } pthread_t pthread_; bool spawn_; CompilationContext* context_; size_t begin_; size_t end_; Callback* callback_; size_t stripe_; friend void ForAll(CompilationContext*, size_t, size_t, Callback, size_t); }; void ForAll(CompilationContext* context, size_t begin, size_t end, Callback callback, size_t thread_count) { Thread* self = Thread::Current(); CHECK(!self->IsExceptionPending()) << PrettyTypeOf(self->GetException()); CHECK_GT(thread_count, 0U); std::vector threads; for (size_t i = 0; i < thread_count; ++i) { threads.push_back(new WorkerThread(context, begin + i, end, callback, thread_count, (i != 0))); } threads[0]->Go(); // Switch to kVmWait while we're blocked waiting for the other threads to finish. ScopedThreadStateChange tsc(self, kVmWait); STLDeleteElements(&threads); } static void ResolveClassFieldsAndMethods(CompilationContext* context, size_t class_def_index) { const DexFile& dex_file = *context->GetDexFile(); // Method and Field are the worst. We can't resolve without either // context from the code use (to disambiguate virtual vs direct // method and instance vs static field) or from class // definitions. While the compiler will resolve what it can as it // needs it, here we try to resolve fields and methods used in class // definitions, since many of them many never be referenced by // generated code. const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_index); if (SkipClass(context->GetClassLoader(), dex_file, class_def)) { return; } // Note the class_data pointer advances through the headers, // static fields, instance fields, direct methods, and virtual // methods. const byte* class_data = dex_file.GetClassData(class_def); if (class_data == NULL) { // empty class such as a marker interface return; } Thread* self = Thread::Current(); ClassLinker* class_linker = context->GetClassLinker(); DexCache* dex_cache = class_linker->FindDexCache(dex_file); ClassDataItemIterator it(dex_file, class_data); while (it.HasNextStaticField()) { Field* field = class_linker->ResolveField(dex_file, it.GetMemberIndex(), dex_cache, context->GetClassLoader(), true); if (field == NULL) { CHECK(self->IsExceptionPending()); self->ClearException(); } it.Next(); } while (it.HasNextInstanceField()) { Field* field = class_linker->ResolveField(dex_file, it.GetMemberIndex(), dex_cache, context->GetClassLoader(), false); if (field == NULL) { CHECK(self->IsExceptionPending()); self->ClearException(); } it.Next(); } while (it.HasNextDirectMethod()) { Method* method = class_linker->ResolveMethod(dex_file, it.GetMemberIndex(), dex_cache, context->GetClassLoader(), true); if (method == NULL) { CHECK(self->IsExceptionPending()); self->ClearException(); } it.Next(); } while (it.HasNextVirtualMethod()) { Method* method = class_linker->ResolveMethod(dex_file, it.GetMemberIndex(), dex_cache, context->GetClassLoader(), false); if (method == NULL) { CHECK(self->IsExceptionPending()); self->ClearException(); } it.Next(); } DCHECK(!it.HasNext()); } static void ResolveType(CompilationContext* context, size_t type_idx) { // Class derived values are more complicated, they require the linker and loader. Thread* self = Thread::Current(); Class* klass = context->GetClassLinker()->ResolveType(*context->GetDexFile(), type_idx, context->GetDexCache(), context->GetClassLoader()); if (klass == NULL) { CHECK(self->IsExceptionPending()); Thread::Current()->ClearException(); } } void Compiler::ResolveDexFile(ClassLoader* class_loader, const DexFile& dex_file, TimingLogger& timings) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); DexCache* dex_cache = class_linker->FindDexCache(dex_file); // Strings are easy in that they always are simply