// Copyright 2011 Google Inc. All Rights Reserved. #include "class_linker.h" #include #include #include #include #include "casts.h" #include "class_loader.h" #include "dex_cache.h" #include "dex_file.h" #include "dex_verifier.h" #include "heap.h" #include "intern_table.h" #include "logging.h" #include "monitor.h" #include "object.h" #include "runtime.h" #include "space.h" #include "thread.h" #include "UniquePtr.h" #include "utils.h" namespace art { namespace { void ThrowNoClassDefFoundError(const char* fmt, ...) __attribute__((__format__ (__printf__, 1, 2))); void ThrowNoClassDefFoundError(const char* fmt, ...) { va_list args; va_start(args, fmt); Thread::Current()->ThrowNewExceptionV("Ljava/lang/NoClassDefFoundError;", fmt, args); va_end(args); } void ThrowClassFormatError(const char* fmt, ...) __attribute__((__format__ (__printf__, 1, 2))); void ThrowClassFormatError(const char* fmt, ...) { va_list args; va_start(args, fmt); Thread::Current()->ThrowNewExceptionV("Ljava/lang/ClassFormatError;", fmt, args); va_end(args); } void ThrowLinkageError(const char* fmt, ...) __attribute__((__format__ (__printf__, 1, 2))); void ThrowLinkageError(const char* fmt, ...) { va_list args; va_start(args, fmt); Thread::Current()->ThrowNewExceptionV("Ljava/lang/LinkageError;", fmt, args); va_end(args); } void ThrowNoSuchMethodError(const char* kind, Class* c, const StringPiece& name, const StringPiece& signature) { DexCache* dex_cache = c->GetDexCache(); std::stringstream msg; msg << "no " << kind << " method " << name << "." << signature << " in class " << c->GetDescriptor()->ToModifiedUtf8() << " or its superclasses"; if (dex_cache) { msg << " (defined in " << dex_cache->GetLocation()->ToModifiedUtf8() << ")"; } Thread::Current()->ThrowNewException("Ljava/lang/NoSuchMethodError;", msg.str().c_str()); } void ThrowEarlierClassFailure(Class* c) { /* * The class failed to initialize on a previous attempt, so we want to throw * a NoClassDefFoundError (v2 2.17.5). The exception to this rule is if we * failed in verification, in which case v2 5.4.1 says we need to re-throw * the previous error. */ LOG(INFO) << "Rejecting re-init on previously-failed class " << PrettyClass(c); if (c->GetVerifyErrorClass() != NULL) { // TODO: change the verifier to store an _instance_, with a useful detail message? std::string error_descriptor(c->GetVerifyErrorClass()->GetDescriptor()->ToModifiedUtf8()); Thread::Current()->ThrowNewException(error_descriptor.c_str(), PrettyDescriptor(c->GetDescriptor()).c_str()); } else { ThrowNoClassDefFoundError("%s", PrettyDescriptor(c->GetDescriptor()).c_str()); } } } const char* ClassLinker::class_roots_descriptors_[] = { "Ljava/lang/Class;", "Ljava/lang/Object;", "[Ljava/lang/Class;", "[Ljava/lang/Object;", "Ljava/lang/String;", "Ljava/lang/reflect/Constructor;", "Ljava/lang/reflect/Field;", "Ljava/lang/reflect/Method;", "Ljava/lang/ClassLoader;", "Ldalvik/system/BaseDexClassLoader;", "Ldalvik/system/PathClassLoader;", "Ljava/lang/StackTraceElement;", "Z", "B", "C", "D", "F", "I", "J", "S", "V", "[Z", "[B", "[C", "[D", "[F", "[I", "[J", "[S", "[Ljava/lang/StackTraceElement;", }; class ObjectLock { public: explicit ObjectLock(Object* object) : self_(Thread::Current()), obj_(object) { CHECK(object != NULL); obj_->MonitorEnter(self_); } ~ObjectLock() { obj_->MonitorExit(self_); } void Wait() { return Monitor::Wait(self_, obj_, 0, 0, false); } void Notify() { obj_->Notify(); } void NotifyAll() { obj_->NotifyAll(); } private: Thread* self_; Object* obj_; DISALLOW_COPY_AND_ASSIGN(ObjectLock); }; ClassLinker* ClassLinker::Create(const std::vector& boot_class_path, const std::vector& class_path, InternTable* intern_table, bool image) { CHECK_NE(boot_class_path.size(), 0U); UniquePtr class_linker(new ClassLinker(intern_table)); if (image) { class_linker->InitFromImage(boot_class_path, class_path); } else { class_linker->Init(boot_class_path, class_path); } // TODO: check for failure during initialization return class_linker.release(); } ClassLinker::ClassLinker(InternTable* intern_table) : lock_("ClassLinker lock"), class_roots_(NULL), array_interfaces_(NULL), array_iftable_(NULL), init_done_(false), intern_table_(intern_table) { CHECK_EQ(arraysize(class_roots_descriptors_), size_t(kClassRootsMax)); } void ClassLinker::Init(const std::vector& boot_class_path, const std::vector& class_path) { const Runtime* runtime = Runtime::Current(); if (runtime->IsVerboseStartup()) { LOG(INFO) << "ClassLinker::InitFrom entering"; } CHECK(!init_done_); // java_lang_Class comes first, its needed for AllocClass Class* java_lang_Class = down_cast( Heap::AllocObject(NULL, sizeof(ClassClass))); CHECK(java_lang_Class != NULL); java_lang_Class->SetClass(java_lang_Class); java_lang_Class->SetClassSize(sizeof(ClassClass)); // AllocClass(Class*) can now be used // Class[] is used for reflection support. Class* class_array_class = AllocClass(java_lang_Class, sizeof(Class)); class_array_class->SetComponentType(java_lang_Class); // java_lang_Object comes next so that object_array_class can be created Class* java_lang_Object = AllocClass(java_lang_Class, sizeof(Class)); CHECK(java_lang_Object != NULL); // backfill Object as the super class of Class java_lang_Class->SetSuperClass(java_lang_Object); java_lang_Object->SetStatus(Class::kStatusLoaded); // Object[] next to hold class roots Class* object_array_class = AllocClass(java_lang_Class, sizeof(Class)); object_array_class->SetComponentType(java_lang_Object); // Setup the char class to be used for char[] Class* char_class = AllocClass(java_lang_Class, sizeof(Class)); // Setup the char[] class to be used for String Class* char_array_class = AllocClass(java_lang_Class, sizeof(Class)); char_array_class->SetComponentType(char_class); CharArray::SetArrayClass(char_array_class); // Setup String Class* java_lang_String = AllocClass(java_lang_Class, sizeof(StringClass)); String::SetClass(java_lang_String); java_lang_String->SetObjectSize(sizeof(String)); java_lang_String->SetStatus(Class::kStatusResolved); // Backfill Class descriptors missing until this point java_lang_Class->SetDescriptor(intern_table_->InternStrong("Ljava/lang/Class;")); java_lang_Object->SetDescriptor(intern_table_->InternStrong("Ljava/lang/Object;")); class_array_class->SetDescriptor(intern_table_->InternStrong("[Ljava/lang/Class;")); object_array_class->SetDescriptor(intern_table_->InternStrong("[Ljava/lang/Object;")); java_lang_String->SetDescriptor(intern_table_->InternStrong("Ljava/lang/String;")); char_array_class->SetDescriptor(intern_table_->InternStrong("[C")); // Create storage for root classes, save away our work so far (requires // descriptors) class_roots_ = ObjectArray::Alloc(object_array_class, kClassRootsMax); SetClassRoot(kJavaLangClass, java_lang_Class); SetClassRoot(kJavaLangObject, java_lang_Object); SetClassRoot(kClassArrayClass, class_array_class); SetClassRoot(kObjectArrayClass, object_array_class); SetClassRoot(kCharArrayClass, char_array_class); SetClassRoot(kJavaLangString, java_lang_String); // Setup the primitive type classes. SetClassRoot(kPrimitiveBoolean, CreatePrimitiveClass("Z", Class::kPrimBoolean)); SetClassRoot(kPrimitiveByte, CreatePrimitiveClass("B", Class::kPrimByte)); SetClassRoot(kPrimitiveShort, CreatePrimitiveClass("S", Class::kPrimShort)); SetClassRoot(kPrimitiveInt, CreatePrimitiveClass("I", Class::kPrimInt)); SetClassRoot(kPrimitiveLong, CreatePrimitiveClass("J", Class::kPrimLong)); SetClassRoot(kPrimitiveFloat, CreatePrimitiveClass("F", Class::kPrimFloat)); SetClassRoot(kPrimitiveDouble, CreatePrimitiveClass("D", Class::kPrimDouble)); SetClassRoot(kPrimitiveVoid, CreatePrimitiveClass("V", Class::kPrimVoid)); // Create array interface entries to populate once we can load system classes array_interfaces_ = AllocClassArray(2); array_iftable_ = AllocObjectArray(2); // Create int array type for AllocDexCache (done in AppendToBootClassPath) Class* int_array_class = AllocClass(java_lang_Class, sizeof(Class)); int_array_class->SetDescriptor(intern_table_->InternStrong("[I")); int_array_class->SetComponentType(GetClassRoot(kPrimitiveInt)); IntArray::SetArrayClass(int_array_class); SetClassRoot(kIntArrayClass, int_array_class); // now that these are registered, we can use AllocClass() and AllocObjectArray // setup boot_class_path_ and register class_path now that we can // use AllocObjectArray to create DexCache instances for (size_t i = 0; i != boot_class_path.size(); ++i) { const DexFile* dex_file = boot_class_path[i]; CHECK(dex_file != NULL); AppendToBootClassPath(*dex_file); } for (size_t i = 0; i != class_path.size(); ++i) { const DexFile* dex_file = class_path[i]; CHECK(dex_file != NULL); RegisterDexFile(*dex_file); } // Constructor, Field, and Method are necessary so that FindClass can link members Class* java_lang_reflect_Constructor = AllocClass(java_lang_Class, sizeof(MethodClass)); java_lang_reflect_Constructor->SetDescriptor(intern_table_->InternStrong("Ljava/lang/reflect/Constructor;")); CHECK(java_lang_reflect_Constructor != NULL); java_lang_reflect_Constructor->SetObjectSize(sizeof(Method)); SetClassRoot(kJavaLangReflectConstructor, java_lang_reflect_Constructor); java_lang_reflect_Constructor->SetStatus(Class::kStatusResolved); Class* java_lang_reflect_Field = AllocClass(java_lang_Class, sizeof(FieldClass)); CHECK(java_lang_reflect_Field != NULL); java_lang_reflect_Field->SetDescriptor(intern_table_->InternStrong("Ljava/lang/reflect/Field;")); java_lang_reflect_Field->SetObjectSize(sizeof(Field)); SetClassRoot(kJavaLangReflectField, java_lang_reflect_Field); java_lang_reflect_Field->SetStatus(Class::kStatusResolved); Field::SetClass(java_lang_reflect_Field); Class* java_lang_reflect_Method = AllocClass(java_lang_Class, sizeof(MethodClass)); java_lang_reflect_Method->SetDescriptor(intern_table_->InternStrong("Ljava/lang/reflect/Method;")); CHECK(java_lang_reflect_Method != NULL); java_lang_reflect_Method->SetObjectSize(sizeof(Method)); SetClassRoot(kJavaLangReflectMethod, java_lang_reflect_Method); java_lang_reflect_Method->SetStatus(Class::kStatusResolved); Method::SetClasses(java_lang_reflect_Constructor, java_lang_reflect_Method); // now