/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "class_linker.h" #include #include #include #include #include #include #include #include #include #include "casts.h" #include "class_loader.h" #include "debugger.h" #include "dex_cache.h" #include "dex_file.h" #include "heap.h" #include "intern_table.h" #include "leb128.h" #include "logging.h" #include "oat_file.h" #include "object.h" #include "object_utils.h" #include "os.h" #include "runtime.h" #include "runtime_support.h" #if defined(ART_USE_LLVM_COMPILER) #include "compiler_llvm/runtime_support_llvm.h" #endif #include "scoped_jni_thread_state.h" #include "ScopedLocalRef.h" #include "space.h" #include "space_bitmap.h" #include "stack_indirect_reference_table.h" #include "stl_util.h" #include "thread.h" #include "UniquePtr.h" #include "utils.h" #include "well_known_classes.h" namespace art { static void ThrowNoClassDefFoundError(const char* fmt, ...) __attribute__((__format__(__printf__, 1, 2))); static void ThrowNoClassDefFoundError(const char* fmt, ...) { va_list args; va_start(args, fmt); Thread::Current()->ThrowNewExceptionV("Ljava/lang/NoClassDefFoundError;", fmt, args); va_end(args); } static void ThrowClassFormatError(const char* fmt, ...) __attribute__((__format__(__printf__, 1, 2))); static void ThrowClassFormatError(const char* fmt, ...) { va_list args; va_start(args, fmt); Thread::Current()->ThrowNewExceptionV("Ljava/lang/ClassFormatError;", fmt, args); va_end(args); } static void ThrowLinkageError(const char* fmt, ...) __attribute__((__format__(__printf__, 1, 2))); static void ThrowLinkageError(const char* fmt, ...) { va_list args; va_start(args, fmt); Thread::Current()->ThrowNewExceptionV("Ljava/lang/LinkageError;", fmt, args); va_end(args); } static void ThrowNoSuchMethodError(bool is_direct, Class* c, const StringPiece& name, const StringPiece& signature) { ClassHelper kh(c); std::ostringstream msg; msg << "no " << (is_direct ? "direct" : "virtual") << " method " << name << signature << " in class " << kh.GetDescriptor() << " or its superclasses"; std::string location(kh.GetLocation()); if (!location.empty()) { msg << " (defined in " << location << ")"; } Thread::Current()->ThrowNewException("Ljava/lang/NoSuchMethodError;", msg.str().c_str()); } static void ThrowNoSuchFieldError(const StringPiece& scope, Class* c, const StringPiece& type, const StringPiece& name) { ClassHelper kh(c); std::ostringstream msg; msg << "no " << scope << "field " << name << " of type " << type << " in class " << kh.GetDescriptor() << " or its superclasses"; std::string location(kh.GetLocation()); if (!location.empty()) { msg << " (defined in " << location << ")"; } Thread::Current()->ThrowNewException("Ljava/lang/NoSuchFieldError;", msg.str().c_str()); } static void ThrowNullPointerException(const char* fmt, ...) __attribute__((__format__(__printf__, 1, 2))); static void ThrowNullPointerException(const char* fmt, ...) { va_list args; va_start(args, fmt); Thread::Current()->ThrowNewExceptionV("Ljava/lang/NullPointerException;", fmt, args); va_end(args); } static void ThrowEarlierClassFailure(Class* c) { // The class failed to initialize on a previous attempt, so we want to throw // a NoClassDefFoundError (v2 2.17.5). The exception to this rule is if we // failed in verification, in which case v2 5.4.1 says we need to re-throw // the previous error. LOG(INFO) << "Rejecting re-init on previously-failed class " << PrettyClass(c); CHECK(c->IsErroneous()) << PrettyClass(c) << " " << c->GetStatus(); if (c->GetVerifyErrorClass() != NULL) { // TODO: change the verifier to store an _instance_, with a useful detail message? ClassHelper ve_ch(c->GetVerifyErrorClass()); std::string error_descriptor(ve_ch.GetDescriptor()); Thread::Current()->ThrowNewException(error_descriptor.c_str(), PrettyDescriptor(c).c_str()); } else { ThrowNoClassDefFoundError("%s", PrettyDescriptor(c).c_str()); } } static void WrapExceptionInInitializer() { Thread* self = Thread::Current(); JNIEnv* env = self->GetJniEnv(); ScopedLocalRef cause(env, env->ExceptionOccurred()); CHECK(cause.get() != NULL); env->ExceptionClear(); bool is_error = env->IsInstanceOf(cause.get(), WellKnownClasses::java_lang_Error); env->Throw(cause.get()); // We only wrap non-Error exceptions; an Error can just be used as-is. if (!is_error) { self->ThrowNewWrappedException("Ljava/lang/ExceptionInInitializerError;", NULL); } } static size_t Hash(const char* s) { // This is the java.lang.String hashcode for convenience, not interoperability. size_t hash = 0; for (; *s != '\0'; ++s) { hash = hash * 31 + *s; } return hash; } const char* ClassLinker::class_roots_descriptors_[] = { "Ljava/lang/Class;", "Ljava/lang/Object;", "[Ljava/lang/Class;", "[Ljava/lang/Object;", "Ljava/lang/String;", "Ljava/lang/ref/Reference;", "Ljava/lang/reflect/Constructor;", "Ljava/lang/reflect/Field;", "Ljava/lang/reflect/Method;", "Ljava/lang/reflect/Proxy;", "Ljava/lang/ClassLoader;", "Ldalvik/system/BaseDexClassLoader;", "Ldalvik/system/PathClassLoader;", "Ljava/lang/Throwable;", "Ljava/lang/ClassNotFoundException;", "Ljava/lang/StackTraceElement;", "Z", "B", "C", "D", "F", "I", "J", "S", "V", "[Z", "[B", "[C", "[D", "[F", "[I", "[J", "[S", "[Ljava/lang/StackTraceElement;", }; ClassLinker* ClassLinker::CreateFromCompiler(const std::vector& boot_class_path, InternTable* intern_table) { CHECK_NE(boot_class_path.size(), 0U); UniquePtr class_linker(new ClassLinker(intern_table)); class_linker->InitFromCompiler(boot_class_path); return class_linker.release(); } ClassLinker* ClassLinker::CreateFromImage(InternTable* intern_table) { UniquePtr class_linker(new ClassLinker(intern_table)); class_linker->InitFromImage(); return class_linker.release(); } ClassLinker::ClassLinker(InternTable* intern_table) : dex_lock_("ClassLinker dex lock"), classes_lock_("ClassLinker classes lock"), class_roots_(NULL), array_iftable_(NULL), init_done_(false), intern_table_(intern_table) { CHECK_EQ(arraysize(class_roots_descriptors_), size_t(kClassRootsMax)); } void ClassLinker::InitFromCompiler(const std::vector& boot_class_path) { VLOG(startup) << "ClassLinker::Init"; CHECK(Runtime::Current()->IsCompiler()); CHECK(!init_done_); // java_lang_Class comes first, it's needed for AllocClass Heap* heap = Runtime::Current()->GetHeap(); SirtRef java_lang_Class(down_cast(heap->AllocObject(NULL, sizeof(ClassClass)))); CHECK(java_lang_Class.get() != NULL); java_lang_Class->SetClass(java_lang_Class.get()); java_lang_Class->SetClassSize(sizeof(ClassClass)); // AllocClass(Class*) can now be used // Class[] is used for reflection support. SirtRef class_array_class(AllocClass(java_lang_Class.get(), sizeof(Class))); class_array_class->SetComponentType(java_lang_Class.get()); // java_lang_Object comes next so that object_array_class can be created SirtRef java_lang_Object(AllocClass(java_lang_Class.get(), sizeof(Class))); CHECK(java_lang_Object.get() != NULL); // backfill Object as the super class of Class java_lang_Class->SetSuperClass(java_lang_Object.get()); java_lang_Object->SetStatus(Class::kStatusLoaded); // Object[] next to hold class roots SirtRef object_array_class(AllocClass(java_lang_Class.get(), sizeof(Class))); object_array_class->SetComponentType(java_lang_Object.get()); // Setup the char class to be used for char[] SirtRef char_class(AllocClass(java_lang_Class.get(), sizeof(Class))); // Setup the char[] class to be used for String SirtRef char_array_class(AllocClass(java_lang_Class.get(), sizeof(Class))); char_array_class->SetComponentType(char_class.get()); CharArray::SetArrayClass(char_array_class.get()); // Setup String SirtRef java_lang_String(AllocClass(java_lang_Class.get(), sizeof(StringClass))); String::SetClass(java_lang_String.get()); java_lang_String->SetObjectSize(sizeof(String)); java_lang_String->SetStatus(Class::kStatusResolved); // Create storage for root classes, save away our work so far (requires // descriptors) class_roots_ = ObjectArray::Alloc(object_array_class.get(), kClassRootsMax); CHECK(class_roots_ != NULL); SetClassRoot(kJavaLangClass, java_lang_Class.get()); SetClassRoot(kJavaLangObject, java_lang_Object.get()); SetClassRoot(kClassArrayClass, class_array_class.get()); SetClassRoot(kObjectArrayClass, object_array_class.get()); SetClassRoot(kCharArrayClass, char_array_class.get()); SetClassRoot(kJavaLangString, java_lang_String.get()); // Setup the primitive type classes. SetClassRoot(kPrimitiveBoolean, CreatePrimitiveClass("Z", Primitive::kPrimBoolean)); SetClassRoot(kPrimitiveByte, CreatePrimitiveClass("B", Primitive::kPrimByte)); SetClassRoot(kPrimitiveShort, CreatePrimitiveClass("S", Primitive::kPrimShort)); SetClassRoot(kPrimitiveInt, CreatePrimitiveClass("I", Primitive::kPrimInt)); SetClassRoot(kPrimitiveLong, CreatePrimitiveClass("J", Primitive::kPrimLong)); SetClassRoot(kPrimitiveFloat, CreatePrimitiveClass("F", Primitive::kPrimFloat)); SetClassRoot(kPrimitiveDouble, CreatePrimitiveClass("D", Primitive::kPrimDouble)); SetClassRoot(kPrimitiveVoid, CreatePrimitiveClass("V", Primitive::kPrimVoid)); // Create array interface entries to populate once we can load system classes array_iftable_ = AllocObjectArray(2); // Create int array type for AllocDexCache (done in AppendToBootClassPath) SirtRef int_array_class(AllocClass(java_lang_Class.get(), sizeof(Class))); int_array_class->SetComponentType(GetClassRoot(kPrimitiveInt)); IntArray::SetArrayClass(int_array_class.get()); SetClassRoot(kIntArrayClass, int_array_class.get()); // now