resolved to literals in the same file if (image_ && image_classes_ == NULL) { // TODO: Add support for loading strings referenced by image_classes_ // See also Compiler::CanAssumeTypeIsPresentInDexCache. for (size_t string_idx = 0; string_idx < dex_cache->NumStrings(); string_idx++) { class_linker->ResolveString(dex_file, string_idx, dex_cache); } timings.AddSplit("Resolve " + dex_file.GetLocation() + " Strings"); } CompilationContext context(class_linker, class_loader, this, dex_cache, &dex_file); ForAll(&context, 0, dex_cache->NumResolvedTypes(), ResolveType, thread_count_); timings.AddSplit("Resolve " + dex_file.GetLocation() + " Types"); ForAll(&context, 0, dex_file.NumClassDefs(), ResolveClassFieldsAndMethods, thread_count_); timings.AddSplit("Resolve " + dex_file.GetLocation() + " MethodsAndFields"); } void Compiler::Verify(ClassLoader* class_loader, const std::vector& dex_files) { for (size_t i = 0; i != dex_files.size(); ++i) { const DexFile* dex_file = dex_files[i]; CHECK(dex_file != NULL); VerifyDexFile(class_loader, *dex_file); } } static void VerifyClass(CompilationContext* context, size_t class_def_index) { const DexFile::ClassDef& class_def = context->GetDexFile()->GetClassDef(class_def_index); const char* descriptor = context->GetDexFile()->GetClassDescriptor(class_def); Class* klass = context->GetClassLinker()->FindClass(descriptor, context->GetClassLoader()); if (klass == NULL) { Thread* self = Thread::Current(); CHECK(self->IsExceptionPending()); self->ClearException(); /* * At compile time, we can still structurally verify the class even if FindClass fails. * This is to ensure the class is structurally sound for compilation. An unsound class * will be rejected by the verifier and later skipped during compilation in the compiler. */ std::string error_msg; if (verifier::MethodVerifier::VerifyClass(context->GetDexFile(), context->GetDexCache(), context->GetClassLoader(), class_def_index, error_msg) == verifier::MethodVerifier::kHardFailure) { const DexFile::ClassDef& class_def = context->GetDexFile()->GetClassDef(class_def_index); LOG(ERROR) << "Verification failed on class " << PrettyDescriptor(context->GetDexFile()->GetClassDescriptor(class_def)) << " because: " << error_msg; } return; } CHECK(klass->IsResolved()) << PrettyClass(klass); context->GetClassLinker()->VerifyClass(klass); if (klass->IsErroneous()) { // ClassLinker::VerifyClass throws, which isn't useful in the compiler. CHECK(Thread::Current()->IsExceptionPending()); Thread::Current()->ClearException(); art::Compiler::ClassReference ref(context->GetDexFile(), class_def_index); } CHECK(klass->IsCompileTimeVerified() || klass->IsErroneous()) << PrettyClass(klass); CHECK(!Thread::Current()->IsExceptionPending()) << PrettyTypeOf(Thread::Current()->GetException()); } void Compiler::VerifyDexFile(ClassLoader* class_loader, const DexFile& dex_file) { dex_file.ChangePermissions(PROT_READ | PROT_WRITE); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); CompilationContext context(class_linker, class_loader, this, class_linker->FindDexCache(dex_file), &dex_file); ForAll(&context, 0, dex_file.NumClassDefs(), VerifyClass, thread_count_); dex_file.ChangePermissions(PROT_READ); } void Compiler::InitializeClassesWithoutClinit(ClassLoader* class_loader, const std::vector& dex_files) { for (size_t i = 0; i != dex_files.size(); ++i) { const DexFile* dex_file = dex_files[i]; CHECK(dex_file != NULL); InitializeClassesWithoutClinit(class_loader, *dex_file); } } void Compiler::InitializeClassesWithoutClinit(ClassLoader* class_loader, const DexFile& dex_file) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); for (size_t class_def_index = 