we can use FindSystemClass // run char class through InitializePrimitiveClass to finish init InitializePrimitiveClass(char_class, "C", Class::kPrimChar); SetClassRoot(kPrimitiveChar, char_class); // needs descriptor // Object and String need to be rerun through FindSystemClass to finish init java_lang_Object->SetStatus(Class::kStatusNotReady); Class* Object_class = FindSystemClass("Ljava/lang/Object;"); CHECK_EQ(java_lang_Object, Object_class); CHECK_EQ(java_lang_Object->GetObjectSize(), sizeof(Object)); java_lang_String->SetStatus(Class::kStatusNotReady); Class* String_class = FindSystemClass("Ljava/lang/String;"); CHECK_EQ(java_lang_String, String_class); CHECK_EQ(java_lang_String->GetObjectSize(), sizeof(String)); // Setup the primitive array type classes - can't be done until Object has a vtable SetClassRoot(kBooleanArrayClass, FindSystemClass("[Z")); BooleanArray::SetArrayClass(GetClassRoot(kBooleanArrayClass)); SetClassRoot(kByteArrayClass, FindSystemClass("[B")); ByteArray::SetArrayClass(GetClassRoot(kByteArrayClass)); Class* found_char_array_class = FindSystemClass("[C"); CHECK_EQ(char_array_class, found_char_array_class); SetClassRoot(kShortArrayClass, FindSystemClass("[S")); ShortArray::SetArrayClass(GetClassRoot(kShortArrayClass)); Class* found_int_array_class = FindSystemClass("[I"); CHECK_EQ(int_array_class, found_int_array_class); SetClassRoot(kLongArrayClass, FindSystemClass("[J")); LongArray::SetArrayClass(GetClassRoot(kLongArrayClass)); SetClassRoot(kFloatArrayClass, FindSystemClass("[F")); FloatArray::SetArrayClass(GetClassRoot(kFloatArrayClass)); SetClassRoot(kDoubleArrayClass, FindSystemClass("[D")); DoubleArray::SetArrayClass(GetClassRoot(kDoubleArrayClass)); Class* found_class_array_class = FindSystemClass("[Ljava/lang/Class;"); CHECK_EQ(class_array_class, found_class_array_class); Class* found_object_array_class = FindSystemClass("[Ljava/lang/Object;"); CHECK_EQ(object_array_class, found_object_array_class); // Setup the single, global copies of "interfaces" and "iftable" Class* java_lang_Cloneable = FindSystemClass("Ljava/lang/Cloneable;"); CHECK(java_lang_Cloneable != NULL); Class* java_io_Serializable = FindSystemClass("Ljava/io/Serializable;"); CHECK(java_io_Serializable != NULL); CHECK(array_interfaces_ != NULL); array_interfaces_->Set(0, java_lang_Cloneable); array_interfaces_->Set(1, java_io_Serializable); // We assume that Cloneable/Serializable don't have superinterfaces -- // normally we'd have to crawl up and explicitly list all of the // supers as well. array_iftable_->Set(0, AllocInterfaceEntry(array_interfaces_->Get(0))); array_iftable_->Set(1, AllocInterfaceEntry(array_interfaces_->Get(1))); // Sanity check Class[] and Object[]'s interfaces CHECK_EQ(java_lang_Cloneable, class_array_class->GetInterface(0)); CHECK_EQ(java_io_Serializable, class_array_class->GetInterface(1)); CHECK_EQ(java_lang_Cloneable, object_array_class->GetInterface(0)); CHECK_EQ(java_io_Serializable, object_array_class->GetInterface(1)); // run Class, Constructor, Field, and Method through FindSystemClass. // this initializes their dex_cache_ fields and register them in classes_. Class* Class_class = FindSystemClass("Ljava/lang/Class;"); CHECK_EQ(java_lang_Class, Class_class); java_lang_reflect_Constructor->SetStatus(Class::kStatusNotReady); Class* Constructor_class = FindSystemClass("Ljava/lang/reflect/Constructor;"); CHECK_EQ(java_lang_reflect_Constructor, Constructor_class); java_lang_reflect_Field->SetStatus(Class::kStatusNotReady); Class* Field_class = FindSystemClass("Ljava/lang/reflect/Field;"); CHECK_EQ(java_lang_reflect_Field, Field_class); java_lang_reflect_Method->SetStatus(Class::kStatusNotReady); Class* Method_class = FindSystemClass("Ljava/lang/reflect/Method;"); CHECK_EQ(java_lang_reflect_Method, Method_class); // java.lang.ref classes need to be specially flagged, but otherwise are normal classes Class* java_lang_ref_FinalizerReference = FindSystemClass("Ljava/lang/ref/FinalizerReference;"); java_lang_ref_FinalizerReference->SetAccessFlags( java_lang_ref_FinalizerReference->GetAccessFlags() | kAccClassIsReference | kAccClassIsFinalizerReference); Class* java_lang_ref_PhantomReference = FindSystemClass("Ljava/lang/ref/PhantomReference;"); java_lang_ref_PhantomReference->SetAccessFlags( java_lang_ref_PhantomReference->GetAccessFlags() | kAccClassIsReference | kAccClassIsPhantomReference); Class* java_lang_ref_SoftReference = FindSystemClass("Ljava/lang/ref/SoftReference;"); java_lang_ref_SoftReference->SetAccessFlags( java_lang_ref_SoftReference->GetAccessFlags() | kAccClassIsReference); Class* java_lang_ref_WeakReference = FindSystemClass("Ljava/lang/ref/WeakReference;"); java_lang_ref_WeakReference->SetAccessFlags( java_lang_ref_WeakReference->GetAccessFlags() | kAccClassIsReference | kAccClassIsWeakReference); // Setup the ClassLoaders, adjusting the object_size_ as necessary Class* java_lang_ClassLoader = FindSystemClass("Ljava/lang/ClassLoader;"); CHECK_LT(java_lang_ClassLoader->GetObjectSize(), sizeof(ClassLoader)); java_lang_ClassLoader->SetObjectSize(sizeof(ClassLoader)); SetClassRoot(kJavaLangClassLoader, java_lang_ClassLoader); Class* dalvik_system_BaseDexClassLoader = FindSystemClass("Ldalvik/system/BaseDexClassLoader;"); CHECK_EQ(dalvik_system_BaseDexClassLoader->GetObjectSize(), sizeof(BaseDexClassLoader)); SetClassRoot(kDalvikSystemBaseDexClassLoader, dalvik_system_BaseDexClassLoader); Class* dalvik_system_PathClassLoader = FindSystemClass("Ldalvik/system/PathClassLoader;"); CHECK_EQ(dalvik_system_PathClassLoader->GetObjectSize(), sizeof(PathClassLoader)); SetClassRoot(kDalvikSystemPathClassLoader, dalvik_system_PathClassLoader); PathClassLoader::SetClass(dalvik_system_PathClassLoader); // Set up java.lang.StackTraceElement as a convenience SetClassRoot(kJavaLangStackTraceElement, FindSystemClass("Ljava/lang/StackTraceElement;")); SetClassRoot(kJavaLangStackTraceElementArrayClass, FindSystemClass("[Ljava/lang/StackTraceElement;")); StackTraceElement::SetClass(GetClassRoot(kJavaLangStackTraceElement)); FinishInit(); if (runtime->IsVerboseStartup()) { LOG(INFO) << "ClassLinker::InitFrom exiting"; } } void ClassLinker::FinishInit() { const Runtime* runtime = Runtime::Current(); if (runtime->IsVerboseStartup()) { LOG(INFO) << "ClassLinker::FinishInit entering"; } // Let the heap know some key offsets into java.lang.ref instances // NB we hard code the field indexes here rather than using FindInstanceField // as the types of the field can't be resolved prior to the runtime being // fully initialized Class* java_lang_ref_Reference = FindSystemClass("Ljava/lang/ref/Reference;"); Class* java_lang_ref_FinalizerReference = FindSystemClass("Ljava/lang/ref/FinalizerReference;"); Field* pendingNext = java_lang_ref_Reference->GetInstanceField(0); CHECK(pendingNext->GetName()->Equals("pendingNext")); CHECK_EQ(ResolveType(pendingNext->GetTypeIdx(), pendingNext), java_lang_ref_Reference); Field* queue = java_lang_ref_Reference->GetInstanceField(1); CHECK(queue->GetName()->Equals("queue")); CHECK_EQ(ResolveType(queue->GetTypeIdx(), queue), FindSystemClass("Ljava/lang/ref/ReferenceQueue;")); Field* queueNext = java_lang_ref_Reference->GetInstanceField(2); CHECK(queueNext->GetName()->Equals("queueNext")); CHECK_EQ(ResolveType(queueNext->GetTypeIdx(), queueNext), java_lang_ref_Reference); Field* referent = java_lang_ref_Reference->GetInstanceField(3); CHECK(referent->GetName()->Equals("referent")); CHECK_EQ(ResolveType(referent->GetTypeIdx(), referent), GetClassRoot(kJavaLangObject)); Field* zombie = java_lang_ref_FinalizerReference->GetInstanceField(2); CHECK(zombie->GetName()->Equals("zombie")); CHECK_EQ(ResolveType(zombie->GetTypeIdx(), zombie), GetClassRoot(kJavaLangObject)); Heap::SetReferenceOffsets(referent->GetOffset(), queue->GetOffset(), queueNext->GetOffset(), pendingNext->GetOffset(), zombie->GetOffset()); // ensure all class_roots_ are initialized for (size_t i = 0; i < kClassRootsMax; i++) { ClassRoot class_root = static_cast(i); Class* klass = GetClassRoot(class_root); CHECK(klass != NULL); DCHECK(klass->IsArrayClass() || klass->IsPrimitive() || klass->GetDexCache() != NULL); // note SetClassRoot does additional validation. // if possible add new checks there to catch errors early } // disable the slow paths in FindClass and CreatePrimitiveClass now // that Object, Class, and Object[] are setup init_done_ = true; if (runtime->IsVerboseStartup()) { LOG(INFO) << "ClassLinker::FinishInit exiting"; } } void ClassLinker::RunRootClinits() { Thread* self = Thread::Current(); for (size_t i = 0; i < ClassLinker::kClassRootsMax; ++i) { Class* c = GetClassRoot(ClassRoot(i)); if (!c->IsArrayClass() && !c->IsPrimitive()) { EnsureInitialized(GetClassRoot(ClassRoot(i)), true); CHECK(!self->IsExceptionPending()); } } } struct ClassLinker::InitFromImageCallbackState { ClassLinker* class_linker; Class* class_roots[kClassRootsMax]; typedef std::tr1::unordered_map Table; Table descriptor_to_class_root; typedef std::tr1::unordered_set Set; Set dex_caches; }; void ClassLinker::InitFromImage(const std::vector& boot_class_path, const std::vector& class_path) { const Runtime* runtime = Runtime::Current(); if (runtime->IsVerboseStartup()) { LOG(INFO) << "ClassLinker::InitFromImage entering"; } CHECK(!init_done_); HeapBitmap* heap_bitmap = Heap::GetLiveBits(); DCHECK(heap_bitmap != NULL); InitFromImageCallbackState state; state.class_linker = this; for (size_t i = 0; i < kClassRootsMax; i++) { ClassRoot class_root = static_cast(i); state.descriptor_to_class_root[GetClassRootDescriptor(class_root)] = class_root; } // reinit clases_ table heap_bitmap->Walk(InitFromImageCallback, &state); // reinit class_roots_ Class* object_array_class = state.class_roots[kObjectArrayClass]; class_roots_ = ObjectArray::Alloc(object_array_class, kClassRootsMax); for (size_t i = 0; i < kClassRootsMax; i++) { ClassRoot class_root = static_cast(i); SetClassRoot(class_root, state.class_roots[class_root]); } // reinit array_interfaces_ from any array class instance, they should all be == array_interfaces_ = GetClassRoot(kObjectArrayClass)->GetInterfaces(); DCHECK(array_interfaces_ == GetClassRoot(kBooleanArrayClass)->GetInterfaces()); // build a map from location to DexCache to match up with DexFile::GetLocation std::tr1::unordered_map location_to_dex_cache; typedef InitFromImageCallbackState::Set::const_iterator It; // TODO: C++0x auto for (It it = state.dex_caches.begin(), end = state.dex_caches.end(); it != end; ++it) { DexCache* dex_cache = *it; std::string location = dex_cache->GetLocation()->ToModifiedUtf8(); location_to_dex_cache[location] = dex_cache; } CHECK(boot_class_path.size() + class_path.size() == location_to_dex_cache.size()) << "(" << boot_class_path.size() << " + " << class_path.size() << " != " << location_to_dex_cache.size() << ")"; // reinit boot_class_path with DexFile arguments and found DexCaches for (size_t i = 0; i != boot_class_path.size(); ++i) { const DexFile* dex_file = boot_class_path[i]; CHECK(dex_file != NULL); DexCache* dex_cache = location_to_dex_cache[dex_file->GetLocation()]; CHECK(dex_cache != NULL) << dex_file->GetLocation(); AppendToBootClassPath(*dex_file, dex_cache); } // register class_path with DexFile arguments and found DexCaches for (size_t i = 0; i != class_path.size(); ++i) { const DexFile* dex_file = class_path[i]; CHECK(dex_file != NULL); DexCache* dex_cache = location_to_dex_cache[dex_file->GetLocation()]; CHECK(dex_cache != NULL) << dex_file->GetLocation(); RegisterDexFile(*dex_file, dex_cache); } String::SetClass(GetClassRoot(kJavaLangString)); Field::SetClass(GetClassRoot(kJavaLangReflectField)); Method::SetClasses(GetClassRoot(kJavaLangReflectConstructor), GetClassRoot(kJavaLangReflectMethod)); BooleanArray::SetArrayClass(GetClassRoot(kBooleanArrayClass)); ByteArray::SetArrayClass(GetClassRoot(kByteArrayClass)); CharArray::SetArrayClass(GetClassRoot(kCharArrayClass)); DoubleArray::SetArrayClass(GetClassRoot(kDoubleArrayClass)); FloatArray::SetArrayClass(GetClassRoot(kFloatArrayClass)); IntArray::SetArrayClass(GetClassRoot(kIntArrayClass)); LongArray::SetArrayClass(GetClassRoot(kLongArrayClass)); ShortArray::SetArrayClass(GetClassRoot(kShortArrayClass)); PathClassLoader::SetClass(GetClassRoot(kDalvikSystemPathClassLoader)); StackTraceElement::SetClass(GetClassRoot(kJavaLangStackTraceElement)); FinishInit(); if (runtime->IsVerboseStartup()) { LOG(INFO) << "ClassLinker::InitFromImage exiting"; } } void ClassLinker::InitFromImageCallback(Object* obj, void* arg) { DCHECK(obj != NULL); DCHECK(arg != NULL); InitFromImageCallbackState* state = reinterpret_cast(arg); if (obj->IsString()) { state->class_linker->intern_table_->RegisterStrong(obj->AsString()); return; } if (!obj->IsClass()) { return; } Class* klass = obj->AsClass(); // TODO: restore ClassLoader's list of DexFiles after image load // CHECK(klass->GetClassLoader() == NULL); const ClassLoader* class_loader = klass->GetClassLoader(); if (class_loader != NULL) { // TODO: replace this hack with something based on command line arguments Thread::Current()->SetClassLoaderOverride(class_loader); } std::string descriptor = klass->GetDescriptor()->ToModifiedUtf8(); // restore class to ClassLinker::classes_ table state->class_linker->InsertClass(descriptor, klass); // note DexCache to match with DexFile later DexCache* dex_cache = klass->GetDexCache(); if (dex_cache != NULL) { state->dex_caches.insert(dex_cache); } else { DCHECK(klass->IsArrayClass() || klass->IsPrimitive()); } // check if this is a root, if so, register it typedef InitFromImageCallbackState::Table::const_iterator It; // TODO: C++0x auto It it = state->descriptor_to_class_root.find(descriptor); if (it != state->descriptor_to_class_root.end()) { ClassRoot class_root = it->second; state->class_roots[class_root] = klass; } } // Keep in sync with InitCallback. Anything we visit, we need to // reinit references to when reinitializing a ClassLinker from a // mapped image. void ClassLinker::VisitRoots(Heap::RootVisitor* visitor, void* arg) const { visitor(class_roots_, arg); for (size_t i = 0; i < dex_caches_.size(); i++) { visitor(dex_caches_[i], arg); } { MutexLock mu(lock_); typedef Table::const_iterator It; // TODO: C++0x auto for (It it = classes_.begin(), end = classes_.end(); it != end; ++it) { visitor(it->second, arg); } } visitor(array_interfaces_, arg); } ClassLinker::~ClassLinker() { String::ResetClass(); Field::ResetClass(); Method::ResetClasses(); BooleanArray::ResetArrayClass(); ByteArray::ResetArrayClass(); CharArray::ResetArrayClass(); DoubleArray::ResetArrayClass(); FloatArray::ResetArrayClass(); IntArray::ResetArrayClass(); LongArray::ResetArrayClass(); ShortArray::ResetArrayClass(); PathClassLoader::ResetClass(); StackTraceElement::ResetClass(); } DexCache* ClassLinker::AllocDexCache(const DexFile& dex_file) { DexCache* dex_cache = down_cast(AllocObjectArray(DexCache::LengthAsArray())); dex_cache->Init(intern_table_->InternStrong(dex_file.GetLocation().c_str()), AllocObjectArray(dex_file.NumStringIds()), AllocClassArray(dex_file.NumTypeIds()), AllocObjectArray(dex_file.NumMethodIds()), AllocObjectArray(dex_file.NumFieldIds()), AllocCodeAndDirectMethods(dex_file.NumMethodIds()), AllocObjectArray(dex_file.NumTypeIds())); return dex_cache; } CodeAndDirectMethods* ClassLinker::AllocCodeAndDirectMethods(size_t length) { return down_cast(IntArray::Alloc(CodeAndDirectMethods::LengthAsArray(length))); } InterfaceEntry* ClassLinker::AllocInterfaceEntry(Class* interface) { DCHECK(interface->IsInterface()); ObjectArray* array = AllocObjectArray(InterfaceEntry::LengthAsArray()); InterfaceEntry* interface_entry = down_cast(array); interface_entry->SetInterface(interface); return interface_entry; } Class* ClassLinker::AllocClass(Class* java_lang_Class, size_t class_size) { DCHECK_GE(class_size, sizeof(Class)); Class* klass = Heap::AllocObject(java_lang_Class, class_size)->AsClass(); klass->SetPrimitiveType(Class::kPrimNot); // default to not being primitive klass->SetClassSize(class_size); return klass; } Class* ClassLinker::AllocClass(size_t class_size) { return AllocClass(GetClassRoot(kJavaLangClass), class_size); } Field* ClassLinker::AllocField() { return down_cast(GetClassRoot(kJavaLangReflectField)->AllocObject()); } Method* ClassLinker::AllocMethod() { return down_cast(GetClassRoot(kJavaLangReflectMethod)->AllocObject()); } ObjectArray* ClassLinker::AllocStackTraceElementArray(size_t length) { return ObjectArray::Alloc( GetClassRoot(kJavaLangStackTraceElementArrayClass), length); } Class* ClassLinker::FindClass(const StringPiece& descriptor, const ClassLoader* class_loader) { // TODO: remove this contrived parent class loader check when we have a real ClassLoader. if (class_loader != NULL) { Class* klass = FindClass(descriptor, NULL); if (klass != NULL) { return klass; } Thread::Current()->ClearException(); } Thread* self = Thread::Current(); DCHECK(self != NULL); CHECK(!self->IsExceptionPending()) << PrettyTypeOf(self->GetException()); // Find the class in the loaded classes table. Class* klass = LookupClass(descriptor, class_loader); if (klass == NULL) { // Class is not yet loaded. if (descriptor[0] == '[' && descriptor[1] != '\0') { return CreateArrayClass(descriptor, class_loader); } const DexFile::ClassPath& class_path = ((class_loader != NULL) ? ClassLoader::GetClassPath(class_loader) : boot_class_path_); DexFile::ClassPathEntry pair = DexFile::FindInClassPath(descriptor, class_path); if (pair.second == NULL) { std::string name(PrintableString(descriptor)); ThrowNoClassDefFoundError("Class %s not found in class loader %p", name.c_str(), class_loader); return NULL; } const DexFile& dex_file = *pair.first; const DexFile::ClassDef& dex_class_def = *pair.second; DexCache* dex_cache = FindDexCache(dex_file); // Load the class from the dex file. if (!init_done_) { // finish up init of hand crafted class_roots_ if (descriptor == "Ljava/lang/Object;") { klass = GetClassRoot(kJavaLangObject); } else if (descriptor == "Ljava/lang/Class;") { klass = GetClassRoot(kJavaLangClass); } else if (descriptor == "Ljava/lang/String;") { klass = GetClassRoot(kJavaLangString); } else if (descriptor == "Ljava/lang/reflect/Constructor;") { klass = GetClassRoot(kJavaLangReflectConstructor); } else if (descriptor == "Ljava/lang/reflect/Field;") { klass = GetClassRoot(kJavaLangReflectField); } else if (descriptor == "Ljava/lang/reflect/Method;") { klass = GetClassRoot(kJavaLangReflectMethod); } else { klass = AllocClass(SizeOfClass(dex_file, dex_class_def)); } } else { klass = AllocClass(SizeOfClass(dex_file, dex_class_def)); } if (!klass->IsResolved()) { klass->SetDexCache(dex_cache); LoadClass(dex_file, dex_class_def, klass, class_loader); // Check for a pending exception during load if (self->IsExceptionPending()) { return NULL; } ObjectLock lock(klass); klass->SetClinitThreadId(self->GetTid()); // Add the newly loaded class to the loaded classes table. bool success = InsertClass(descriptor, klass); // TODO: just return collision if (!success) { // We may fail to insert if we raced with another thread. klass->SetClinitThreadId(0); klass = LookupClass(descriptor, class_loader); CHECK(klass != NULL); return klass; } else { // Finish loading (if necessary) by finding parents CHECK(!klass->IsLoaded()); if (!LoadSuperAndInterfaces(klass, dex_file)) { // Loading failed. CHECK(self->IsExceptionPending()); lock.NotifyAll(); return NULL; } CHECK(klass->IsLoaded()); // Link the class (if necessary) CHECK(!klass->IsResolved()); if (!LinkClass(klass)) { // Linking failed. CHECK(self->IsExceptionPending()); lock.NotifyAll(); return NULL; } CHECK(klass->IsResolved()); } } } // Link the class if it has not already been linked. if (!klass->IsResolved() && !klass->IsErroneous()) { ObjectLock lock(klass); // Check for circular dependencies between classes. if (!klass->IsResolved() && klass->GetClinitThreadId() == self->GetTid()) { self->ThrowNewException("Ljava/lang/ClassCircularityError;", PrettyDescriptor(klass->GetDescriptor()).c_str()); return NULL; } // Wait for the pending initialization to complete. while (!klass->IsResolved() && !klass->IsErroneous()) { lock.Wait(); } } if (klass->IsErroneous()) { ThrowEarlierClassFailure(klass); return NULL; } // Return the loaded class. No exceptions should be pending. CHECK(klass->IsResolved()); CHECK(!self->IsExceptionPending()); return klass; } // Precomputes size that will be needed for Class, matching LinkStaticFields size_t ClassLinker::SizeOfClass(const DexFile& dex_file, const DexFile::ClassDef& dex_class_def) { const byte* class_data = dex_file.GetClassData(dex_class_def); DexFile::ClassDataHeader header = dex_file.ReadClassDataHeader(&class_data); size_t num_static_fields = header.static_fields_size_; size_t num_ref = 0; size_t num_32 = 0; size_t num_64 = 0; if (num_static_fields != 0) { uint32_t last_idx = 0; for (size_t i = 0; i < num_static_fields; ++i) { DexFile::Field dex_field; dex_file.dexReadClassDataField(&class_data, &dex_field, &last_idx); const DexFile::FieldId& field_id = dex_file.GetFieldId(dex_field.field_idx_); const char* descriptor = dex_file.dexStringByTypeIdx(field_id.type_idx_); char c = descriptor[0]; if (c == 'L' || c == '[') { num_ref++; } else if (c == 'J' || c == 'D') { num_64++; } else { num_32++; } } } // start with generic class data size_t size = sizeof(Class); // follow with reference fields which must be contiguous at start size += (num_ref * sizeof(uint32_t)); // if there are 64-bit fields to add, make sure they are aligned if (num_64 != 0 && size != RoundUp(size, 8)) { // for 64-bit alignment if (num_32 != 0) { // use an available 32-bit field for padding num_32--; } size += sizeof(uint32_t); // either way, we are adding a word DCHECK_EQ(size, RoundUp(size, 8)); } // tack on any 64-bit fields now that alignment is assured size += (num_64 * sizeof(uint64_t)); // tack on any remaining 32-bit fields size += (num_32 * sizeof(uint32_t)); return size; } void ClassLinker::LoadClass(const DexFile& dex_file, const DexFile::ClassDef& dex_class_def, Class* klass, const ClassLoader* class_loader) { CHECK(klass != NULL); CHECK(klass->GetDexCache() != NULL); CHECK_EQ(Class::kStatusNotReady, klass->GetStatus()); const byte* class_data = dex_file.GetClassData(dex_class_def); DexFile::ClassDataHeader header = dex_file.ReadClassDataHeader(&class_data); const char* descriptor = dex_file.GetClassDescriptor(dex_class_def); CHECK(descriptor != NULL); klass->SetClass(GetClassRoot(kJavaLangClass)); if (klass->GetDescriptor() != NULL) { DCHECK(klass->GetDescriptor()->Equals(descriptor)); } else { klass->SetDescriptor(intern_table_->InternStrong(descriptor)); } uint32_t access_flags = dex_class_def.access_flags_; // Make sure there aren't any "bonus" flags set, since we use them for runtime // state. CHECK_EQ(access_flags & ~kAccClassFlagsMask, 0U); klass->SetAccessFlags(access_flags); klass->SetClassLoader(class_loader); DCHECK(klass->GetPrimitiveType() == Class::kPrimNot); klass->SetStatus(Class::kStatusIdx); klass->SetSuperClassTypeIdx(dex_class_def.superclass_idx_); size_t num_static_fields = header.static_fields_size_; size_t num_instance_fields = header.instance_fields_size_; size_t num_direct_methods = header.direct_methods_size_; size_t num_virtual_methods = header.virtual_methods_size_; klass->SetSourceFile(intern_table_->InternStrong(dex_file.dexGetSourceFile(dex_class_def))); // Load class interfaces. LoadInterfaces(dex_file, dex_class_def, klass); // Load static fields. if (num_static_fields != 0) { klass->SetSFields(AllocObjectArray(num_static_fields)); uint32_t last_idx = 0; for (size_t i = 0; i < num_static_fields; ++i) { DexFile::Field dex_field; dex_file.dexReadClassDataField(&class_data, &dex_field, &last_idx); Field* sfield = AllocField(); klass->SetStaticField(i, sfield); LoadField(dex_file, dex_field, klass, sfield); } } // Load instance fields. if (num_instance_fields != 0) { klass->SetIFields(AllocObjectArray(num_instance_fields)); uint32_t last_idx = 0; for (size_t i = 0; i < num_instance_fields; ++i) { DexFile::Field dex_field; dex_file.dexReadClassDataField(&class_data, &dex_field, &last_idx); Field* ifield = AllocField(); klass->SetInstanceField(i, ifield); LoadField(dex_file, dex_field, klass, ifield); } } // Load direct methods. if (num_direct_methods != 0) { // TODO: append direct methods to class object klass->SetDirectMethods(AllocObjectArray(num_direct_methods)); uint32_t last_idx = 0; for (size_t i = 0; i < num_direct_methods; ++i) { DexFile::Method dex_method; dex_file.dexReadClassDataMethod(&class_data, &dex_method, &last_idx); Method* meth = AllocMethod(); klass->SetDirectMethod(i, meth); LoadMethod(dex_file, dex_method, klass, meth); // TODO: register maps } } // Load virtual methods. if (num_virtual_methods != 0) { // TODO: append virtual methods to class object klass->SetVirtualMethods(AllocObjectArray(num_virtual_methods)); uint32_t last_idx = 0; for (size_t i = 0; i < num_virtual_methods; ++i) { DexFile::Method dex_method; dex_file.dexReadClassDataMethod(&class_data, &dex_method, &last_idx); Method* meth = AllocMethod(); klass->SetVirtualMethod(i, meth); LoadMethod(dex_file, dex_method, klass, meth); // TODO: register maps } } } void ClassLinker::LoadInterfaces(const DexFile& dex_file, const DexFile::ClassDef& dex_class_def, Class* klass) { const DexFile::TypeList* list = dex_file.GetInterfacesList(dex_class_def); if (list != NULL) { klass->SetInterfaces(AllocClassArray(list->Size())); IntArray* interfaces_idx = IntArray::Alloc(list->Size()); klass->SetInterfacesTypeIdx(interfaces_idx); for (size_t i = 0; i < list->Size(); ++i) { const DexFile::TypeItem& type_item = list->GetTypeItem(i); interfaces_idx->Set(i, type_item.type_idx_); } } } void ClassLinker::LoadField(const DexFile& dex_file, const DexFile::Field& src, Class* klass, Field* dst) { const DexFile::FieldId& field_id = dex_file.GetFieldId(src.field_idx_); dst->SetDeclaringClass(klass); dst->SetName(ResolveString(dex_file, field_id.name_idx_, klass->GetDexCache())); dst->SetTypeIdx(field_id.type_idx_); dst->SetAccessFlags(src.access_flags_); // In order to access primitive types using GetTypeDuringLinking we need to // ensure they are resolved into the dex cache const char* descriptor = dex_file.dexStringByTypeIdx(field_id.type_idx_); if (descriptor[1] == '\0') { // only the descriptors of primitive types should be 1 character long Class* resolved = ResolveType(dex_file, field_id.type_idx_, klass); DCHECK(resolved->IsPrimitive()); } } void ClassLinker::LoadMethod(const DexFile& dex_file, const DexFile::Method& src, Class* klass, Method* dst) { const DexFile::MethodId& method_id = dex_file.GetMethodId(src.method_idx_); dst->SetDeclaringClass(klass); String* method_name = ResolveString(dex_file, method_id.name_idx_, klass->GetDexCache()); dst->SetName(method_name); if (method_name->Equals("")) { dst->SetClass(GetClassRoot(kJavaLangReflectConstructor)); } { int32_t utf16_length; std::string utf8(dex_file.CreateMethodDescriptor(method_id.proto_idx_, &utf16_length)); dst->SetSignature(intern_table_->InternStrong(utf16_length, utf8.c_str())); } dst->SetProtoIdx(method_id.proto_idx_); dst->SetCodeItemOffset(src.code_off_); const char* shorty = dex_file.GetShorty(method_id.proto_idx_); dst->SetShorty(intern_table_->InternStrong(shorty)); dst->SetAccessFlags(src.access_flags_); dst->SetReturnTypeIdx(dex_file.GetProtoId(method_id.proto_idx_).return_type_idx_); dst->SetDexCacheStrings(klass->GetDexCache()->GetStrings()); dst->SetDexCacheResolvedTypes(klass->GetDexCache()->GetResolvedTypes()); dst->SetDexCacheResolvedMethods(klass->GetDexCache()->GetResolvedMethods()); dst->SetDexCacheResolvedFields(klass->GetDexCache()->GetResolvedFields()); dst->SetDexCacheCodeAndDirectMethods(klass->GetDexCache()->GetCodeAndDirectMethods()); dst->SetDexCacheInitializedStaticStorage(klass->GetDexCache()->GetInitializedStaticStorage()); // TODO: check for finalize method const DexFile::CodeItem* code_item = dex_file.GetCodeItem(src); if (code_item != NULL) { dst->SetNumRegisters(code_item->registers_size_); dst->SetNumIns(code_item->ins_size_); dst->SetNumOuts(code_item->outs_size_); } else { uint16_t num_args = Method::NumArgRegisters(shorty); if ((src.access_flags_ & kAccStatic) != 0) { ++num_args; } dst->SetNumRegisters(num_args); // TODO: native methods } } void ClassLinker::AppendToBootClassPath(const DexFile& dex_file) { AppendToBootClassPath(dex_file, AllocDexCache(dex_file)); } void ClassLinker::AppendToBootClassPath(const DexFile& dex_file, DexCache* dex_cache) { CHECK(dex_cache != NULL) << dex_file.GetLocation(); boot_class_path_.push_back(&dex_file); RegisterDexFile(dex_file, dex_cache); } void ClassLinker::RegisterDexFile(const DexFile& dex_file) { RegisterDexFile(dex_file, AllocDexCache(dex_file)); } void ClassLinker::RegisterDexFile(const DexFile& dex_file, DexCache* dex_cache) { MutexLock mu(lock_); CHECK(dex_cache != NULL) << dex_file.GetLocation(); CHECK(dex_cache->GetLocation()->Equals(dex_file.GetLocation())); dex_files_.push_back(&dex_file); dex_caches_.push_back(dex_cache); } const DexFile& ClassLinker::FindDexFile(const DexCache* dex_cache) const { MutexLock mu(lock_); for (size_t i = 0; i != dex_caches_.size(); ++i) { if (dex_caches_[i] == dex_cache) { return *dex_files_[i]; } } CHECK(false) << "Failed to find DexFile for DexCache " << dex_cache->GetLocation()->ToModifiedUtf8(); return *dex_files_[-1]; } DexCache* ClassLinker::FindDexCache(const DexFile& dex_file) const { MutexLock mu(lock_); for (size_t i = 0; i != dex_files_.size(); ++i) { if (dex_files_[i] == &dex_file) { return dex_caches_[i]; } } CHECK(false) << "Failed to find DexCache for DexFile " << dex_file.GetLocation(); return NULL; } Class* ClassLinker::InitializePrimitiveClass(Class* primitive_class, const char* descriptor, Class::PrimitiveType type) { // TODO: deduce one argument from the other CHECK(primitive_class != NULL); primitive_class->SetAccessFlags(kAccPublic | kAccFinal | kAccAbstract); primitive_class->SetDescriptor(intern_table_->InternStrong(descriptor)); primitive_class->SetPrimitiveType(type); primitive_class->SetStatus(Class::kStatusInitialized); bool success = InsertClass(descriptor, primitive_class); CHECK(success) << "InitPrimitiveClass(" << descriptor << ") failed"; return