that these are registered, we can use AllocClass() and AllocObjectArray // setup boot_class_path_ and register class_path now that we can // use AllocObjectArray to create DexCache instances CHECK_NE(0U, boot_class_path.size()); for (size_t i = 0; i != boot_class_path.size(); ++i) { const DexFile* dex_file = boot_class_path[i]; CHECK(dex_file != NULL); AppendToBootClassPath(*dex_file); } // Constructor, Field, and Method are necessary so that FindClass can link members SirtRef java_lang_reflect_Constructor(AllocClass(java_lang_Class.get(), sizeof(MethodClass))); CHECK(java_lang_reflect_Constructor.get() != NULL); java_lang_reflect_Constructor->SetObjectSize(sizeof(Method)); SetClassRoot(kJavaLangReflectConstructor, java_lang_reflect_Constructor.get()); java_lang_reflect_Constructor->SetStatus(Class::kStatusResolved); SirtRef java_lang_reflect_Field(AllocClass(java_lang_Class.get(), sizeof(FieldClass))); CHECK(java_lang_reflect_Field.get() != NULL); java_lang_reflect_Field->SetObjectSize(sizeof(Field)); SetClassRoot(kJavaLangReflectField, java_lang_reflect_Field.get()); java_lang_reflect_Field->SetStatus(Class::kStatusResolved); Field::SetClass(java_lang_reflect_Field.get()); SirtRef java_lang_reflect_Method(AllocClass(java_lang_Class.get(), sizeof(MethodClass))); CHECK(java_lang_reflect_Method.get() != NULL); java_lang_reflect_Method->SetObjectSize(sizeof(Method)); SetClassRoot(kJavaLangReflectMethod, java_lang_reflect_Method.get()); java_lang_reflect_Method->SetStatus(Class::kStatusResolved); Method::SetClasses(java_lang_reflect_Constructor.get(), java_lang_reflect_Method.get()); // now we can use FindSystemClass // run char class through InitializePrimitiveClass to finish init InitializePrimitiveClass(char_class.get(), "C", Primitive::kPrimChar); SetClassRoot(kPrimitiveChar, char_class.get()); // needs descriptor // Object and String need to be rerun through FindSystemClass to finish init java_lang_Object->SetStatus(Class::kStatusNotReady); Class* Object_class = FindSystemClass("Ljava/lang/Object;"); CHECK_EQ(java_lang_Object.get(), Object_class); CHECK_EQ(java_lang_Object->GetObjectSize(), sizeof(Object)); java_lang_String->SetStatus(Class::kStatusNotReady); Class* String_class = FindSystemClass("Ljava/lang/String;"); CHECK_EQ(java_lang_String.get(), String_class); CHECK_EQ(java_lang_String->GetObjectSize(), sizeof(String)); // Setup the primitive array type classes - can't be done until Object has a vtable SetClassRoot(kBooleanArrayClass, FindSystemClass("[Z")); BooleanArray::SetArrayClass(GetClassRoot(kBooleanArrayClass)); SetClassRoot(kByteArrayClass, FindSystemClass("[B")); ByteArray::SetArrayClass(GetClassRoot(kByteArrayClass)); Class* found_char_array_class = FindSystemClass("[C"); CHECK_EQ(char_array_class.get(), found_char_array_class); SetClassRoot(kShortArrayClass, FindSystemClass("[S")); ShortArray::SetArrayClass(GetClassRoot(kShortArrayClass)); Class* found_int_array_class = FindSystemClass("[I"); CHECK_EQ(int_array_class.get(), found_int_array_class); SetClassRoot(kLongArrayClass, FindSystemClass("[J")); LongArray::SetArrayClass(GetClassRoot(kLongArrayClass)); SetClassRoot(kFloatArrayClass, FindSystemClass("[F")); FloatArray::SetArrayClass(GetClassRoot(kFloatArrayClass)); SetClassRoot(kDoubleArrayClass, FindSystemClass("[D")); DoubleArray::SetArrayClass(GetClassRoot(kDoubleArrayClass)); Class* found_class_array_class = FindSystemClass("[Ljava/lang/Class;"); CHECK_EQ(class_array_class.get(), found_class_array_class); Class* found_object_array_class = FindSystemClass("[Ljava/lang/Object;"); CHECK_EQ(object_array_class.get(), found_object_array_class); // Setup the single, global copies of "interfaces" and "iftable" Class* java_lang_Cloneable = FindSystemClass("Ljava/lang/Cloneable;"); CHECK(java_lang_Cloneable != NULL); Class* java_io_Serializable = FindSystemClass("Ljava/io/Serializable;"); CHECK(java_io_Serializable != NULL); // We assume that Cloneable/Serializable don't have superinterfaces -- // normally we'd have to crawl up and explicitly list all of the // supers as well. array_iftable_->Set(0, AllocInterfaceEntry(java_lang_Cloneable)); array_iftable_->Set(1, AllocInterfaceEntry(java_io_Serializable)); // Sanity check Class[] and Object[]'s interfaces ClassHelper kh(class_array_class.get(), this); CHECK_EQ(java_lang_Cloneable, kh.GetDirectInterface(0)); CHECK_EQ(java_io_Serializable, kh.GetDirectInterface(1)); kh.ChangeClass(object_array_class.get()); CHECK_EQ(java_lang_Cloneable, kh.GetDirectInterface(0)); CHECK_EQ(java_io_Serializable, kh.GetDirectInterface(1)); // run Class, Constructor, Field, and Method through FindSystemClass. // this initializes their dex_cache_ fields and register them in classes_. Class* Class_class = FindSystemClass("Ljava/lang/Class;"); CHECK_EQ(java_lang_Class.get(), Class_class); java_lang_reflect_Constructor->SetStatus(Class::kStatusNotReady); Class* Constructor_class = FindSystemClass("Ljava/lang/reflect/Constructor;"); CHECK_EQ(java_lang_reflect_Constructor.get(), Constructor_class); java_lang_reflect_Field->SetStatus(Class::kStatusNotReady); Class* Field_class = FindSystemClass("Ljava/lang/reflect/Field;"); CHECK_EQ(java_lang_reflect_Field.get(), Field_class); java_lang_reflect_Method->SetStatus(Class::kStatusNotReady); Class* Method_class = FindSystemClass("Ljava/lang/reflect/Method;"); CHECK_EQ(java_lang_reflect_Method.get(), Method_class); // End of special init trickery, subsequent classes may be loaded via FindSystemClass // Create java.lang.reflect.Proxy root Class* java_lang_reflect_Proxy = FindSystemClass("Ljava/lang/reflect/Proxy;"); SetClassRoot(kJavaLangReflectProxy, java_lang_reflect_Proxy); // java.lang.ref classes need to be specially flagged, but otherwise are normal classes Class* java_lang_ref_Reference = FindSystemClass("Ljava/lang/ref/Reference;"); SetClassRoot(kJavaLangRefReference, java_lang_ref_Reference); Class* java_lang_ref_FinalizerReference = FindSystemClass("Ljava/lang/ref/FinalizerReference;"); java_lang_ref_FinalizerReference->SetAccessFlags( java_lang_ref_FinalizerReference->GetAccessFlags() | kAccClassIsReference | kAccClassIsFinalizerReference); Class* java_lang_ref_PhantomReference = FindSystemClass("Ljava/lang/ref/PhantomReference;"); java_lang_ref_PhantomReference->SetAccessFlags( java_lang_ref_PhantomReference->GetAccessFlags() | kAccClassIsReference | kAccClassIsPhantomReference); Class* java_lang_ref_SoftReference = FindSystemClass("Ljava/lang/ref/SoftReference;"); java_lang_ref_SoftReference->SetAccessFlags( java_lang_ref_SoftReference->GetAccessFlags() | kAccClassIsReference); Class* java_lang_ref_WeakReference = FindSystemClass("Ljava/lang/ref/WeakReference;"); java_lang_ref_WeakReference->SetAccessFlags( java_lang_ref_WeakReference->GetAccessFlags() | kAccClassIsReference | kAccClassIsWeakReference); // Setup the ClassLoaders, verifying the object_size_ Class* java_lang_ClassLoader = FindSystemClass("Ljava/lang/ClassLoader;"); CHECK_EQ(java_lang_ClassLoader->GetObjectSize(), sizeof(ClassLoader)); SetClassRoot(kJavaLangClassLoader, java_lang_ClassLoader); Class* dalvik_system_BaseDexClassLoader = FindSystemClass("Ldalvik/system/BaseDexClassLoader;"); CHECK_EQ(dalvik_system_BaseDexClassLoader->GetObjectSize(), sizeof(BaseDexClassLoader)); SetClassRoot(kDalvikSystemBaseDexClassLoader, dalvik_system_BaseDexClassLoader); Class* dalvik_system_PathClassLoader = FindSystemClass("Ldalvik/system/PathClassLoader;"); CHECK_EQ(dalvik_system_PathClassLoader->GetObjectSize(), sizeof(PathClassLoader)); SetClassRoot(kDalvikSystemPathClassLoader, dalvik_system_PathClassLoader); PathClassLoader::SetClass(dalvik_system_PathClassLoader); // Set up java.lang.Throwable, java.lang.ClassNotFoundException, and // java.lang.StackTraceElement as a convenience SetClassRoot(kJavaLangThrowable, FindSystemClass("Ljava/lang/Throwable;")); Throwable::SetClass(GetClassRoot(kJavaLangThrowable)); SetClassRoot(kJavaLangClassNotFoundException, FindSystemClass("Ljava/lang/ClassNotFoundException;")); SetClassRoot(kJavaLangStackTraceElement, FindSystemClass("Ljava/lang/StackTraceElement;")); SetClassRoot(kJavaLangStackTraceElementArrayClass, FindSystemClass("[Ljava/lang/StackTraceElement;")); StackTraceElement::SetClass(GetClassRoot(kJavaLangStackTraceElement)); FinishInit(); VLOG(startup) << "ClassLinker::InitFromCompiler exiting"; } void ClassLinker::FinishInit() { VLOG(startup) << "ClassLinker::FinishInit entering"; // Let the heap know some key offsets into java.lang.ref instances // Note: we hard code the field indexes here rather than using FindInstanceField // as the types of the field can't be resolved prior to the runtime being // fully initialized Class* java_lang_ref_Reference = GetClassRoot(kJavaLangRefReference); Class* java_lang_ref_ReferenceQueue = FindSystemClass("Ljava/lang/ref/ReferenceQueue;"); Class* java_lang_ref_FinalizerReference = FindSystemClass("Ljava/lang/ref/FinalizerReference;"); const DexFile& java_lang_dex = FindDexFile(java_lang_ref_Reference->GetDexCache()); Field* pendingNext = java_lang_ref_Reference->GetInstanceField(0); FieldHelper fh(pendingNext, this); CHECK_STREQ(fh.GetName(), "pendingNext"); CHECK_EQ(java_lang_dex.GetFieldId(pendingNext->GetDexFieldIndex()).type_idx_, java_lang_ref_Reference->GetDexTypeIndex()); Field* queue = java_lang_ref_Reference->GetInstanceField(1); fh.ChangeField(queue); CHECK_STREQ(fh.GetName(), "queue"); CHECK_EQ(java_lang_dex.GetFieldId(queue->GetDexFieldIndex()).type_idx_, java_lang_ref_ReferenceQueue->GetDexTypeIndex()); Field* queueNext = java_lang_ref_Reference->GetInstanceField(2); fh.ChangeField(queueNext); CHECK_STREQ(fh.GetName(), "queueNext"); CHECK_EQ(java_lang_dex.GetFieldId(queueNext->GetDexFieldIndex()).type_idx_, java_lang_ref_Reference->GetDexTypeIndex()); Field* referent = java_lang_ref_Reference->GetInstanceField(3); fh.ChangeField(referent); CHECK_STREQ(fh.GetName(), "referent"); CHECK_EQ(java_lang_dex.GetFieldId(referent->GetDexFieldIndex()).type_idx_, GetClassRoot(kJavaLangObject)->GetDexTypeIndex()); Field* zombie = java_lang_ref_FinalizerReference->GetInstanceField(2); fh.ChangeField(zombie); CHECK_STREQ(fh.GetName(), "zombie"); CHECK_EQ(java_lang_dex.GetFieldId(zombie->GetDexFieldIndex()).type_idx_, GetClassRoot(kJavaLangObject)->GetDexTypeIndex()); Heap* heap = Runtime::Current()->GetHeap(); heap->SetReferenceOffsets(referent->GetOffset(), queue->GetOffset(), queueNext->GetOffset(), pendingNext->GetOffset(), zombie->GetOffset()); // ensure all class_roots_ are initialized for (size_t i = 0; i < kClassRootsMax; i++) { ClassRoot class_root = static_cast(i); Class* klass = GetClassRoot(class_root); CHECK(klass != NULL); DCHECK(klass->IsArrayClass() || klass->IsPrimitive() || klass->GetDexCache() != NULL); // note SetClassRoot does additional validation. // if possible add new checks there to catch errors early } CHECK(array_iftable_ != NULL); // disable the slow paths in FindClass and CreatePrimitiveClass now // that Object, Class, and Object[] are setup init_done_ = true; VLOG(startup) << "ClassLinker::FinishInit exiting"; } void ClassLinker::RunRootClinits() { Thread* self = Thread::Current(); for (size_t i = 0; i < ClassLinker::kClassRootsMax; ++i) { Class* c = GetClassRoot(ClassRoot(i)); if (!c->IsArrayClass() && !c->IsPrimitive()) { EnsureInitialized(GetClassRoot(ClassRoot(i)), true, true); CHECK(!self->IsExceptionPending()) << PrettyTypeOf(self->GetException()); } } } bool ClassLinker::GenerateOatFile(const std::string& dex_filename, int oat_fd, const std::string& oat_cache_filename) { std::string dex2oat_string(GetAndroidRoot()); dex2oat_string += (kIsDebugBuild ? "/bin/dex2oatd" : "/bin/dex2oat"); const char* dex2oat = dex2oat_string.c_str(); const char* class_path = Runtime::Current()->GetClassPathString().c_str(); Heap* heap = Runtime::Current()->GetHeap(); std::string boot_image_option_string("--boot-image="); boot_image_option_string += heap->GetImageSpace()->GetImageFilename(); const char* boot_image_option = boot_image_option_string.c_str(); std::string dex_file_option_string("--dex-file="); dex_file_option_string += dex_filename; const char* dex_file_option = dex_file_option_string.c_str(); std::string oat_fd_option_string("--oat-fd="); StringAppendF(&oat_fd_option_string, "%d", oat_fd); const char* oat_fd_option = oat_fd_option_string.c_str(); std::string oat_location_option_string("--oat-location="); oat_location_option_string += oat_cache_filename; const char* oat_location_option = oat_location_option_string.c_str(); // fork and exec dex2oat pid_t pid = fork(); if (pid == 0) { // no allocation allowed between fork and exec // change process groups, so we don't get reaped by ProcessManager setpgid(0, 0); VLOG(class_linker) << dex2oat << " --runtime-arg -Xms64m" << " --runtime-arg -Xmx64m" << " --runtime-arg -classpath" << " --runtime-arg " << class_path << " " << boot_image_option << " " << dex_file_option << " " << oat_fd_option << " " << oat_location_option; execl(dex2oat, dex2oat, "--runtime-arg", "-Xms64m", "--runtime-arg", "-Xmx64m", "--runtime-arg", "-classpath", "--runtime-arg", class_path, boot_image_option, dex_file_option, oat_fd_option, oat_location_option, NULL); PLOG(FATAL) << "execl(" << dex2oat << ") failed"; return false; } else { // wait for dex2oat to finish int status; pid_t got_pid = TEMP_FAILURE_RETRY(waitpid(pid, &status, 0)); if (got_pid != pid) { PLOG(ERROR) << "waitpid failed: wanted " << pid << ", got " << got_pid; return false; } if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) { LOG(ERROR) << dex2oat << " failed with dex-file=" << dex_filename; return false; } } return true; } void ClassLinker::RegisterOatFile(const OatFile& oat_file) { MutexLock mu(dex_lock_); RegisterOatFileLocked(oat_file); } void ClassLinker::RegisterOatFileLocked(const OatFile& oat_file) { dex_lock_.AssertHeld(); oat_files_.push_back(&oat_file); } OatFile* ClassLinker::OpenOat(const ImageSpace* space) { MutexLock mu(dex_lock_); const Runtime* runtime = Runtime::Current(); const ImageHeader& image_header = space->GetImageHeader(); // Grab location but don't use Object::AsString as we haven't yet initialized the roots to // check the down cast String* oat_location = down_cast(image_header.GetImageRoot(ImageHeader::kOatLocation)); std::string oat_filename; oat_filename += runtime->GetHostPrefix(); oat_filename += oat_location->ToModifiedUtf8(); OatFile* oat_file = OatFile::Open(oat_filename, oat_filename, image_header.GetOatBegin(), OatFile::kRelocNone); VLOG(startup) << "ClassLinker::OpenOat entering oat_filename=" << oat_filename; if (oat_file == NULL) { LOG(ERROR) << "Failed to open oat file " << oat_filename << " referenced from image."; return NULL; } uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum(); uint32_t image_oat_checksum = image_header.GetOatChecksum(); if (oat_checksum != image_oat_checksum) { LOG(ERROR) << "Failed to match oat file checksum " << std::hex << oat_checksum << " to expected oat checksum " << std::hex << oat_checksum << " in image"; return NULL; } RegisterOatFileLocked(*oat_file); VLOG(startup) << "ClassLinker::OpenOat exiting"; return oat_file; } const OatFile* ClassLinker::FindOpenedOatFileForDexFile(const DexFile& dex_file) { return FindOpenedOatFileFromDexLocation(dex_file.GetLocation()); } const OatFile* ClassLinker::FindOpenedOatFileFromDexLocation(const std::string& dex_location) { MutexLock mu(dex_lock_); for (size_t i = 0; i < oat_files_.size(); i++) { const OatFile* oat_file = oat_files_[i]; DCHECK(oat_file != NULL); const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(dex_location, false); if (oat_dex_file != NULL) { return oat_file; } } return NULL; } static const DexFile* FindDexFileInOatLocation(const std::string& dex_location, uint32_t dex_location_checksum, const std::string& oat_location) { UniquePtr oat_file( OatFile::Open(oat_location, oat_location, NULL, OatFile::kRelocAll)); if (oat_file.get() == NULL) { return NULL; } Runtime* runtime = Runtime::Current(); const ImageHeader& image_header = runtime->GetHeap()->GetImageSpace()->GetImageHeader(); if (oat_file->GetOatHeader().GetImageFileLocationChecksum() != image_header.GetOatChecksum()) { return NULL; } const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(dex_location); if (oat_dex_file == NULL) { return NULL; } if (oat_dex_file->GetDexFileLocationChecksum() != dex_location_checksum) { return NULL; } runtime->GetClassLinker()->RegisterOatFile(*oat_file.release()); return oat_dex_file->OpenDexFile(); } const DexFile* ClassLinker::FindOrCreateOatFileForDexLocation(const std::string& dex_location, const std::string& oat_location) { uint32_t dex_location_checksum; if (!DexFile::GetChecksum(dex_location, dex_location_checksum)) { LOG(ERROR) << "Failed to compute checksum '" << dex_location << "'"; return NULL; } // Check if we already have an up-to-date output file const DexFile* dex_file = FindDexFileInOatLocation(dex_location, dex_location_checksum, oat_location); if (dex_file != NULL) { return dex_file; } // Generate the output oat file for the dex file ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); UniquePtr file(OS::OpenFile(oat_location.c_str(), true)); if (file.get() == NULL) { LOG(ERROR) << "Failed to create oat file: " << oat_location; return NULL; } if (!class_linker->GenerateOatFile(dex_location, file->Fd(), oat_location)) { LOG(ERROR) << "Failed to generate oat file: " << oat_location; return NULL; } // Open the oat from file descriptor we passed to GenerateOatFile if (lseek(file->Fd(), 0, SEEK_SET) != 0) { LOG(ERROR) << "Failed to seek to start of generated oat file: " << oat_location; return NULL; } const OatFile* oat_file = OatFile::Open(*file.get(), oat_location, NULL, OatFile::kRelocAll); if (oat_file == NULL) { LOG(ERROR) << "Failed to open generated oat file: " << oat_location; return NULL; } class_linker->RegisterOatFile(*oat_file); const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(dex_location); if (oat_dex_file == NULL) { LOG(ERROR) << "Failed to find dex file in generated oat file: " << oat_location; return NULL; } return oat_dex_file->OpenDexFile(); } bool ClassLinker::VerifyOatFileChecksums(const OatFile* oat_file, const std::string& dex_location, uint32_t dex_location_checksum) { Runtime* runtime = Runtime::Current(); const ImageHeader& image_header = runtime->GetHeap()->GetImageSpace()->GetImageHeader(); uint32_t image_checksum = image_header.GetOatChecksum(); bool image_check = (oat_file->GetOatHeader().GetImageFileLocationChecksum() == image_checksum); const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(dex_location); if (oat_dex_file == NULL) { LOG(ERROR) << ".oat file " << oat_file->GetLocation() << " does not contain contents for " << dex_location; std::vector oat_dex_files = oat_file->GetOatDexFiles(); for (size_t i = 0; i < oat_dex_files.size(); i++) { const OatFile::OatDexFile* oat_dex_file = oat_dex_files[i]; LOG(ERROR) << ".oat file " << oat_file->GetLocation() << " contains contents for " << oat_dex_file->GetDexFileLocation(); } return false; } bool dex_check = (dex_location_checksum == oat_dex_file->GetDexFileLocationChecksum()); if (image_check && dex_check) { return true; } if (!image_check) { std::string image_file(image_header.GetImageRoot( ImageHeader::kOatLocation)->AsString()->ToModifiedUtf8()); LOG(WARNING) << ".oat file " << oat_file->GetLocation() << " checksum ( " << std::hex << oat_dex_file->GetDexFileLocationChecksum() << ") mismatch with " << image_file << " (" << std::hex << image_checksum << ")"; } if (!dex_check) { LOG(WARNING) << ".oat file " << oat_file->GetLocation() << " checksum ( " << std::hex << oat_dex_file->GetDexFileLocationChecksum() << ") mismatch with " << dex_location << " (" << std::hex << dex_location_checksum << ")"; } return false; } const DexFile* ClassLinker::VerifyAndOpenDexFileFromOatFile(const OatFile* oat_file, const std::string& dex_location, uint32_t dex_location_checksum) { bool verified = VerifyOatFileChecksums(oat_file, dex_location, dex_location_checksum); if (!verified) { return NULL; } RegisterOatFileLocked(*oat_file); return oat_file->GetOatDexFile(dex_location)->OpenDexFile(); } const DexFile* ClassLinker::FindDexFileInOatFileFromDexLocation(const std::string& dex_location) { MutexLock mu(dex_lock_); const OatFile* open_oat_file = FindOpenedOatFileFromDexLocation(dex_location); if (open_oat_file != NULL) { return open_oat_file->GetOatDexFile(dex_location)->OpenDexFile(); } // Look for an existing file next to dex. for example, for // /foo/bar/baz.jar, look for /foo/bar/baz.jar.oat. std::string oat_filename(OatFile::DexFilenameToOatFilename(dex_location)); const OatFile* oat_file = FindOatFileFromOatLocation(oat_filename); if (oat_file != NULL) { uint32_t dex_location_checksum; if (!DexFile::GetChecksum(dex_location, dex_location_checksum)) { // If no classes.dex found in dex_location, it has been stripped, assume oat is up-to-date. // This is the common case in user builds for jar's and apk's in the /system directory. const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(dex_location); CHECK(oat_dex_file != NULL) << oat_filename << " " << dex_location; RegisterOatFileLocked(*oat_file); return oat_dex_file->OpenDexFile(); } const DexFile* dex_file = VerifyAndOpenDexFileFromOatFile(oat_file, dex_location, dex_location_checksum); if (dex_file != NULL) { return dex_file; } } // Look for an existing file in the art-cache, validating the result if found // not found in /foo/bar/baz.oat? try /data/art-cache/foo@bar@baz.oat std::string cache_location(GetArtCacheFilenameOrDie(oat_filename)); oat_file = FindOatFileFromOatLocation(cache_location); if (oat_file != NULL) { uint32_t dex_location_checksum; if (!DexFile::GetChecksum(dex_location, dex_location_checksum)) { LOG(WARNING) << "Failed to compute checksum: " << dex_location; return NULL; } const DexFile* dex_file = VerifyAndOpenDexFileFromOatFile(oat_file, dex_location, dex_location_checksum); if (dex_file != NULL) { return dex_file; } if (TEMP_FAILURE_RETRY(unlink(oat_file->GetLocation().c_str())) != 0) { PLOG(FATAL) << "Failed to remove obsolete .oat file " << oat_file->GetLocation(); } } LOG(INFO) << "Failed to open oat file from " << oat_filename << " or " << cache_location << "."; // Try to generate oat file if it wasn't found or was obsolete. std::string oat_cache_filename(GetArtCacheFilenameOrDie(oat_filename)); return FindOrCreateOatFileForDexLocation(dex_location, oat_cache_filename); } const OatFile* ClassLinker::FindOpenedOatFileFromOatLocation(const std::string& oat_location) { MutexLock mu(dex_lock_); for (size_t i = 0; i < oat_files_.size(); i++) { const OatFile* oat_file = oat_files_[i]; DCHECK(oat_file != NULL); if (oat_file->GetLocation() == oat_location) { return oat_file; } } return NULL; } const OatFile* ClassLinker::FindOatFileFromOatLocation(const std::string& oat_location) { MutexLock mu(dex_lock_); const OatFile* oat_file = FindOpenedOatFileFromOatLocation(oat_location); if (oat_file != NULL) { return oat_file; } oat_file = OatFile::Open(oat_location, oat_location, NULL, OatFile::kRelocAll); if (oat_file == NULL) { return NULL; } CHECK(oat_file != NULL) << oat_location; return oat_file; } void ClassLinker::InitFromImage() { VLOG(startup) << "ClassLinker::InitFromImage entering"; CHECK(!init_done_); Heap* heap = Runtime::Current()->GetHeap(); ImageSpace* space = heap->GetImageSpace(); OatFile* oat_file = OpenOat(space); CHECK(oat_file != NULL) << "Failed to open oat file for image"; CHECK_EQ(oat_file->GetOatHeader().GetImageFileLocationChecksum(), 0U); CHECK(oat_file->GetOatHeader().GetImageFileLocation().empty()); Object* dex_caches_object = space->GetImageHeader().GetImageRoot(ImageHeader::kDexCaches); ObjectArray* dex_caches = dex_caches_object->AsObjectArray(); // Special case of setting up the String class early so that we can test arbitrary objects // as being Strings or not Class* java_lang_String = space->GetImageHeader().GetImageRoot(ImageHeader::kClassRoots) ->AsObjectArray()->Get(kJavaLangString); String::SetClass(java_lang_String); CHECK_EQ(oat_file->GetOatHeader().GetDexFileCount(), static_cast(dex_caches->GetLength())); for (int i = 0; i < dex_caches->GetLength(); i++) { SirtRef dex_cache(dex_caches->Get(i)); const std::string& dex_file_location(dex_cache->GetLocation()->ToModifiedUtf8()); const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(dex_file_location); const DexFile* dex_file = oat_dex_file->OpenDexFile(); if (dex_file == NULL) { LOG(FATAL) << "Failed to open dex file " << dex_file_location << " from within oat file " << oat_file->GetLocation(); } CHECK_EQ(dex_file->GetLocationChecksum(), oat_dex_file->GetDexFileLocationChecksum()); AppendToBootClassPath(*dex_file, dex_cache); } // reinit clases_ table const Spaces& vec = heap->GetSpaces(); for (Spaces::const_iterator cur = vec.begin(); cur != vec.end(); ++cur) { (*cur)->GetLiveBitmap()->Walk(InitFromImageCallback, this); } // reinit class_roots_ Object* class_roots_object = heap->GetImageSpace()->GetImageHeader().GetImageRoot(ImageHeader::kClassRoots); class_roots_ = class_roots_object->AsObjectArray(); // reinit array_iftable_ from any array class instance, they should be == array_iftable_ = GetClassRoot(kObjectArrayClass)->GetIfTable(); DCHECK(array_iftable_ == GetClassRoot(kBooleanArrayClass)->GetIfTable()); // String class root was set above Field::SetClass(GetClassRoot(kJavaLangReflectField)); Method::SetClasses(GetClassRoot(kJavaLangReflectConstructor), GetClassRoot(kJavaLangReflectMethod)); BooleanArray::SetArrayClass(GetClassRoot(kBooleanArrayClass)); ByteArray::SetArrayClass(GetClassRoot(kByteArrayClass)); CharArray::SetArrayClass(GetClassRoot(kCharArrayClass)); DoubleArray::SetArrayClass(GetClassRoot(kDoubleArrayClass)); FloatArray::SetArrayClass(GetClassRoot(kFloatArrayClass)); IntArray::SetArrayClass(GetClassRoot(kIntArrayClass)); LongArray::SetArrayClass(GetClassRoot(kLongArrayClass)); ShortArray::SetArrayClass(GetClassRoot(kShortArrayClass)); PathClassLoader::SetClass(GetClassRoot(kDalvikSystemPathClassLoader)); Throwable::SetClass(GetClassRoot(kJavaLangThrowable)); StackTraceElement::SetClass(GetClassRoot(kJavaLangStackTraceElement)); FinishInit(); VLOG(startup) << "ClassLinker::InitFromImage exiting"; } void ClassLinker::InitFromImageCallback(Object* obj, void* arg) { DCHECK(obj != NULL); DCHECK(arg != NULL); ClassLinker* class_linker = reinterpret_cast(arg); if (obj->GetClass()->IsStringClass()) { class_linker->intern_table_->RegisterStrong(obj->AsString()); return; } if (obj->IsClass()) { // restore class to ClassLinker::classes_ table Class* klass = obj->AsClass(); ClassHelper kh(klass, class_linker); Class* existing = class_linker->InsertClass(kh.GetDescriptor(), klass, true); DCHECK(existing == NULL) << kh.GetDescriptor(); return; } } // Keep in sync with InitCallback. Anything we visit, we need to // reinit references to when reinitializing a ClassLinker from a // mapped image. void ClassLinker::VisitRoots(Heap::RootVisitor* visitor, void* arg) const { visitor(class_roots_, arg); { MutexLock mu(dex_lock_); for (size_t i = 0; i < dex_caches_.size(); i++) { visitor(dex_caches_[i], arg); } } { MutexLock mu(classes_lock_); typedef Table::const_iterator It; // TODO: C++0x auto for (It it = classes_.begin(), end = classes_.end(); it != end; ++it) { visitor(it->second, arg); } // We deliberately ignore the class roots in the image since we // handle image roots by using the MS/CMS rescanning of dirty cards. } visitor(array_iftable_, arg); } void ClassLinker::VisitClasses(ClassVisitor* visitor, void* arg) const { MutexLock mu(classes_lock_); typedef Table::const_iterator It; // TODO: C++0x auto for (It it = classes_.begin(), end = classes_.end(); it != end; ++it) { if (!visitor(it->second, arg)) { return; } } for (It it = image_classes_.begin(), end = image_classes_.end(); it != end; ++it) { if (!visitor(it->second, arg)) { return; } } } ClassLinker::~ClassLinker() { String::ResetClass(); Field::ResetClass(); Method::ResetClasses(); BooleanArray::ResetArrayClass(); ByteArray::ResetArrayClass(); CharArray::ResetArrayClass(); DoubleArray::ResetArrayClass(); FloatArray::ResetArrayClass(); IntArray::ResetArrayClass(); LongArray::ResetArrayClass(); ShortArray::ResetArrayClass(); PathClassLoader::ResetClass(); Throwable::ResetClass(); StackTraceElement::ResetClass(); STLDeleteElements(&boot_class_path_); STLDeleteElements(&oat_files_); } DexCache* ClassLinker::AllocDexCache(const