0; class_def_index < dex_file.NumClassDefs(); class_def_index++) { const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_index); const char* descriptor = dex_file.GetClassDescriptor(class_def); Class* klass = class_linker->FindClass(descriptor, class_loader); if (klass != NULL) { if (klass->IsVerified()) { // Only try to initialize classes that were successfully verified. bool compiling_boot = Runtime::Current()->GetHeap()->GetSpaces().size() == 1; bool can_init_static_fields = compiling_boot && IsImageClass(descriptor); class_linker->EnsureInitialized(klass, false, can_init_static_fields); } // record the final class status if necessary Class::Status status = klass->GetStatus(); ClassReference ref(&dex_file, class_def_index); MutexLock mu(compiled_classes_lock_); CompiledClass* compiled_class = GetCompiledClass(ref); if (compiled_class == NULL) { compiled_class = new CompiledClass(status); compiled_classes_.Put(ref, compiled_class); } else { DCHECK_EQ(status, compiled_class->GetStatus()); } } // clear any class not found or verification exceptions Thread::Current()->ClearException(); } DexCache* dex_cache = class_linker->FindDexCache(dex_file); for (size_t type_idx = 0; type_idx < dex_cache->NumResolvedTypes(); type_idx++) { Class* klass = class_linker->ResolveType(dex_file, type_idx, dex_cache, class_loader); if (klass == NULL) { Thread::Current()->ClearException(); } else if (klass->IsInitialized()) { dex_cache->GetInitializedStaticStorage()->Set(type_idx, klass); } } } // TODO: This class shares some implementation with WorkerThread. We don't want // to perturb the non-LLVM side at the same time. Staging the refactoring for // the future. class DexFilesWorkerThread { public: DexFilesWorkerThread(CompilationContext *worker_context, Callback class_callback, const std::vector& dex_files, volatile int32_t* shared_class_index, bool spawn) : spawn_(spawn), worker_context_(worker_context), class_callback_(class_callback), dex_files_(dex_files), context_(NULL), shared_class_index_(shared_class_index) { if (spawn_) { pthread_attr_t attr; CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new compiler worker thread"); CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, 1*MB), "new compiler worker thread"); CHECK_PTHREAD_CALL(pthread_create, (&pthread_, &attr, &Go, this), "new compiler worker thread"); CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new compiler worker thread"); } } ~DexFilesWorkerThread() { if (spawn_) { CHECK_PTHREAD_CALL(pthread_join, (pthread_, NULL), "compiler worker shutdown"); } delete context_; } private: static void* Go(void* arg) { DexFilesWorkerThread* worker = reinterpret_cast(arg); Runtime* runtime = Runtime::Current(); if (worker->spawn_) { runtime->AttachCurrentThread("Compiler Worker", true, NULL); } Thread::Current()->SetState(kRunnable); worker->Run(); if (worker->spawn_) { Thread::Current()->SetState(kNative); runtime->DetachCurrentThread(); } return NULL; } void Go() { Go(this); } void SwitchToDexFile(size_t dex_file_index) { CHECK_LT(dex_file_index, dex_files_.size()); const DexFile* dex_file = dex_files_[dex_file_index]; CHECK(dex_file != NULL); // Destroy the old context delete context_; // TODO: Add a callback to let the client specify the class_linker and // dex_cache in the context for the current working dex file. context_ = new CompilationContext(/* class_linker */NULL, worker_context_->GetClassLoader(), worker_context_->GetCompiler(), /* dex_cache */NULL, dex_file); CHECK(context_ != NULL); } void Run() { Thread* self = Thread::Current(); size_t cur_dex_file_index = 0; size_t class_index_base = 0; SwitchToDexFile(0); while (true) { size_t class_index = static_cast(android_atomic_inc(shared_class_index_)); const DexFile* dex_file; do { dex_file = dex_files_[cur_dex_file_index]; if (class_index < (class_index_base + dex_file->NumClassDefs())) { break; } class_index_base += dex_file->NumClassDefs(); cur_dex_file_index++; } while (cur_dex_file_index < dex_files_.size()); if (cur_dex_file_index >= dex_files_.size()) { return; } if (dex_file != context_->GetDexFile()) { SwitchToDexFile(cur_dex_file_index); } class_index -= class_index_base; class_callback_(context_, class_index); CHECK(!self->IsExceptionPending()) << PrettyTypeOf(self->GetException()); } } pthread_t pthread_; bool spawn_; CompilationContext* worker_context_; Callback* class_callback_; const std::vector& dex_files_; CompilationContext* context_; volatile int32_t* shared_class_index_; friend void ForClassesInAllDexFiles(CompilationContext*, const std::vector&, Callback, size_t); }; void ForClassesInAllDexFiles(CompilationContext* worker_context, const std::vector& dex_files, Callback class_callback, size_t thread_count) { Thread* self = Thread::Current(); CHECK(!self->IsExceptionPending()) << PrettyTypeOf(self->GetException()); CHECK_GT(thread_count, 0U); std::vector threads; volatile int32_t shared_class_index = 0; for (size_t i = 0; i < thread_count; ++i) { threads.push_back(new DexFilesWorkerThread(worker_context, class_callback, dex_files, &shared_class_index, /* spawn */ (i != 0))); } threads[0]->Go(); // Switch to kVmWait while we're blocked waiting for the other threads to finish. ScopedThreadStateChange tsc(self, kVmWait); STLDeleteElements(&threads); } void Compiler::Compile(ClassLoader* class_loader, const std::vector& dex_files) { #if defined(ART_USE_LLVM_COMPILER) if (dex_files.size() <= 0) { return; // No dex file } CompilationContext context(NULL, class_loader, this, NULL, NULL); ForClassesInAllDexFiles(&context, dex_files, Compiler::CompileClass, thread_count_); #else for (size_t i = 0; i != dex_files.size(); ++i) { const DexFile* dex_file = dex_files[i]; CHECK(dex_file != NULL); CompileDexFile(class_loader, *dex_file); } #endif } void Compiler::CompileClass(CompilationContext* context, size_t class_def_index) { ClassLoader* class_loader = context->GetClassLoader(); const DexFile& dex_file = *context->GetDexFile(); const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_index); if (SkipClass(class_loader, dex_file, class_def)) { return; } ClassReference ref(&dex_file, class_def_index); // Skip compiling classes with generic verifier failures since they will still fail at runtime if (verifier::MethodVerifier::IsClassRejected(ref)) { return; } const byte* class_data = dex_file.GetClassData(class_def); if (class_data == NULL) { // empty class, probably a marker interface return; } ClassDataItemIterator it(dex_file, class_data); // Skip fields while (it.HasNextStaticField()) { it.Next(); } while (it.HasNextInstanceField()) { it.Next(); } // Compile direct methods int64_t previous_direct_method_idx = -1; while (it.HasNextDirectMethod()) { uint32_t method_idx = it.GetMemberIndex(); if (method_idx == previous_direct_method_idx) { // smali can create dex files with two encoded_methods sharing the same method_idx // http://code.google.com/p/smali/issues/detail?id=119 it.Next(); continue; } previous_direct_method_idx = method_idx; context->GetCompiler()->CompileMethod(it.GetMethodCodeItem(), it.GetMemberAccessFlags(), method_idx, class_loader, dex_file); it.Next(); } // Compile virtual methods int64_t previous_virtual_method_idx = -1; while (it.HasNextVirtualMethod()) { uint32_t method_idx = it.GetMemberIndex(); if (method_idx == previous_virtual_method_idx) { // smali can create dex files with