primitive_class; } // Create an array class (i.e. the class object for the array, not the // array itself). "descriptor" looks like "[C" or "[[[[B" or // "[Ljava/lang/String;". // // If "descriptor" refers to an array of primitives, look up the // primitive type's internally-generated class object. // // "class_loader" is the class loader of the class that's referring to // us. It's used to ensure that we're looking for the element type in // the right context. It does NOT become the class loader for the // array class; that always comes from the base element class. // // Returns NULL with an exception raised on failure. Class* ClassLinker::CreateArrayClass(const StringPiece& descriptor, const ClassLoader* class_loader) { CHECK_EQ('[', descriptor[0]); // Identify the underlying component type Class* component_type = FindClass(descriptor.substr(1), class_loader); if (component_type == NULL) { DCHECK(Thread::Current()->IsExceptionPending()); return NULL; } // See if the component type is already loaded. Array classes are // always associated with the class loader of their underlying // element type -- an array of Strings goes with the loader for // java/lang/String -- so we need to look for it there. (The // caller should have checked for the existence of the class // before calling here, but they did so with *their* class loader, // not the component type's loader.) // // If we find it, the caller adds "loader" to the class' initiating // loader list, which should prevent us from going through this again. // // This call is unnecessary if "loader" and "component_type->GetClassLoader()" // are the same, because our caller (FindClass) just did the // lookup. (Even if we get this wrong we still have correct behavior, // because we effectively do this lookup again when we add the new // class to the hash table --- necessary because of possible races with // other threads.) if (class_loader != component_type->GetClassLoader()) { Class* new_class = LookupClass(descriptor, component_type->GetClassLoader()); if (new_class != NULL) { return new_class; } } // Fill out the fields in the Class. // // It is possible to execute some methods against arrays, because // all arrays are subclasses of java_lang_Object_, so we need to set // up a vtable. We can just point at the one in java_lang_Object_. // // Array classes are simple enough that we don't need to do a full // link step. Class* new_class = NULL; if (!init_done_) { // Classes that were hand created, ie not by FindSystemClass if (descriptor == "[Ljava/lang/Class;") { new_class = GetClassRoot(kClassArrayClass); } else if (descriptor == "[Ljava/lang/Object;") { new_class = GetClassRoot(kObjectArrayClass); } else if (descriptor == "[C") { new_class = GetClassRoot(kCharArrayClass); } else if (descriptor == "[I") { new_class = GetClassRoot(kIntArrayClass); } } if (new_class == NULL) { new_class = AllocClass(sizeof(Class)); if (new_class == NULL) { return NULL; } new_class->SetComponentType(component_type); } DCHECK(new_class->GetComponentType() != NULL); if (new_class->GetDescriptor() != NULL) { DCHECK(new_class->GetDescriptor()->Equals(descriptor)); } else { new_class->SetDescriptor(intern_table_->InternStrong(descriptor.ToString().c_str())); } Class* java_lang_Object = GetClassRoot(kJavaLangObject); new_class->SetSuperClass(java_lang_Object); new_class->SetVTable(java_lang_Object->GetVTable()); new_class->SetPrimitiveType(Class::kPrimNot); new_class->SetClassLoader(component_type->GetClassLoader()); new_class->SetStatus(Class::kStatusInitialized); // don't need to set new_class->SetObjectSize(..) // because Object::SizeOf delegates to Array::SizeOf // All arrays have java/lang/Cloneable and java/io/Serializable as // interfaces. We need to set that up here, so that stuff like // "instanceof" works right. // // Note: The GC could run during the call to FindSystemClass, // so we need to make sure the class object is GC-valid while we're in // there. Do this by clearing the interface list so the GC will just // think that the entries are null. // Use the single, global copies of "interfaces" and "iftable" // (remember not to free them for arrays). new_class->SetInterfaces(array_interfaces_); new_class->SetIfTable(array_iftable_); // Inherit access flags from the component type. Arrays can't be // used as a superclass or interface, so we want to add "final" // and remove "interface". // // Don't inherit any non-standard flags (e.g., kAccFinal) // from component_type. We assume that the array class does not // override finalize(). new_class->SetAccessFlags(((new_class->GetComponentType()->GetAccessFlags() & ~kAccInterface) | kAccFinal) & kAccJavaFlagsMask); if (InsertClass(descriptor, new_class)) { return new_class; } // Another thread must have loaded the class after we // started but before we finished. Abandon what we've // done. // // (Yes, this happens.) // Grab the winning class. Class* other_class = LookupClass(descriptor, component_type->GetClassLoader()); DCHECK(other_class != NULL); return other_class; } Class* ClassLinker::FindPrimitiveClass(char type) { switch (type) { case 'B': return GetClassRoot(kPrimitiveByte); case 'C': return GetClassRoot(kPrimitiveChar); case 'D': return GetClassRoot(kPrimitiveDouble); case 'F': return GetClassRoot(kPrimitiveFloat); case 'I': return GetClassRoot(kPrimitiveInt); case 'J': return GetClassRoot(kPrimitiveLong); case 'S': return GetClassRoot(kPrimitiveShort); case 'Z': return GetClassRoot(kPrimitiveBoolean); case 'V': return GetClassRoot(kPrimitiveVoid); } std::string printable_type(PrintableChar(type)); ThrowNoClassDefFoundError("Not a primitive type: %s", printable_type.c_str()); return NULL; } bool ClassLinker::InsertClass(const StringPiece& descriptor, Class* klass) { size_t hash = StringPieceHash()(descriptor); MutexLock mu(lock_); Table::iterator it = classes_.insert(std::make_pair(hash, klass)); return ((*it).second == klass); } Class* ClassLinker::LookupClass(const StringPiece& descriptor, const ClassLoader* class_loader) { size_t hash = StringPieceHash()(descriptor); MutexLock mu(lock_); typedef Table::const_iterator It; // TODO: C++0x auto for (It it = classes_.find(hash), end = classes_.end(); it != end; ++it) { Class* klass = it->second; if (klass->GetDescriptor()->Equals(descriptor) && klass->GetClassLoader() == class_loader) { return klass; } } return NULL; } void ClassLinker::VerifyClass(Class* klass) { if (klass->IsVerified()) { return; } CHECK_EQ(klass->GetStatus(), Class::kStatusResolved); klass->SetStatus(Class::kStatusVerifying); if (DexVerifier::VerifyClass(klass)) { klass->SetStatus(Class::kStatusVerified); } else { LOG(ERROR) << "Verification failed on class " << PrettyClass(klass); CHECK(!Thread::Current()->IsExceptionPending()) << PrettyTypeOf(Thread::Current()->GetException()); CHECK_EQ(klass->GetStatus(), Class::kStatusVerifying); klass->SetStatus(Class::kStatusResolved); } } bool ClassLinker::InitializeClass(Class* klass, bool can_run_clinit) { CHECK(klass->IsResolved() || klass->IsErroneous()) << PrettyClass(klass) << " is " << klass->GetStatus(); Thread* self = Thread::Current(); Method* clinit = NULL; { // see JLS 3rd edition, 12.4.2 "Detailed Initialization Procedure" for the locking protocol ObjectLock lock(klass); if (klass->GetStatus() == Class::kStatusInitialized) { return true; } if (klass->IsErroneous()) { ThrowEarlierClassFailure(klass); return false; } if (klass->GetStatus() == Class::kStatusResolved) { VerifyClass(klass); if (klass->GetStatus() != Class::kStatusVerified) { return false; } } clinit = klass->FindDeclaredDirectMethod("", "()V"); if (clinit != NULL && !can_run_clinit) { // if the class has a but we can't run it during compilation, // don't bother going to kStatusInitializing return false; } // If the class is kStatusInitializing, either this thread is // initializing higher up the stack or another thread has beat us // to initializing and we need to wait. Either way, this // invocation of InitializeClass will not be responsible for // running and will return. if (klass->GetStatus() == Class::kStatusInitializing) { // We caught somebody else in the act; was it us? if (klass->GetClinitThreadId() == self->GetTid()) { // Yes. That's fine. Return so we can continue initializing. return true; } // No. That's fine. Wait for another thread to finish initializing. return WaitForInitializeClass(klass, self, lock); } if (!ValidateSuperClassDescriptors(klass)) { klass->SetStatus(Class::kStatusError); return false; } DCHECK_EQ(klass->GetStatus(), Class::kStatusVerified); klass->SetClinitThreadId(self->GetTid()); klass->SetStatus(Class::kStatusInitializing); } if (!InitializeSuperClass(klass, can_run_clinit)) { return false; } InitializeStaticFields(klass); if (clinit != NULL) { clinit->Invoke(self, NULL, NULL, NULL); } { ObjectLock lock(klass); if (self->IsExceptionPending()) { // TODO: if self->GetException() is not an Error, // wrap in ExceptionInInitializerError klass->SetStatus(Class::kStatusError); } else { ++Runtime::Current()->GetStats()->class_init_count; ++self->GetStats()->class_init_count; // TODO: class_init_time_ns klass->SetStatus(Class::kStatusInitialized); } lock.NotifyAll(); } return true; } bool ClassLinker::WaitForInitializeClass(Class* klass, Thread* self, ObjectLock& lock) { while (true) { CHECK(!self->IsExceptionPending()); lock.Wait(); // When we wake up, repeat the test for init-in-progress. If // there's an exception pending (only possible if // "interruptShouldThrow" was set), bail out. if (self->IsExceptionPending()) { // TODO: set cause of ExceptionInInitializerError to self->GetException() self->ThrowNewExceptionF("Ljava/lang/ExceptionInInitializerError;", "Exception %s thrown while initializing class %s", PrettyTypeOf(self->GetException()).c_str(), PrettyDescriptor(klass->GetDescriptor()).c_str()); klass->SetStatus(Class::kStatusError); return false; } // Spurious wakeup? Go back to waiting. if (klass->GetStatus() == Class::kStatusInitializing) { continue; } if (klass->IsErroneous()) { // The caller wants an exception, but it was thrown in a // different thread. Synthesize