DexFile& dex_file) { SirtRef dex_cache(down_cast(AllocObjectArray(DexCache::LengthAsArray()))); if (dex_cache.get() == NULL) { return NULL; } SirtRef location(intern_table_->InternStrong(dex_file.GetLocation().c_str())); if (location.get() == NULL) { return NULL; } SirtRef > strings(AllocObjectArray(dex_file.NumStringIds())); if (strings.get() == NULL) { return NULL; } SirtRef > types(AllocClassArray(dex_file.NumTypeIds())); if (types.get() == NULL) { return NULL; } SirtRef > methods(AllocObjectArray(dex_file.NumMethodIds())); if (methods.get() == NULL) { return NULL; } SirtRef > fields(AllocObjectArray(dex_file.NumFieldIds())); if (fields.get() == NULL) { return NULL; } SirtRef > initialized_static_storage(AllocObjectArray(dex_file.NumTypeIds())); if (initialized_static_storage.get() == NULL) { return NULL; } dex_cache->Init(location.get(), strings.get(), types.get(), methods.get(), fields.get(), initialized_static_storage.get()); return dex_cache.get(); } InterfaceEntry* ClassLinker::AllocInterfaceEntry(Class* interface) { DCHECK(interface->IsInterface()); SirtRef > array(AllocObjectArray(InterfaceEntry::LengthAsArray())); SirtRef interface_entry(down_cast(array.get())); interface_entry->SetInterface(interface); return interface_entry.get(); } Class* ClassLinker::AllocClass(Class* java_lang_Class, size_t class_size) { DCHECK_GE(class_size, sizeof(Class)); Heap* heap = Runtime::Current()->GetHeap(); SirtRef klass(heap->AllocObject(java_lang_Class, class_size)->AsClass()); klass->SetPrimitiveType(Primitive::kPrimNot); // default to not being primitive klass->SetClassSize(class_size); return klass.get(); } Class* ClassLinker::AllocClass(size_t class_size) { return AllocClass(GetClassRoot(kJavaLangClass), class_size); } Field* ClassLinker::AllocField() { return down_cast(GetClassRoot(kJavaLangReflectField)->AllocObject()); } Method* ClassLinker::AllocMethod() { return down_cast(GetClassRoot(kJavaLangReflectMethod)->AllocObject()); } ObjectArray* ClassLinker::AllocStackTraceElementArray(size_t length) { return ObjectArray::Alloc( GetClassRoot(kJavaLangStackTraceElementArrayClass), length); } static Class* EnsureResolved(Class* klass) { DCHECK(klass != NULL); // Wait for the class if it has not already been linked. Thread* self = Thread::Current(); if (!klass->IsResolved() && !klass->IsErroneous()) { ObjectLock lock(klass); // Check for circular dependencies between classes. if (!klass->IsResolved() && klass->GetClinitThreadId() == self->GetTid()) { self->ThrowNewException("Ljava/lang/ClassCircularityError;", PrettyDescriptor(klass).c_str()); klass->SetStatus(Class::kStatusError); return NULL; } // Wait for the pending initialization to complete. while (!klass->IsResolved() && !klass->IsErroneous()) { lock.Wait(); } } if (klass->IsErroneous()) { ThrowEarlierClassFailure(klass); return NULL; } // Return the loaded class. No exceptions should be pending. CHECK(klass->IsResolved()) << PrettyClass(klass); CHECK(!self->IsExceptionPending()) << PrettyClass(klass) << " " << PrettyTypeOf(self->GetException()); return klass; } Class* ClassLinker::FindSystemClass(const char* descriptor) { return FindClass(descriptor, NULL); } Class* ClassLinker::FindClass(const char* descriptor, ClassLoader* class_loader) { DCHECK_NE(*descriptor, '\0') << "descriptor is empty string"; Thread* self = Thread::Current(); DCHECK(self != NULL); CHECK(!self->IsExceptionPending()) << PrettyTypeOf(self->GetException()); if (descriptor[1] == '\0') { // only the descriptors of primitive types should be 1 character long, also avoid class lookup // for primitive classes that aren't backed by dex files. return FindPrimitiveClass(descriptor[0]); } // Find the class in the loaded classes table. Class* klass = LookupClass(descriptor, class_loader); if (klass != NULL) { return EnsureResolved(klass); } // Class is not yet loaded. if (descriptor[0] == '[') { return CreateArrayClass(descriptor, class_loader); } else if (class_loader == NULL) { DexFile::ClassPathEntry pair = DexFile::FindInClassPath(descriptor, boot_class_path_); if (pair.second != NULL) { return DefineClass(descriptor, NULL, *pair.first, *pair.second); } } else if (Runtime::Current()->UseCompileTimeClassPath()) { // first try the boot class path Class* system_class = FindSystemClass(descriptor); if (system_class != NULL) { return system_class; } CHECK(self->IsExceptionPending()); self->ClearException(); // next try the compile time class path const std::vector& class_path = Runtime::Current()->GetCompileTimeClassPath(class_loader); DexFile::ClassPathEntry pair = DexFile::FindInClassPath(descriptor, class_path); if (pair.second != NULL) { return DefineClass(descriptor, class_loader, *pair.first, *pair.second); } } else { ScopedJniThreadState ts(self->GetJniEnv()); ScopedLocalRef class_loader_object(ts.Env(), ts.AddLocalReference(class_loader)); std::string class_name_string(DescriptorToDot(descriptor)); ScopedLocalRef result(ts.Env(), NULL); { ScopedThreadStateChange tsc(self, kNative); ScopedLocalRef class_name_object(ts.Env(), ts.Env()->NewStringUTF(class_name_string.c_str())); if (class_name_object.get() == NULL) { return NULL; } CHECK(class_loader_object.get() != NULL); result.reset(ts.Env()->CallObjectMethod(class_loader_object.get(), WellKnownClasses::java_lang_ClassLoader_loadClass, class_name_object.get())); } if (ts.Env()->ExceptionCheck()) { // If the ClassLoader threw, pass that exception up. return NULL; } else if (result.get() == NULL) { // broken loader - throw NPE to be compatible with Dalvik ThrowNullPointerException("ClassLoader.loadClass returned null for %s", class_name_string.c_str()); return NULL; } else { // success, return Class* return ts.Decode(result.get()); } } ThrowNoClassDefFoundError("Class %s not found", PrintableString(descriptor).c_str()); return NULL; } Class* ClassLinker::DefineClass(const StringPiece& descriptor, ClassLoader* class_loader, const DexFile& dex_file, const DexFile::ClassDef& dex_class_def) { SirtRef klass(NULL); // Load the class from the dex file. if (!init_done_) { // finish up init of hand crafted class_roots_ if (descriptor == "Ljava/lang/Object;") { klass.reset(GetClassRoot(kJavaLangObject)); } else if (descriptor == "Ljava/lang/Class;") { klass.reset(GetClassRoot(kJavaLangClass)); } else if (descriptor == "Ljava/lang/String;") { klass.reset(GetClassRoot(kJavaLangString)); } else if (descriptor == "Ljava/lang/reflect/Constructor;") { klass.reset(GetClassRoot(kJavaLangReflectConstructor)); } else if (descriptor == "Ljava/lang/reflect/Field;") { klass.reset(GetClassRoot(kJavaLangReflectField)); } else if (descriptor == "Ljava/lang/reflect/Method;") { klass.reset(GetClassRoot(kJavaLangReflectMethod)); } else { klass.reset(AllocClass(SizeOfClass(dex_file, dex_class_def))); } } else { klass.reset(AllocClass(SizeOfClass(dex_file, dex_class_def))); } klass->SetDexCache(FindDexCache(dex_file)); LoadClass(dex_file, dex_class_def, klass, class_loader); // Check for a pending exception during load Thread* self = Thread::Current(); if (self->IsExceptionPending()) { klass->SetStatus(Class::kStatusError); return NULL; } ObjectLock lock(klass.get()); klass->SetClinitThreadId(self->GetTid()); // Add the newly loaded class to the loaded classes table. SirtRef existing(InsertClass(descriptor, klass.get(), false)); if (existing.get() != NULL) { // We failed to insert because we raced with another thread. return EnsureResolved(existing.get()); } // Finish loading (if necessary) by finding parents CHECK(!klass->IsLoaded()); if (!LoadSuperAndInterfaces(klass, dex_file)) { // Loading failed. klass->SetStatus(Class::kStatusError); lock.NotifyAll(); return NULL; } CHECK(klass->IsLoaded()); // Link the class (if necessary) CHECK(!klass->IsResolved()); if (!LinkClass(klass, NULL)) { // Linking failed. klass->SetStatus(Class::kStatusError); lock.NotifyAll(); return NULL; } CHECK(klass->IsResolved()); /* * We send CLASS_PREPARE events to the debugger from here. The * definition of "preparation" is creating the static fields for a * class and initializing them to the standard default values, but not * executing any code (that comes later, during "initialization"). * * We did the static preparation in LinkClass. * * The class has been prepared and resolved but possibly not yet verified * at this point. */ Dbg::PostClassPrepare(klass.get()); return klass.get(); } // Precomputes size that will be needed for Class, matching LinkStaticFields size_t ClassLinker::SizeOfClass(const DexFile& dex_file, const DexFile::ClassDef& dex_class_def) { const byte* class_data = dex_file.GetClassData(dex_class_def); size_t num_ref = 0; size_t num_32 = 0; size_t num_64 = 0; if (class_data != NULL) { for (ClassDataItemIterator it(dex_file, class_data); it.HasNextStaticField(); it.Next()) { const DexFile::FieldId& field_id = dex_file.GetFieldId(it.GetMemberIndex()); const char* descriptor = dex_file.GetFieldTypeDescriptor(field_id); char c = descriptor[0]; if (c == 'L' || c == '[') { num_ref++; } else if (c == 'J' || c == 'D') { num_64++; } else { num_32++; } } } // start with generic class data size_t size = sizeof(Class); // follow with reference fields which must be contiguous at start size += (num_ref * sizeof(uint32_t)); // if there are 64-bit fields to add, make sure they are aligned if (num_64 != 0 && size != RoundUp(size, 8)) { // for 64-bit