two encoded_methods sharing the same method_idx // http://code.google.com/p/smali/issues/detail?id=119 it.Next(); continue; } previous_virtual_method_idx = method_idx; context->GetCompiler()->CompileMethod(it.GetMethodCodeItem(), it.GetMemberAccessFlags(), method_idx, class_loader, dex_file); it.Next(); } DCHECK(!it.HasNext()); } void Compiler::CompileDexFile(ClassLoader* class_loader, const DexFile& dex_file) { CompilationContext context(NULL, class_loader, this, NULL, &dex_file); ForAll(&context, 0, dex_file.NumClassDefs(), Compiler::CompileClass, thread_count_); } static std::string MakeInvokeStubKey(bool is_static, const char* shorty) { std::string key(shorty); if (is_static) { key += "$"; // Must not be a shorty type character. } return key; } void Compiler::CompileMethod(const DexFile::CodeItem* code_item, uint32_t access_flags, uint32_t method_idx, ClassLoader* class_loader, const DexFile& dex_file) { CompiledMethod* compiled_method = NULL; uint64_t start_ns = NanoTime(); if ((access_flags & kAccNative) != 0) { compiled_method = (*jni_compiler_)(*this, access_flags, method_idx, dex_file); CHECK(compiled_method != NULL); } else if ((access_flags & kAccAbstract) != 0) { } else { compiled_method = (*compiler_)(*this, code_item, access_flags, method_idx, class_loader, dex_file); CHECK(compiled_method != NULL) << PrettyMethod(method_idx, dex_file); } uint64_t duration_ns = NanoTime() - start_ns; if (duration_ns > MsToNs(100)) { LOG(WARNING) << "Compilation of " << PrettyMethod(method_idx, dex_file) << " took " << PrettyDuration(duration_ns); } if (compiled_method != NULL) { MethodReference ref(&dex_file, method_idx); CHECK(GetCompiledMethod(ref) == NULL) << PrettyMethod(method_idx, dex_file); MutexLock mu(compiled_methods_lock_); compiled_methods_.Put(ref, compiled_method); DCHECK(GetCompiledMethod(ref) != NULL) << PrettyMethod(method_idx, dex_file); } uint32_t shorty_len; const char* shorty = dex_file.GetMethodShorty(dex_file.GetMethodId(method_idx), &shorty_len); bool is_static = (access_flags & kAccStatic) != 0; std::string key(MakeInvokeStubKey(is_static, shorty)); const CompiledInvokeStub* compiled_invoke_stub = FindInvokeStub(key); if (compiled_invoke_stub == NULL) { compiled_invoke_stub = (*create_invoke_stub_)(*this, is_static, shorty, shorty_len); CHECK(compiled_invoke_stub != NULL); InsertInvokeStub(key, compiled_invoke_stub); } #if defined(ART_USE_LLVM_COMPILER) if (!is_static) { const CompiledInvokeStub* compiled_proxy_stub = FindProxyStub(shorty); if (compiled_proxy_stub == NULL) { compiled_proxy_stub = (*create_proxy_stub_)(*this, shorty, shorty_len); CHECK(compiled_proxy_stub != NULL); InsertProxyStub(shorty, compiled_proxy_stub); } } #endif CHECK(!Thread::Current()->IsExceptionPending()) << PrettyMethod(method_idx, dex_file); } const CompiledInvokeStub* Compiler::FindInvokeStub(bool is_static, const char* shorty) const { const std::string key(MakeInvokeStubKey(is_static, shorty)); return FindInvokeStub(key); } const CompiledInvokeStub* Compiler::FindInvokeStub(const std::string& key) const { MutexLock mu(compiled_invoke_stubs_lock_); InvokeStubTable::const_iterator it = compiled_invoke_stubs_.find(key); if (it == compiled_invoke_stubs_.end()) { return NULL; } else { DCHECK(it->second != NULL); return it->second; } } void Compiler::InsertInvokeStub(const std::string& key, const CompiledInvokeStub* compiled_invoke_stub) { MutexLock mu(compiled_invoke_stubs_lock_); InvokeStubTable::iterator it = compiled_invoke_stubs_.find(key); if (it != compiled_invoke_stubs_.end()) { // Someone else won the race. delete compiled_invoke_stub; } else { compiled_invoke_stubs_.Put(key, compiled_invoke_stub); } } #if