one here. self->ThrowNewExceptionF("Ljava/lang/NoClassDefFoundError;", " failed for class %s; see exception in other thread", PrettyDescriptor(klass->GetDescriptor()).c_str()); return false; } if (klass->IsInitialized()) { return true; } LOG(FATAL) << "Unexpected class status. " << PrettyClass(klass) << " is " << klass->GetStatus(); } LOG(FATAL) << "Not Reached" << PrettyClass(klass); } bool ClassLinker::ValidateSuperClassDescriptors(const Class* klass) { if (klass->IsInterface()) { return true; } // begin with the methods local to the superclass if (klass->HasSuperClass() && klass->GetClassLoader() != klass->GetSuperClass()->GetClassLoader()) { const Class* super = klass->GetSuperClass(); for (int i = super->NumVirtualMethods() - 1; i >= 0; --i) { const Method* method = super->GetVirtualMethod(i); if (method != super->GetVirtualMethod(i) && !HasSameMethodDescriptorClasses(method, super, klass)) { klass->DumpClass(std::cerr, Class::kDumpClassFullDetail); ThrowLinkageError("Class %s method %s resolves differently in superclass %s", PrettyDescriptor(klass->GetDescriptor()).c_str(), PrettyMethod(method).c_str(), PrettyDescriptor(super->GetDescriptor()).c_str()); return false; } } } for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) { InterfaceEntry* interface_entry = klass->GetIfTable()->Get(i); Class* interface = interface_entry->GetInterface(); if (klass->GetClassLoader() != interface->GetClassLoader()) { for (size_t j = 0; j < interface->NumVirtualMethods(); ++j) { const Method* method = interface_entry->GetMethodArray()->Get(j); if (!HasSameMethodDescriptorClasses(method, interface, method->GetDeclaringClass())) { klass->DumpClass(std::cerr, Class::kDumpClassFullDetail); ThrowLinkageError("Class %s method %s resolves differently in interface %s", PrettyDescriptor(method->GetDeclaringClass()->GetDescriptor()).c_str(), PrettyMethod(method).c_str(), PrettyDescriptor(interface->GetDescriptor()).c_str()); return false; } } } } return true; } bool ClassLinker::HasSameMethodDescriptorClasses(const Method* method, const Class* klass1, const Class* klass2) { if (method->IsMiranda()) { return true; } const DexFile& dex_file = FindDexFile(method->GetDeclaringClass()->GetDexCache()); const DexFile::ProtoId& proto_id = dex_file.GetProtoId(method->GetProtoIdx()); DexFile::ParameterIterator *it; for (it = dex_file.GetParameterIterator(proto_id); it->HasNext(); it->Next()) { const char* descriptor = it->GetDescriptor(); if (descriptor == NULL) { break; } if (descriptor[0] == 'L' || descriptor[0] == '[') { // Found a non-primitive type. if (!HasSameDescriptorClasses(descriptor, klass1, klass2)) { return false; } } } // Check the return type const char* descriptor = dex_file.GetReturnTypeDescriptor(proto_id); if (descriptor[0] == 'L' || descriptor[0] == '[') { if (!HasSameDescriptorClasses(descriptor, klass1, klass2)) { return false; } } return true; } // Returns true if classes referenced by the descriptor are the // same classes in klass1 as they are in klass2. bool ClassLinker::HasSameDescriptorClasses(const char* descriptor, const Class* klass1, const Class* klass2) { CHECK(descriptor != NULL); CHECK(klass1 != NULL); CHECK(klass2 != NULL); Class* found1 = FindClass(descriptor, klass1->GetClassLoader()); // TODO: found1 == NULL Class* found2 = FindClass(descriptor, klass2->GetClassLoader()); // TODO: found2 == NULL // TODO: lookup found1 in initiating loader list if (found1 == NULL || found2 == NULL) { Thread::Current()->ClearException(); if (found1 == found2) { return true; } else { return false; } } return true; } bool ClassLinker::InitializeSuperClass(Class* klass, bool can_run_clinit) { CHECK(klass != NULL); if (!klass->IsInterface() && klass->HasSuperClass()) { Class* super_class = klass->GetSuperClass(); if (super_class->GetStatus() != Class::kStatusInitialized) { CHECK(!super_class->IsInterface()); Thread* self = Thread::Current(); klass->MonitorEnter(self); bool super_initialized = InitializeClass(super_class, can_run_clinit); klass->MonitorExit(self); // TODO: check for a pending exception if (!super_initialized) { if (!can_run_clinit) { // Don't set status to error when we can't run . CHECK_EQ(klass->GetStatus(), Class::kStatusInitializing); klass->SetStatus(Class::kStatusVerified); return false; } klass->SetStatus(Class::kStatusError); klass->NotifyAll(); return false; } } } return true; } bool ClassLinker::EnsureInitialized(Class* c, bool can_run_clinit) { CHECK(c != NULL); if (c->IsInitialized()) { return true; } Thread* self = Thread::Current(); ScopedThreadStateChange tsc(self, Thread::kRunnable); InitializeClass(c, can_run_clinit); return !self->IsExceptionPending(); } StaticStorageBase* ClassLinker::InitializeStaticStorageFromCode(uint32_t type_idx, const Method* referrer) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); Class* klass = class_linker->ResolveType(type_idx, referrer); if (klass == NULL) { CHECK(Thread::Current()->IsExceptionPending()); return NULL; // Failure - Indicate to caller to deliver exception } // If we are the of this class, just return our storage. // // Do not set the DexCache InitializedStaticStorage, since that // implies has finished running. if (klass == referrer->GetDeclaringClass() && referrer->GetName()->Equals("")) { return klass; } if (!class_linker->EnsureInitialized(klass, true)) { CHECK(Thread::Current()->IsExceptionPending()); return NULL; // Failure - Indicate to caller to deliver exception } referrer->GetDexCacheInitializedStaticStorage()->Set(type_idx, klass); return klass; } void ClassLinker::ConstructFieldMap(const DexFile& dex_file, const DexFile::ClassDef& dex_class_def, Class* c, std::map& field_map) { const ClassLoader* cl = c->GetClassLoader(); const byte* class_data = dex_file.GetClassData(dex_class_def); DexFile::ClassDataHeader header = dex_file.ReadClassDataHeader(&class_data); uint32_t last_idx = 0; for (size_t i = 0; i < header.static_fields_size_; ++i) { DexFile::Field dex_field; dex_file.dexReadClassDataField(&class_data, &dex_field, &last_idx); field_map[i] = ResolveField(dex_file, dex_field.field_idx_, c->GetDexCache(), cl, true); } } void ClassLinker::InitializeStaticFields(Class* klass) { size_t num_static_fields = klass->NumStaticFields(); if (num_static_fields == 0) { return; } DexCache* dex_cache = klass->GetDexCache(); // TODO: this seems like the wrong check. do we really want !IsPrimitive && !IsArray? if (dex_cache == NULL) { return; } const std::string descriptor(klass->GetDescriptor()->ToModifiedUtf8()); const DexFile& dex_file = FindDexFile(dex_cache); const DexFile::ClassDef* dex_class_def = dex_file.FindClassDef(descriptor); CHECK(dex_class_def != NULL); // We reordered the fields, so we need to be able to map the field indexes to the right fields. std::map field_map; ConstructFieldMap(dex_file, *dex_class_def, klass, field_map); const byte* addr = dex_file.GetEncodedArray(*dex_class_def); if (addr == NULL) { // All this class' static fields have default values. return; } size_t array_size = DecodeUnsignedLeb128(&addr); for (size_t i = 0; i < array_size; ++i) { Field* field = field_map[i]; JValue value; DexFile::ValueType type = dex_file.ReadEncodedValue(&addr, &value); switch (type) { case DexFile::kByte: field->SetByte(NULL, value.b); break; case DexFile::kShort: field->SetShort(NULL, value.s); break; case DexFile::kChar: field->SetChar(NULL, value.c); break; case DexFile::kInt: field->SetInt(NULL, value.i); break; case DexFile::kLong: field->SetLong(NULL, value.j); break; case DexFile::kFloat: field->SetFloat(NULL, value.f); break; case DexFile::kDouble: field->SetDouble(NULL, value.d); break; case DexFile::kString: { uint32_t string_idx = value.i; const String* resolved = ResolveString(dex_file, string_idx, klass->GetDexCache()); field->SetObject(NULL, resolved); break; } case DexFile::kBoolean: field->SetBoolean(NULL, value.z); break; case DexFile::kNull: field->SetObject(NULL, value.l); break; default: LOG(FATAL) << "Unknown type " << static_cast(type); } } } bool ClassLinker::LinkClass(Class* klass) { CHECK_EQ(Class::kStatusLoaded, klass->GetStatus()); if (!LinkSuperClass(klass)) { return false; } if (!LinkMethods(klass)) { return false; } if (!LinkInstanceFields(klass)) { return false; } if (!LinkStaticFields(klass)) { return false; } CreateReferenceInstanceOffsets(klass); CreateReferenceStaticOffsets(klass); CHECK_EQ(Class::kStatusLoaded, klass->GetStatus()); klass->SetStatus(Class::kStatusResolved); return true; } bool ClassLinker::LoadSuperAndInterfaces(Class* klass, const DexFile& dex_file) { CHECK_EQ(Class::kStatusIdx, klass->GetStatus()); if (klass->GetSuperClassTypeIdx() != DexFile::kDexNoIndex) { Class* super_class = ResolveType(dex_file, klass->GetSuperClassTypeIdx(), klass); if (super_class == NULL) { DCHECK(Thread::Current()->IsExceptionPending()); return false; } klass->SetSuperClass(super_class); } for (size_t i = 0; i < klass->NumInterfaces(); ++i) { uint32_t idx = klass->GetInterfacesTypeIdx()->Get(i); Class* interface = ResolveType(dex_file, idx, klass); klass->SetInterface(i, interface); if (interface == NULL) { DCHECK(Thread::Current()->IsExceptionPending()); return false; } // Verify if (!klass->CanAccess(interface)) { // TODO: the RI seemed to ignore this in my testing. Thread::Current()->ThrowNewExceptionF("Ljava/lang/IllegalAccessError;", "Interface %s implemented by class %s is inaccessible", PrettyDescriptor(interface->GetDescriptor()).c_str(), PrettyDescriptor(klass->GetDescriptor()).c_str()); return false; } } // Mark the class as loaded. klass->SetStatus(Class::kStatusLoaded); return true; } bool ClassLinker::LinkSuperClass(Class* klass) { CHECK(!klass->IsPrimitive()); Class* super = klass->GetSuperClass(); if (klass->GetDescriptor()->Equals("Ljava/lang/Object;")) { if (super != NULL) { Thread::Current()->ThrowNewExceptionF("Ljava/lang/ClassFormatError;", "java.lang.Object must not have a superclass"); return false; } // TODO: clear finalize attribute return true; } if (super == NULL) { ThrowLinkageError("No superclass defined for class %s", PrettyDescriptor(klass->GetDescriptor()).c_str()); return