alignment if (num_32 != 0) { // use an available 32-bit field for padding num_32--; } size += sizeof(uint32_t); // either way, we are adding a word DCHECK_EQ(size, RoundUp(size, 8)); } // tack on any 64-bit fields now that alignment is assured size += (num_64 * sizeof(uint64_t)); // tack on any remaining 32-bit fields size += (num_32 * sizeof(uint32_t)); return size; } const OatFile::OatClass* ClassLinker::GetOatClass(const DexFile& dex_file, const char* descriptor) { DCHECK(descriptor != NULL); const OatFile* oat_file = FindOpenedOatFileForDexFile(dex_file); CHECK(oat_file != NULL) << dex_file.GetLocation() << " " << descriptor; const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(dex_file.GetLocation()); CHECK(oat_dex_file != NULL) << dex_file.GetLocation() << " " << descriptor; uint32_t class_def_index; bool found = dex_file.FindClassDefIndex(descriptor, class_def_index); CHECK(found) << dex_file.GetLocation() << " " << descriptor; const OatFile::OatClass* oat_class = oat_dex_file->GetOatClass(class_def_index); CHECK(oat_class != NULL) << dex_file.GetLocation() << " " << descriptor; return oat_class; } const OatFile::OatMethod ClassLinker::GetOatMethodFor(const Method* method) { // Although we overwrite the trampoline of non-static methods, we may get here via the resolution // method for direct methods (or virtual methods made direct). Class* declaring_class = method->GetDeclaringClass(); size_t oat_method_index; if (method->IsStatic() || method->IsDirect()) { // Simple case where the oat method index was stashed at load time. oat_method_index = method->GetMethodIndex(); } else { // We're invoking a virtual method directly (thanks to sharpening), compute the oat_method_index // by search for its position in the declared virtual methods. oat_method_index = declaring_class->NumDirectMethods(); size_t end = declaring_class->NumVirtualMethods(); bool found = false; for (size_t i = 0; i < end; i++) { if (declaring_class->GetVirtualMethod(i) == method) { found = true; break; } oat_method_index++; } CHECK(found) << "Didn't find oat method index for virtual method: " << PrettyMethod(method); } ClassHelper kh(declaring_class); UniquePtr oat_class(GetOatClass(kh.GetDexFile(), kh.GetDescriptor())); CHECK(oat_class.get() != NULL); return oat_class->GetOatMethod(oat_method_index); } // Special case to get oat code without overwriting a trampoline. const void* ClassLinker::GetOatCodeFor(const Method* method) { CHECK(Runtime::Current()->IsCompiler() || method->GetDeclaringClass()->IsInitializing()); return GetOatMethodFor(method).GetCode(); } void ClassLinker::FixupStaticTrampolines(Class* klass) { ClassHelper kh(klass); const DexFile::ClassDef* dex_class_def = kh.GetClassDef(); CHECK(dex_class_def != NULL); const DexFile& dex_file = kh.GetDexFile(); const byte* class_data = dex_file.GetClassData(*dex_class_def); if (class_data == NULL) { return; // no fields or methods - for example a marker interface } if (!Runtime::Current()->IsStarted() || Runtime::Current()->UseCompileTimeClassPath()) { // OAT file unavailable return; } UniquePtr oat_class(GetOatClass(dex_file, kh.GetDescriptor())); CHECK(oat_class.get() != NULL); ClassDataItemIterator it(dex_file, class_data); // Skip fields while (it.HasNextStaticField()) { it.Next(); } while (it.HasNextInstanceField()) { it.Next(); } size_t method_index = 0; // Link the code of methods skipped by LinkCode const void* trampoline = Runtime::Current()->GetResolutionStubArray(Runtime::kStaticMethod)->GetData(); for (size_t i = 0; it.HasNextDirectMethod(); i++, it.Next()) { Method* method = klass->GetDirectMethod(i); if (Runtime::Current()->IsMethodTracingActive()) { Trace* tracer = Runtime::Current()->GetTracer(); if (tracer->GetSavedCodeFromMap(method) == trampoline) { const void* code = oat_class->GetOatMethod(method_index).GetCode(); tracer->ResetSavedCode(method); method->SetCode(code); tracer->SaveAndUpdateCode(method); } } else if (method->GetCode() == trampoline) { const void* code = oat_class->GetOatMethod(method_index).GetCode(); CHECK(code != NULL); method->SetCode(code); } method_index++; } } static void LinkCode(SirtRef& method, const OatFile::OatClass* oat_class, uint32_t method_index) { // Every kind of method should at least get an invoke stub from the oat_method. // non-abstract methods also get their code pointers. const OatFile::OatMethod oat_method = oat_class->GetOatMethod(method_index); oat_method.LinkMethodPointers(method.get()); Runtime* runtime = Runtime::Current(); if (method->IsAbstract()) { method->SetCode(runtime->GetAbstractMethodErrorStubArray()->GetData()); return; } if (method->IsStatic() && !method->IsConstructor()) { // For static methods excluding the class initializer, install the trampoline method->SetCode(runtime->GetResolutionStubArray(Runtime::kStaticMethod)->GetData()); } if (method->IsNative()) { // unregistering restores the dlsym lookup stub method->UnregisterNative(Thread::Current()); } if (Runtime::Current()->IsMethodTracingActive()) { Trace* tracer = Runtime::Current()->GetTracer(); tracer->SaveAndUpdateCode(method.get()); } } void ClassLinker::LoadClass(const DexFile& dex_file, const DexFile::ClassDef& dex_class_def, SirtRef& klass, ClassLoader* class_loader) { CHECK(klass.get() != NULL); CHECK(klass->GetDexCache() != NULL); CHECK_EQ(Class::kStatusNotReady, klass->GetStatus()); const char* descriptor = dex_file.GetClassDescriptor(dex_class_def); CHECK(descriptor != NULL); klass->SetClass(GetClassRoot(kJavaLangClass)); uint32_t access_flags = dex_class_def.access_flags_; // Make sure that none of our runtime-only flags are set. CHECK_EQ(access_flags & ~kAccJavaFlagsMask, 0U); klass->SetAccessFlags(access_flags); klass->SetClassLoader(class_loader); DCHECK_EQ(klass->GetPrimitiveType(), Primitive::kPrimNot); klass->SetStatus(Class::kStatusIdx); klass->SetDexTypeIndex(dex_class_def.class_idx_); // Load fields fields. const byte* class_data = dex_file.GetClassData(dex_class_def); if (class_data == NULL) { return; // no fields or methods - for example a marker interface } ClassDataItemIterator it(dex_file, class_data); if (it.NumStaticFields() != 0) { klass->SetSFields(AllocObjectArray(it.NumStaticFields())); } if (it.NumInstanceFields() != 0) { klass->SetIFields(AllocObjectArray(it.NumInstanceFields())); } for (size_t i = 0; it.HasNextStaticField(); i++, it.Next()) { SirtRef sfield(AllocField()); klass->SetStaticField(i, sfield.get()); LoadField(dex_file, it, klass, sfield); } for (size_t i = 0; it.HasNextInstanceField(); i++, it.Next()) { SirtRef ifield(AllocField()); klass->SetInstanceField(i, ifield.get()); LoadField(dex_file, it, klass, ifield); } UniquePtr oat_class; if (Runtime::Current()->IsStarted() && !Runtime::Current()->UseCompileTimeClassPath()) { oat_class.reset(GetOatClass(dex_file, descriptor)); } // Load methods. if (it.NumDirectMethods() != 0) { // TODO: append direct methods to class object klass->SetDirectMethods(AllocObjectArray(it.NumDirectMethods())); } if (it.NumVirtualMethods() != 0) { // TODO: append direct methods to class object klass->SetVirtualMethods(AllocObjectArray(it.NumVirtualMethods())); } size_t class_def_method_index = 0; for (size_t i = 0; it.HasNextDirectMethod(); i++, it.Next()) { SirtRef method(AllocMethod()); klass->SetDirectMethod(i, method.get()); LoadMethod(dex_file, it, klass, method); if (oat_class.get() != NULL) { LinkCode(method, oat_class.get(), class_def_method_index); } method->SetMethodIndex(class_def_method_index); class_def_method_index++; } for (size_t i = 0; it.HasNextVirtualMethod(); i++, it.Next()) { SirtRef method(AllocMethod()); klass->SetVirtualMethod(i, method.get()); LoadMethod(dex_file, it, klass, method); DCHECK_EQ(class_def_method_index, it.NumDirectMethods() + i); if (oat_class.get() != NULL) { LinkCode(method, oat_class.get(), class_def_method_index); } class_def_method_index++; } DCHECK(!it.HasNext()); } void ClassLinker::LoadField(const DexFile& /*dex_file*/, const ClassDataItemIterator& it, SirtRef& klass, SirtRef& dst) { uint32_t field_idx = it.GetMemberIndex(); dst->SetDexFieldIndex(field_idx); dst->SetDeclaringClass(klass.get()); dst->SetAccessFlags(it.GetMemberAccessFlags()); } void ClassLinker::LoadMethod(const DexFile& dex_file, const ClassDataItemIterator& it, SirtRef& klass, SirtRef& dst) { uint32_t dex_method_idx = it.GetMemberIndex(); dst->SetDexMethodIndex(dex_method_idx); const DexFile::MethodId& method_id = dex_file.GetMethodId(dex_method_idx); dst->SetDeclaringClass(klass.get()); StringPiece method_name(dex_file.GetMethodName(method_id)); if (method_name == "") { dst->SetClass(GetClassRoot(kJavaLangReflectConstructor)); } if (method_name == "finalize") { // Create the prototype for a signature of "()V" const DexFile::StringId* void_string_id = dex_file.FindStringId("V"); if (void_string_id != NULL) { const DexFile::TypeId* void_type_id = dex_file.FindTypeId(dex_file.GetIndexForStringId(*void_string_id)); if (void_type_id != NULL) { std::vector no_args; const DexFile::ProtoId* finalizer_proto = dex_file.FindProtoId(dex_file.GetIndexForTypeId(*void_type_id), no_args); if (finalizer_proto != NULL) { // We have the prototype in the dex file if (klass->GetClassLoader() != NULL) { // All non-boot finalizer methods are flagged klass->SetFinalizable(); } else { StringPiece klass_descriptor(dex_file.StringByTypeIdx(klass->GetDexTypeIndex())); // The Enum class declares a "final" finalize() method to prevent subclasses from // introducing a finalizer. We don't want to set the finalizable flag for Enum or its // subclasses, so we exclude it here. // We also want to avoid setting the flag on Object, where we know that finalize() is // empty. if (klass_descriptor != "Ljava/lang/Object;" && klass_descriptor != "Ljava/lang/Enum;") { klass->SetFinalizable(); } } } } } } dst->SetCodeItemOffset(it.GetMethodCodeItemOffset()); dst->SetAccessFlags(it.GetMemberAccessFlags()); dst->SetDexCacheStrings(klass->GetDexCache()->GetStrings()); dst->SetDexCacheResolvedMethods(klass->GetDexCache()->GetResolvedMethods()); dst->SetDexCacheResolvedTypes(klass->GetDexCache()->GetResolvedTypes()); dst->SetDexCacheInitializedStaticStorage(klass->GetDexCache()->GetInitializedStaticStorage()); } void ClassLinker::AppendToBootClassPath(const DexFile& dex_file) { SirtRef dex_cache(AllocDexCache(dex_file)); AppendToBootClassPath(dex_file, dex_cache); } void ClassLinker::AppendToBootClassPath(const DexFile& dex_file, SirtRef& dex_cache) { CHECK(dex_cache.get() != NULL) << dex_file.GetLocation(); boot_class_path_.push_back(&dex_file); RegisterDexFile(dex_file, dex_cache); } bool ClassLinker::IsDexFileRegisteredLocked(const DexFile& dex_file) const { dex_lock_.AssertHeld(); for (size_t i = 0; i != dex_files_.size(); ++i) { if (dex_files_[i] == &dex_file) { return true; } } return false; } bool ClassLinker::IsDexFileRegistered(const DexFile& dex_file) const { MutexLock mu(dex_lock_); return IsDexFileRegisteredLocked(dex_file); } void ClassLinker::RegisterDexFileLocked(const DexFile& dex_file, SirtRef& dex_cache) { dex_lock_.AssertHeld(); CHECK(dex_cache.get() != NULL) << dex_file.GetLocation(); CHECK(dex_cache->GetLocation()->Equals(dex_file.GetLocation())); dex_files_.push_back(&dex_file); dex_caches_.push_back(dex_cache.get()); } void ClassLinker::RegisterDexFile(const DexFile& dex_file) { { MutexLock mu(dex_lock_); if (IsDexFileRegisteredLocked(dex_file)) { return; } } // Don't alloc while holding the lock, since allocation may need to // suspend all threads and another thread may need the dex_lock_ to // get to a suspend point. SirtRef dex_cache(AllocDexCache(dex_file)); { MutexLock mu(dex_lock_); if (IsDexFileRegisteredLocked(dex_file)) { return; } RegisterDexFileLocked(dex_file, dex_cache); } } void ClassLinker::RegisterDexFile(const DexFile& dex_file, SirtRef& dex_cache) { MutexLock mu(dex_lock_); RegisterDexFileLocked(dex_file, dex_cache); } const DexFile& ClassLinker::FindDexFile(const DexCache* dex_cache) const { CHECK(dex_cache != NULL); MutexLock mu(dex_lock_); for (size_t i = 0; i != dex_caches_.size(); ++i) { if (dex_caches_[i] == dex_cache) { return *dex_files_[i]; } } LOG(FATAL) << "Failed to find DexFile for DexCache " << dex_cache->GetLocation()->ToModifiedUtf8(); return *dex_files_[-1]; } DexCache* ClassLinker::FindDexCache(const DexFile& dex_file) const { MutexLock mu(dex_lock_); for (size_t i = 0; i != dex_files_.size(); ++i) { if (dex_files_[i] == &dex_file) { return dex_caches_[i]; } } LOG(FATAL) << "Failed to find DexCache for DexFile " << dex_file.GetLocation(); return NULL; } void ClassLinker::FixupDexCaches(Method* resolution_method) const { MutexLock mu(dex_lock_); for (size_t i = 0; i != dex_caches_.size(); ++i) { dex_caches_[i]->Fixup(resolution_method); } } Class* ClassLinker::InitializePrimitiveClass(Class* primitive_class, const char* descriptor, Primitive::Type type) { // TODO: deduce one argument from the other CHECK(primitive_class != NULL); primitive_class->SetAccessFlags(kAccPublic | kAccFinal | kAccAbstract); primitive_class->SetPrimitiveType(type); primitive_class->SetStatus(Class::kStatusInitialized); Class* existing = InsertClass(descriptor, primitive_class, false); CHECK(existing == NULL) << "InitPrimitiveClass(" << descriptor << ") failed"; return primitive_class; } // Create an array class (i.e. the class object for the array, not the // array itself). "descriptor" looks like "[C" or "[[[[B" or // "[Ljava/lang/String;". // // If "descriptor" refers to an array of primitives, look up the // primitive type's internally-generated class object. // // "class_loader" is the class loader of the class that's referring to // us. It's used to ensure that we're looking for the element type in // the right context. It does NOT become the class loader for the // array class; that always comes from the base element class. // // Returns NULL with an exception raised on failure. Class* ClassLinker::CreateArrayClass(const std::string& descriptor, ClassLoader* class_loader) { CHECK_EQ('[', descriptor[0]); // Identify the underlying component type Class* component_type = FindClass(descriptor.substr(1).c_str(), class_loader); if (component_type == NULL) { DCHECK(Thread::Current()->IsExceptionPending()); return NULL; } // See if the component type is already loaded. Array classes are // always associated with the class loader of their underlying // element type -- an array of Strings goes with the loader for // java/lang/String -- so we need to look for it there. (The // caller should have checked for the existence of the class // before calling here, but they did so with *their* class loader, // not the component type's loader.) // // If we find it, the caller adds "loader" to the class' initiating // loader list, which should prevent us from going through this again. // // This call is unnecessary if "loader" and "component_type->GetClassLoader()" // are the same, because our caller (FindClass) just did the // lookup. (Even if we get this wrong we still have correct behavior, // because we effectively do this lookup again when we add the new // class to the hash table --- necessary because of possible races with // other threads.) if (class_loader != component_type->GetClassLoader()) { Class* new_class = LookupClass(descriptor.c_str(), component_type->GetClassLoader()); if (new_class != NULL) { return new_class; } } // Fill out the fields in the Class. // // It is possible to execute some methods against arrays, because // all arrays are subclasses of java_lang_Object_, so we need to set // up a vtable. We can just point at the one in java_lang_Object_. // // Array classes are simple enough that we don't need to do a full // link step. SirtRef new_class(NULL); if (!init_done_) { // Classes that were hand created, ie not by FindSystemClass if (descriptor == "[Ljava/lang/Class;") { new_class.reset(GetClassRoot(kClassArrayClass)); } else if (descriptor == "[Ljava/lang/Object;") { new_class.reset(GetClassRoot(kObjectArrayClass)); } else if (descriptor == "[C") { new_class.reset(GetClassRoot(kCharArrayClass)); } else if (descriptor == "[I") { new_class.reset(GetClassRoot(kIntArrayClass)); } } if (new_class.get() == NULL) { new_class.reset(AllocClass(sizeof(Class))); if (new_class.get() == NULL) { return NULL; } new_class->SetComponentType(component_type); } DCHECK(new_class->GetComponentType() != NULL); Class* java_lang_Object = GetClassRoot(kJavaLangObject); new_class->SetSuperClass(java_lang_Object); new_class->SetVTable(java_lang_Object->GetVTable()); new_class->SetPrimitiveType(Primitive::kPrimNot); new_class->SetClassLoader(component_type->GetClassLoader()); new_class->SetStatus(Class::kStatusInitialized); // don't need to set new_class->SetObjectSize(..) // because Object::SizeOf delegates to Array::SizeOf // All arrays have java/lang/Cloneable and java/io/Serializable as // interfaces. We need to set that up here, so that stuff like // "instanceof" works right. // // Note: The GC could run during the call to FindSystemClass, // so we need to make sure the class object is GC-valid while we're in // there. Do this by clearing the interface list so the GC will just // think that the entries are null. // Use the single, global copies of "interfaces" and "iftable" // (remember not to free them for arrays). CHECK(array_iftable_ != NULL); new_class->SetIfTable(array_iftable_); // Inherit access flags from the component type. Arrays can't be // used as a superclass or interface, so we want to add "final" // and remove "interface". // // Don't inherit any non-standard flags (e.g., kAccFinal) // from component_type. We assume that the array class does not // override finalize(). new_class->SetAccessFlags(((new_class->GetComponentType()->GetAccessFlags() & ~kAccInterface) | kAccFinal) & kAccJavaFlagsMask); Class* existing = InsertClass(descriptor, new_class.get(), false); if (existing == NULL) { return new_class.get(); } // Another thread must have loaded the class after we // started but before we finished. Abandon what we've // done. // // (Yes, this happens.) return existing; } Class* ClassLinker::FindPrimitiveClass(char type) { switch (Primitive::GetType(type)) { case Primitive::kPrimByte: return GetClassRoot(kPrimitiveByte); case Primitive::kPrimChar: return GetClassRoot(kPrimitiveChar); case Primitive::kPrimDouble: return GetClassRoot(kPrimitiveDouble); case Primitive::kPrimFloat: return GetClassRoot(kPrimitiveFloat); case Primitive::kPrimInt: return GetClassRoot(kPrimitiveInt); case Primitive::kPrimLong: return GetClassRoot(kPrimitiveLong); case Primitive::kPrimShort: return GetClassRoot(kPrimitiveShort); case Primitive::kPrimBoolean: return GetClassRoot(kPrimitiveBoolean); case Primitive::kPrimVoid: return GetClassRoot(kPrimitiveVoid); case Primitive::kPrimNot: break; } std::string printable_type(PrintableChar(type)); ThrowNoClassDefFoundError("Not a primitive type: %s", printable_type.c_str()); return