defined(ART_USE_LLVM_COMPILER) const CompiledInvokeStub* Compiler::FindProxyStub(const char* shorty) const { MutexLock mu(compiled_proxy_stubs_lock_); ProxyStubTable::const_iterator it = compiled_proxy_stubs_.find(shorty); if (it == compiled_proxy_stubs_.end()) { return NULL; } else { DCHECK(it->second != NULL); return it->second; } } void Compiler::InsertProxyStub(const char* shorty, const CompiledInvokeStub* compiled_proxy_stub) { MutexLock mu(compiled_proxy_stubs_lock_); InvokeStubTable::iterator it = compiled_proxy_stubs_.find(shorty); if (it != compiled_proxy_stubs_.end()) { // Someone else won the race. delete compiled_proxy_stub; } else { compiled_proxy_stubs_.Put(shorty, compiled_proxy_stub); } } #endif CompiledClass* Compiler::GetCompiledClass(ClassReference ref) const { MutexLock mu(compiled_classes_lock_); ClassTable::const_iterator it = compiled_classes_.find(ref); if (it == compiled_classes_.end()) { return NULL; } CHECK(it->second != NULL); return it->second; } CompiledMethod* Compiler::GetCompiledMethod(MethodReference ref) const { MutexLock mu(compiled_methods_lock_); MethodTable::const_iterator it = compiled_methods_.find(ref); if (it == compiled_methods_.end()) { return NULL; } CHECK(it->second != NULL); return it->second; } void Compiler::SetGcMaps(ClassLoader* class_loader, const std::vector& dex_files) { for (size_t i = 0; i != dex_files.size(); ++i) { const DexFile* dex_file = dex_files[i]; CHECK(dex_file != NULL); SetGcMapsDexFile(class_loader, *dex_file); } } void Compiler::SetGcMapsDexFile(ClassLoader* class_loader, const DexFile& dex_file) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); DexCache* dex_cache = class_linker->FindDexCache(dex_file); for (size_t class_def_index = 0; class_def_index < dex_file.NumClassDefs(); class_def_index++) { const DexFile::ClassDef& class_def = dex_file.GetClassDef(class_def_index); const char* descriptor = dex_file.GetClassDescriptor(class_def); Class* klass = class_linker->FindClass(descriptor, class_loader); if (klass == NULL || !klass->IsVerified()) { Thread::Current()->ClearException(); continue; } const byte* class_data = dex_file.GetClassData(class_def); if (class_data == NULL) { // empty class such as a marker interface continue; } ClassDataItemIterator it(dex_file, class_data); while (it.HasNextStaticField()) { it.Next(); } while (it.HasNextInstanceField()) { it.Next(); } while (it.HasNextDirectMethod()) { Method* method = class_linker->ResolveMethod(dex_file, it.GetMemberIndex(), dex_cache, class_loader, true); SetGcMapsMethod(dex_file, method); it.Next(); } while (it.HasNextVirtualMethod()) { Method* method = class_linker->ResolveMethod(dex_file, it.GetMemberIndex(), dex_cache, class_loader, false); SetGcMapsMethod(dex_file, method); it.Next(); } } } void Compiler::SetGcMapsMethod(const DexFile& dex_file, Method* method) { if (method == NULL) { Thread::Current()->ClearException(); return; } uint16_t method_idx = method->GetDexMethodIndex(); MethodReference ref(&dex_file, method_idx); CompiledMethod* compiled_method = GetCompiledMethod(ref); if (compiled_method == NULL) { return; } const std::vector* gc_map = verifier::MethodVerifier::GetGcMap(ref); if (gc_map == NULL) { return; } compiled_method->SetGcMap(*gc_map); } #if defined(ART_USE_LLVM_COMPILER) || defined(ART_USE_QUICK_COMPILER) void Compiler::SetBitcodeFileName(std::string const& filename) { typedef void (*SetBitcodeFileNameFn)(Compiler&, std::string const&); SetBitcodeFileNameFn set_bitcode_file_name = FindFunction(MakeCompilerSoName(instruction_set_), compiler_library_, "compilerLLVMSetBitcodeFileName"); set_bitcode_file_name(*this, filename); } #endif } // namespace art