false; } // Verify if (super->IsFinal() || super->IsInterface()) { Thread::Current()->ThrowNewExceptionF("Ljava/lang/IncompatibleClassChangeError;", "Superclass %s of %s is %s", PrettyDescriptor(super->GetDescriptor()).c_str(), PrettyDescriptor(klass->GetDescriptor()).c_str(), super->IsFinal() ? "declared final" : "an interface"); return false; } if (!klass->CanAccess(super)) { Thread::Current()->ThrowNewExceptionF("Ljava/lang/IllegalAccessError;", "Superclass %s is inaccessible by %s", PrettyDescriptor(super->GetDescriptor()).c_str(), PrettyDescriptor(klass->GetDescriptor()).c_str()); return false; } #ifndef NDEBUG // Ensure super classes are fully resolved prior to resolving fields.. while (super != NULL) { CHECK(super->IsResolved()); super = super->GetSuperClass(); } #endif return true; } // Populate the class vtable and itable. Compute return type indices. bool ClassLinker::LinkMethods(Class* klass) { if (klass->IsInterface()) { // No vtable. size_t count = klass->NumVirtualMethods(); if (!IsUint(16, count)) { ThrowClassFormatError("Too many methods on interface: %d", count); return false; } for (size_t i = 0; i < count; ++i) { klass->GetVirtualMethodDuringLinking(i)->SetMethodIndex(i); } // Link interface method tables LinkInterfaceMethods(klass); } else { // Link virtual method tables LinkVirtualMethods(klass); // Link interface method tables LinkInterfaceMethods(klass); } return true; } bool ClassLinker::LinkVirtualMethods(Class* klass) { if (klass->HasSuperClass()) { uint32_t max_count = klass->NumVirtualMethods() + klass->GetSuperClass()->GetVTable()->GetLength(); size_t actual_count = klass->GetSuperClass()->GetVTable()->GetLength(); CHECK_LE(actual_count, max_count); // TODO: do not assign to the vtable field until it is fully constructed. ObjectArray* vtable = klass->GetSuperClass()->GetVTable()->CopyOf(max_count); // See if any of our virtual methods override the superclass. for (size_t i = 0; i < klass->NumVirtualMethods(); ++i) { Method* local_method = klass->GetVirtualMethodDuringLinking(i); size_t j = 0; for (; j < actual_count; ++j) { Method* super_method = vtable->Get(j); if (local_method->HasSameNameAndDescriptor(super_method)) { // Verify if (super_method->IsFinal()) { ThrowLinkageError("Method %s.%s overrides final method in class %s", PrettyDescriptor(klass->GetDescriptor()).c_str(), local_method->GetName()->ToModifiedUtf8().c_str(), PrettyDescriptor(super_method->GetDeclaringClass()->GetDescriptor()).c_str()); return false; } vtable->Set(j, local_method); local_method->SetMethodIndex(j); break; } } if (j == actual_count) { // Not overriding, append. vtable->Set(actual_count, local_method); local_method->SetMethodIndex(actual_count); actual_count += 1; } } if (!IsUint(16, actual_count)) { ThrowClassFormatError("Too many methods defined on class: %d", actual_count); return false; } // Shrink vtable if possible CHECK_LE(actual_count, max_count); if (actual_count < max_count) { vtable = vtable->CopyOf(actual_count); } klass->SetVTable(vtable); } else { CHECK(klass->GetDescriptor()->Equals("Ljava/lang/Object;")); uint32_t num_virtual_methods = klass->NumVirtualMethods(); if (!IsUint(16, num_virtual_methods)) { ThrowClassFormatError("Too many methods: %d", num_virtual_methods); return false; } ObjectArray* vtable = AllocObjectArray(num_virtual_methods); for (size_t i = 0; i < num_virtual_methods; ++i) { Method* virtual_method = klass->GetVirtualMethodDuringLinking(i); vtable->Set(i, virtual_method); virtual_method->SetMethodIndex(i & 0xFFFF); } klass->SetVTable(vtable); } return true; } bool ClassLinker::LinkInterfaceMethods(Class* klass) { size_t super_ifcount; if (klass->HasSuperClass()) { super_ifcount = klass->GetSuperClass()->GetIfTableCount(); } else { super_ifcount = 0; } size_t ifcount = super_ifcount; ifcount += klass->NumInterfaces(); for (size_t i = 0; i < klass->NumInterfaces(); i++) { ifcount += klass->GetInterface(i)->GetIfTableCount(); } if (ifcount == 0) { // TODO: enable these asserts with klass status validation // DCHECK(klass->GetIfTableCount() == 0); // DCHECK(klass->GetIfTable() == NULL); return true; } ObjectArray* iftable = AllocObjectArray(ifcount); if (super_ifcount != 0) { ObjectArray* super_iftable = klass->GetSuperClass()->GetIfTable(); for (size_t i = 0; i < super_ifcount; i++) { iftable->Set(i, AllocInterfaceEntry(super_iftable->Get(i)->GetInterface())); } } // Flatten the interface inheritance hierarchy. size_t idx = super_ifcount; for (size_t i = 0; i < klass->NumInterfaces(); i++) { Class* interface = klass->GetInterface(i); DCHECK(interface != NULL); if (!interface->IsInterface()) { Thread::Current()->ThrowNewExceptionF("Ljava/lang/IncompatibleClassChangeError;", "Class %s implements non-interface class %s", PrettyDescriptor(klass->GetDescriptor()).c_str(), PrettyDescriptor(interface->GetDescriptor()).c_str()); return false; } // Add this interface. iftable->Set(idx++, AllocInterfaceEntry(interface)); // Add this interface's superinterfaces. for (int32_t j = 0; j < interface->GetIfTableCount(); j++) { iftable->Set(idx++, AllocInterfaceEntry(interface->GetIfTable()->Get(j)->GetInterface())); } } klass->SetIfTable(iftable); CHECK_EQ(idx, ifcount); // If we're an interface, we don't need the vtable pointers, so we're done. if (klass->IsInterface() /*|| super_ifcount == ifcount*/) { return true; } std::vector miranda_list; for (size_t i = 0; i < ifcount; ++i) { InterfaceEntry* interface_entry = iftable->Get(i); Class* interface = interface_entry->GetInterface(); ObjectArray* method_array = AllocObjectArray(interface->NumVirtualMethods()); interface_entry->SetMethodArray(method_array); ObjectArray* vtable = klass->GetVTableDuringLinking(); for (size_t j = 0; j < interface->NumVirtualMethods(); ++j) { Method* interface_method = interface->GetVirtualMethod(j); int32_t k; // For each method listed in the interface's method list, find the // matching method in our class's method list. We want to favor the // subclass over the superclass, which just requires walking // back from the end of the vtable. (This only matters if the // superclass defines a private method and this class redefines // it -- otherwise it would use the same vtable slot. In .dex files // those don't end up in the virtual method table, so it shouldn't // matter which direction we go. We walk it backward anyway.) for (k = vtable->GetLength() - 1; k >= 0; --k) { Method* vtable_method = vtable->Get(k); if (interface_method->HasSameNameAndDescriptor(vtable_method)) { if (!vtable_method->IsPublic()) { Thread::Current()->ThrowNewExceptionF("Ljava/lang/IllegalAccessError;", "Implementation not public: %s", PrettyMethod(vtable_method).c_str()); return false; } method_array->Set(j, vtable_method); break; } } if (k < 0) { Method* miranda_method = NULL; for (size_t mir = 0; mir < miranda_list.size(); mir++) { if (miranda_list[mir]->HasSameNameAndDescriptor(interface_method)) { miranda_method = miranda_list[mir]; break; } } if (miranda_method == NULL) { // point the interface table at a phantom slot miranda_method = AllocMethod(); memcpy(miranda_method, interface_method, sizeof(Method)); miranda_list.push_back(miranda_method); } method_array->Set(j, miranda_method); } } } if (!miranda_list.empty()) { int old_method_count = klass->NumVirtualMethods(); int new_method_count = old_method_count + miranda_list.size(); klass->SetVirtualMethods((old_method_count == 0) ? AllocObjectArray(new_method_count) : klass->GetVirtualMethods()->CopyOf(new_method_count)); ObjectArray* vtable = klass->GetVTableDuringLinking(); CHECK(vtable != NULL); int old_vtable_count = vtable->GetLength(); int new_vtable_count = old_vtable_count + miranda_list.size(); vtable = vtable->CopyOf(new_vtable_count); for (size_t i = 0; i < miranda_list.size(); ++i) { Method* meth = miranda_list[i]; //AllocMethod(); // TODO: this shouldn't be a memcpy //memcpy(meth, miranda_list[i], sizeof(Method)); meth->SetDeclaringClass(klass); meth->SetAccessFlags(meth->GetAccessFlags() | kAccMiranda); meth->SetMethodIndex(0xFFFF & (old_vtable_count + i)); klass->SetVirtualMethod(old_method_count + i, meth); vtable->Set(old_vtable_count + i, meth); } // TODO: do not assign to the vtable field until it is fully constructed. klass->SetVTable(vtable); } ObjectArray* vtable = klass->GetVTableDuringLinking(); for (int i = 0; i < vtable->GetLength(); ++i) { CHECK(vtable->Get(i) != NULL); } // klass->DumpClass(std::cerr, Class::kDumpClassFullDetail); return true; } bool ClassLinker::LinkInstanceFields(Class* klass) { CHECK(klass != NULL); return LinkFields(klass, true); } bool ClassLinker::LinkStaticFields(Class* klass) { CHECK(klass != NULL); size_t allocated_class_size = klass->GetClassSize(); bool success = LinkFields(klass, false); CHECK_EQ(allocated_class_size, klass->GetClassSize()); return success; } struct LinkFieldsComparator { bool operator()(const Field* field1, const Field* field2){ // First come reference fields, then 64-bit, and finally 32-bit const Class* type1 = field1->GetTypeDuringLinking(); const Class* type2 = field2->GetTypeDuringLinking(); bool isPrimitive1 = type1 != NULL && type1->IsPrimitive(); bool isPrimitive2 = type2 != NULL && type2->IsPrimitive(); bool is64bit1 = isPrimitive1 && (type1->IsPrimitiveLong() || type1->IsPrimitiveDouble()); bool is64bit2 = isPrimitive2 && (type2->IsPrimitiveLong() || type2->IsPrimitiveDouble()); int order1 = (!isPrimitive1 ? 0 : (is64bit1 ? 1 : 2)); int order2 = (!isPrimitive2 ? 0 : (is64bit2 ? 1 : 2)); if (order1 != order2) { return order1 < order2; } // same basic group? then sort by string. std::string name1 = field1->GetName()->ToModifiedUtf8(); std::string name2 = field2->GetName()->ToModifiedUtf8(); return name1 < name2; } }; bool ClassLinker::LinkFields(Class* klass, bool instance) { size_t num_fields = instance ? klass->NumInstanceFields() : klass->NumStaticFields(); ObjectArray* fields = instance ? klass->GetIFields() : klass->GetSFields(); // Initialize size and field_offset size_t size; MemberOffset field_offset(0); if (instance) { Class* super_class = klass->GetSuperClass(); if (super_class != NULL) { CHECK(super_class->IsResolved()); field_offset = MemberOffset(super_class->GetObjectSize()); } size = field_offset.Uint32Value(); } else { size = klass->GetClassSize(); field_offset = Class::FieldsOffset(); } CHECK_EQ(num_fields == 0, fields == NULL); // we want a relatively stable order so that adding new fields // minimizes distruption of C++ version such as Class and Method. std::deque grouped_and_sorted_fields; for (size_t i = 0; i < num_fields; i++) { grouped_and_sorted_fields.push_back(fields->Get(i)); } std::sort(grouped_and_sorted_fields.begin(), grouped_and_sorted_fields.end(), LinkFieldsComparator()); // References should be at the front. size_t current_field = 0; size_t num_reference_fields = 0; for (; current_field < num_fields; current_field++) { Field* field = grouped_and_sorted_fields.front(); const Class* type = field->GetTypeDuringLinking(); // if a field's type at this point is NULL it isn't primitive bool isPrimitive = type != NULL && type->IsPrimitive(); if (isPrimitive) { break; // past last reference, move on to the next phase } grouped_and_sorted_fields.pop_front(); num_reference_fields++; fields->Set(current_field, field); field->SetOffset(field_offset); field_offset = MemberOffset(field_offset.Uint32Value() + sizeof(uint32_t)); } // Now we want to pack all of the double-wide fields together. If // we're not aligned, though, we want to shuffle one 32-bit field // into place. If we can't find one, we'll have to pad it. if (current_field != num_fields && !IsAligned(field_offset.Uint32Value(), 8)) { for (size_t i = 0; i < grouped_and_sorted_fields.size(); i++) { Field* field = grouped_and_sorted_fields[i]; const Class* type = field->GetTypeDuringLinking(); CHECK(type != NULL); // should only be working on primitive types DCHECK(type->IsPrimitive()); if (type->IsPrimitiveLong() || type->IsPrimitiveDouble()) { continue; } fields->Set(current_field++, field); field->SetOffset(field_offset); // drop the consumed field grouped_and_sorted_fields.erase(grouped_and_sorted_fields.begin() + i); break; } // whether we found a 32-bit field for padding or not, we advance field_offset = MemberOffset(field_offset.Uint32Value() + sizeof(uint32_t)); } // Alignment is good, shuffle any double-wide fields forward, and // finish assigning field offsets to all fields. DCHECK(current_field == num_fields || IsAligned(field_offset.Uint32Value(), 8)); while (!grouped_and_sorted_fields.empty()) { Field* field = grouped_and_sorted_fields.front(); grouped_and_sorted_fields.pop_front(); const Class* type = field->GetTypeDuringLinking(); CHECK(type != NULL); // should only be working on primitive types DCHECK(type->IsPrimitive()); fields->Set(current_field, field); field->SetOffset(field_offset); field_offset = MemberOffset(field_offset.Uint32Value() + ((type->IsPrimitiveLong() || type->IsPrimitiveDouble()) ? sizeof(uint64_t) : sizeof(uint32_t))); current_field++; } #ifndef NDEBUG // Make sure that all reference fields appear before // non-reference fields, and all double-wide fields are aligned. bool seen_non_ref = false; for (size_t i = 0; i < num_fields; i++) { Field* field = fields->Get(i); if (false) { // enable to debug field layout LOG(INFO) << "LinkFields: " << (instance ? "instance" : "static") << " class=" << PrettyClass(klass) << " field=" << PrettyField(field) << " offset=" << field->GetField32(MemberOffset(Field::OffsetOffset()), false); } const Class* type = field->GetTypeDuringLinking(); if (type != NULL && type->IsPrimitive()) { if (!seen_non_ref) { seen_non_ref = true; DCHECK_EQ(num_reference_fields, i); } } else { DCHECK(!seen_non_ref); } } if (!seen_non_ref) { DCHECK_EQ(num_fields, num_reference_fields); } #endif size = field_offset.Uint32Value(); // Update klass if (instance) { klass->SetNumReferenceInstanceFields(num_reference_fields); if (!klass->IsVariableSize()) { klass->SetObjectSize(size); } } else { klass->SetNumReferenceStaticFields(num_reference_fields); klass->SetClassSize(size); } return true; } // Set the bitmap of reference offsets, refOffsets, from the ifields // list. void ClassLinker::CreateReferenceInstanceOffsets(Class* klass) { uint32_t reference_offsets = 0; Class* super_class = klass->GetSuperClass(); if (super_class != NULL) { reference_offsets = super_class->GetReferenceInstanceOffsets(); // If our superclass overflowed, we don't stand a chance. if (reference_offsets == CLASS_WALK_SUPER) { klass->SetReferenceInstanceOffsets(reference_offsets); return; } } CreateReferenceOffsets(klass, true, reference_offsets); } void ClassLinker::CreateReferenceStaticOffsets(Class* klass) { CreateReferenceOffsets(klass, false, 0); } void ClassLinker::CreateReferenceOffsets(Class* klass, bool instance, uint32_t reference_offsets) { size_t num_reference_fields = instance ? klass->NumReferenceInstanceFieldsDuringLinking() : klass->NumReferenceStaticFieldsDuringLinking(); const ObjectArray* fields = instance ? klass->GetIFields() : klass->GetSFields(); // All of the fields that contain object references are guaranteed // to be at the beginning of the fields list. for (size_t i = 0; i < num_reference_fields; ++i) { // Note that byte_offset is the offset from the beginning of // object, not the offset into instance data const Field* field = fields->Get(i); MemberOffset byte_offset = field->GetOffsetDuringLinking(); CHECK_EQ(byte_offset.Uint32Value() & (CLASS_OFFSET_ALIGNMENT - 1), 0U); if (CLASS_CAN_ENCODE_OFFSET(byte_offset.Uint32Value())) { uint32_t new_bit = CLASS_BIT_FROM_OFFSET(byte_offset.Uint32Value()); CHECK_NE(new_bit, 0U); reference_offsets |= new_bit; } else { reference_offsets = CLASS_WALK_SUPER; break; } } // Update fields in klass if (instance) { klass->SetReferenceInstanceOffsets(reference_offsets); } else { klass->SetReferenceStaticOffsets(reference_offsets); } } String* ClassLinker::ResolveString(const DexFile& dex_file, uint32_t string_idx, DexCache* dex_cache) { String* resolved = dex_cache->GetResolvedString(string_idx); if (resolved != NULL) { return resolved; } const DexFile::StringId& string_id = dex_file.GetStringId(string_idx); int32_t utf16_length = dex_file.GetStringLength(string_id); const char* utf8_data = dex_file.GetStringData(string_id); // TODO: remote the const_cast below String* string = const_cast(intern_table_->InternStrong(utf16_length, utf8_data)); dex_cache->SetResolvedString(string_idx, string); return string; } Class* ClassLinker::ResolveType(const DexFile& dex_file, uint32_t type_idx, DexCache* dex_cache, const ClassLoader* class_loader) { Class* resolved = dex_cache->GetResolvedType(type_idx); if (resolved == NULL) { const char* descriptor = dex_file.dexStringByTypeIdx(type_idx); if (descriptor[1] == '\0') { // only the descriptors of primitive types should be 1 character long resolved = FindPrimitiveClass(descriptor[0]); } else { resolved = FindClass(descriptor, class_loader); } if (resolved != NULL) { Class* check = resolved; while (check->IsArrayClass()) { check = check->GetComponentType(); } if (dex_cache != check->GetDexCache()) { if (check->GetClassLoader() != NULL) { Thread::Current()->ThrowNewExceptionF("Ljava/lang/IllegalAccessError;", "Class with type index %d resolved by unexpected .dex", type_idx); resolved = NULL; } } } if (resolved != NULL) { dex_cache->SetResolvedType(type_idx, resolved); } else { DCHECK(Thread::Current()->IsExceptionPending()); } } return resolved; } Method* ClassLinker::ResolveMethod(const DexFile& dex_file, uint32_t method_idx, DexCache* dex_cache, const ClassLoader* class_loader, bool is_direct) { Method* resolved = dex_cache->GetResolvedMethod(method_idx); if (resolved != NULL) { return resolved; } const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx); Class* klass = ResolveType(dex_file, method_id.class_idx_, dex_cache, class_loader); if (klass == NULL) { DCHECK(Thread::Current()->IsExceptionPending()); return NULL; } const char* name = dex_file.dexStringById(method_id.name_idx_); std::string signature(dex_file.CreateMethodDescriptor(method_id.proto_idx_, NULL)); if (is_direct) { resolved = klass->FindDirectMethod(name, signature); } else if (klass->IsInterface()) { resolved = klass->FindInterfaceMethod(name, signature); } else { resolved = klass->FindVirtualMethod(name, signature); } if (resolved != NULL) { dex_cache->SetResolvedMethod(method_idx, resolved); } else { ThrowNoSuchMethodError(is_direct ? "direct" : "virtual", klass, name, signature); } return resolved; } Field* ClassLinker::ResolveField(const DexFile& dex_file, uint32_t field_idx, DexCache* dex_cache, const ClassLoader* class_loader, bool is_static) { Field* resolved = dex_cache->GetResolvedField(field_idx); if (resolved != NULL) { return resolved; } const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx); Class* klass = ResolveType(dex_file, field_id.class_idx_, dex_cache, class_loader); if (klass == NULL) { return NULL; } const char* name = dex_file.dexStringById(field_id.name_idx_); Class* field_type = ResolveType(dex_file, field_id.type_idx_, dex_cache, class_loader); if (field_type == NULL) { // TODO: LinkageError? UNIMPLEMENTED(WARNING) << "Failed to resolve type of field " << name << " in " << PrettyClass(klass); return NULL; } if (is_static) { resolved = klass->FindStaticField(name, field_type); } else { resolved = klass->FindInstanceField(name, field_type); } if (resolved != NULL) { dex_cache->SetResolvedField(field_idx, resolved); } else { DCHECK(Thread::Current()->IsExceptionPending()); } return resolved; } void ClassLinker::DumpAllClasses(int flags) const { // TODO: at the time this was written, it wasn't safe to call PrettyField with the ClassLinker // lock held, because it might need to resolve a field's type, which would try to take the lock. std::vector all_classes; { MutexLock mu(lock_); typedef Table::const_iterator It; // TODO: C++0x auto for (It it = classes_.begin(), end = classes_.end(); it != end; ++it) { all_classes.push_back(it->second); } } for (size_t i = 0; i < all_classes.size(); ++i) { all_classes[i]->DumpClass(std::cerr, flags); } } size_t ClassLinker::NumLoadedClasses() const { MutexLock mu(lock_); return classes_.size(); } } // namespace art