NULL; } Class* ClassLinker::InsertClass(const StringPiece& descriptor, Class* klass, bool image_class) { if (VLOG_IS_ON(class_linker)) { DexCache* dex_cache = klass->GetDexCache(); std::string source; if (dex_cache != NULL) { source += " from "; source += dex_cache->GetLocation()->ToModifiedUtf8(); } LOG(INFO) << "Loaded class " << descriptor << source; } size_t hash = StringPieceHash()(descriptor); MutexLock mu(classes_lock_); Table& classes = image_class ? image_classes_ : classes_; Class* existing = LookupClassLocked(descriptor.data(), klass->GetClassLoader(), hash, classes); #ifndef NDEBUG // Check we don't have the class in the other table in error Table& other_classes = image_class ? classes_ : image_classes_; CHECK(LookupClassLocked(descriptor.data(), klass->GetClassLoader(), hash, other_classes) == NULL); #endif if (existing != NULL) { return existing; } classes.insert(std::make_pair(hash, klass)); return NULL; } bool ClassLinker::RemoveClass(const char* descriptor, const ClassLoader* class_loader) { size_t hash = Hash(descriptor); MutexLock mu(classes_lock_); typedef Table::iterator It; // TODO: C++0x auto // TODO: determine if its better to search classes_ or image_classes_ first ClassHelper kh; for (It it = classes_.lower_bound(hash), end = classes_.end(); it != end && it->first == hash; ++it) { Class* klass = it->second; kh.ChangeClass(klass); if (strcmp(kh.GetDescriptor(), descriptor) == 0 && klass->GetClassLoader() == class_loader) { classes_.erase(it); return true; } } for (It it = image_classes_.lower_bound(hash), end = classes_.end(); it != end && it->first == hash; ++it) { Class* klass = it->second; kh.ChangeClass(klass); if (strcmp(kh.GetDescriptor(), descriptor) == 0 && klass->GetClassLoader() == class_loader) { image_classes_.erase(it); return true; } } return false; } Class* ClassLinker::LookupClass(const char* descriptor, const ClassLoader* class_loader) { size_t hash = Hash(descriptor); MutexLock mu(classes_lock_); // TODO: determine if its better to search classes_ or image_classes_ first Class* klass = LookupClassLocked(descriptor, class_loader, hash, classes_); if (klass != NULL) { return klass; } return LookupClassLocked(descriptor, class_loader, hash, image_classes_); } Class* ClassLinker::LookupClassLocked(const char* descriptor, const ClassLoader* class_loader, size_t hash, const Table& classes) { ClassHelper kh(NULL, this); typedef Table::const_iterator It; // TODO: C++0x auto for (It it = classes.lower_bound(hash), end = classes_.end(); it != end && it->first == hash; ++it) { Class* klass = it->second; kh.ChangeClass(klass); if (strcmp(descriptor, kh.GetDescriptor()) == 0 && klass->GetClassLoader() == class_loader) { #ifndef NDEBUG for (++it; it != end && it->first == hash; ++it) { Class* klass2 = it->second; kh.ChangeClass(klass2); CHECK(!(strcmp(descriptor, kh.GetDescriptor()) == 0 && klass2->GetClassLoader() == class_loader)) << PrettyClass(klass) << " " << klass << " " << klass->GetClassLoader() << " " << PrettyClass(klass2) << " " << klass2 << " " << klass2->GetClassLoader(); } #endif return klass; } } return NULL; } void ClassLinker::LookupClasses(const char* descriptor, std::vector& classes) { classes.clear(); size_t hash = Hash(descriptor); MutexLock mu(classes_lock_); typedef Table::const_iterator It; // TODO: C++0x auto // TODO: determine if its better to search classes_ or image_classes_ first ClassHelper kh(NULL, this); for (It it = classes_.lower_bound(hash), end = classes_.end(); it != end && it->first == hash; ++it) { Class* klass = it->second; kh.ChangeClass(klass); if (strcmp(descriptor, kh.GetDescriptor()) == 0) { classes.push_back(klass); } } for (It it = image_classes_.lower_bound(hash), end = classes_.end(); it != end && it->first == hash; ++it) { Class* klass = it->second; kh.ChangeClass(klass); if (strcmp(descriptor, kh.GetDescriptor()) == 0) { classes.push_back(klass); } } } #if !defined(NDEBUG) && !defined(ART_USE_LLVM_COMPILER) static void CheckMethodsHaveGcMaps(Class* klass) { if (!Runtime::Current()->IsStarted()) { return; } for (size_t i = 0; i < klass->NumDirectMethods(); i++) { Method* method = klass->GetDirectMethod(i); if (!method->IsNative() && !method->IsAbstract()) { CHECK(method->GetGcMap() != NULL) << PrettyMethod(method); } } for (size_t i = 0; i < klass->NumVirtualMethods(); i++) { Method* method = klass->GetVirtualMethod(i); if (!method->IsNative() && !method->IsAbstract()) { CHECK(method->GetGcMap() != NULL) << PrettyMethod(method); } } } #else static void CheckMethodsHaveGcMaps(Class*) { } #endif void ClassLinker::VerifyClass(Class* klass) { // TODO: assert that the monitor on the Class is held ObjectLock lock(klass); if (klass->IsVerified()) { return; } // The class might already be erroneous if we attempted to verify a subclass if (klass->IsErroneous()) { ThrowEarlierClassFailure(klass); return; } CHECK(klass->GetStatus() == Class::kStatusResolved || klass->GetStatus() == Class::kStatusRetryVerificationAtRuntime) << PrettyClass(klass); klass->SetStatus(Class::kStatusVerifying); // Verify super class Class* super = klass->GetSuperClass(); std::string error_msg; if (super != NULL) { // Acquire lock to prevent races on verifying the super class ObjectLock lock(super); if (!super->IsVerified() && !super->IsErroneous()) { Runtime::Current()->GetClassLinker()->VerifyClass(super); } if (!super->IsCompileTimeVerified()) { error_msg = "Rejecting class "; error_msg += PrettyDescriptor(klass); error_msg += " that attempts to sub-class erroneous class "; error_msg += PrettyDescriptor(super); LOG(ERROR) << error_msg << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8(); Thread* self = Thread::Current(); SirtRef cause(self->GetException()); if (cause.get() != NULL) { self->ClearException(); } self->ThrowNewException("Ljava/lang/VerifyError;", error_msg.c_str()); if (cause.get() != NULL) { self->GetException()->SetCause(cause.get()); } CHECK_EQ(klass->GetStatus(), Class::kStatusVerifying) << PrettyDescriptor(klass); klass->SetStatus(Class::kStatusError); return; } } // Try to use verification information from the oat file, otherwise do runtime verification. const DexFile& dex_file = FindDexFile(klass->GetDexCache()); Class::Status oat_file_class_status(Class::kStatusNotReady); bool preverified = VerifyClassUsingOatFile(dex_file, klass, oat_file_class_status); verifier::MethodVerifier::FailureKind verifier_failure = verifier::MethodVerifier::kNoFailure; if (!preverified) { verifier_failure = verifier::MethodVerifier::VerifyClass(klass, error_msg); } if (preverified || verifier_failure != verifier::MethodVerifier::kHardFailure) { if (!preverified && oat_file_class_status == Class::kStatusError) { LOG(FATAL) << "Verification failed hard on class " << PrettyDescriptor(klass) << " at compile time, but succeeded at runtime! The verifier must be broken."; } if (!preverified && verifier_failure != verifier::MethodVerifier::kNoFailure) { LOG(WARNING) << "Soft verification failure in class " << PrettyDescriptor(klass) << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8() << " because: " << error_msg; } DCHECK(!Thread::Current()->IsExceptionPending()); CHECK(verifier_failure == verifier::MethodVerifier::kNoFailure || Runtime::Current()->IsCompiler()); // Make sure all classes referenced by catch blocks are resolved ResolveClassExceptionHandlerTypes(dex_file, klass); klass->SetStatus(verifier_failure == verifier::MethodVerifier::kNoFailure ? Class::kStatusVerified : Class::kStatusRetryVerificationAtRuntime); // Sanity check that a verified class has GC maps on all methods CheckMethodsHaveGcMaps(klass); } else { LOG(ERROR) << "Verification failed on class " << PrettyDescriptor(klass) << " in " << klass->GetDexCache()->GetLocation()->ToModifiedUtf8() << " because: " << error_msg; Thread* self = Thread::Current(); CHECK(!self->IsExceptionPending()); self->ThrowNewException("Ljava/lang/VerifyError;", error_msg.c_str()); CHECK_EQ(klass->GetStatus(), Class::kStatusVerifying) << PrettyDescriptor(klass); klass->SetStatus(Class::kStatusError); } } bool ClassLinker::VerifyClassUsingOatFile(const DexFile& dex_file, Class* klass, Class::Status& oat_file_class_status) { if (!Runtime::Current()->IsStarted()) { return false; } if (Runtime::Current()->UseCompileTimeClassPath()) { return false; } const OatFile* oat_file = FindOpenedOatFileForDexFile(dex_file); CHECK(oat_file != NULL) << dex_file.GetLocation() << " " << PrettyClass(klass); const OatFile::OatDexFile* oat_dex_file = oat_file->GetOatDexFile(dex_file.GetLocation()); CHECK(oat_dex_file != NULL) << dex_file.GetLocation() << " " << PrettyClass(klass); const char* descriptor = ClassHelper(klass).GetDescriptor(); uint32_t class_def_index; bool found = dex_file.FindClassDefIndex(descriptor, class_def_index); CHECK(found) << dex_file.GetLocation() << " " << PrettyClass(klass) << " " << descriptor; UniquePtr oat_class(oat_dex_file->GetOatClass(class_def_index)); CHECK(oat_class.get() != NULL) << dex_file.GetLocation() << " " << PrettyClass(klass) << " " << descriptor; oat_file_class_status = oat_class->GetStatus(); if (oat_file_class_status == Class::kStatusVerified || oat_file_class_status == Class::kStatusInitialized) { return true; } if (oat_file_class_status == Class::kStatusRetryVerificationAtRuntime) { // Compile time verification failed with a soft error. Compile time verification can fail // because we have incomplete type information. Consider the following: // class ... { // Foo x; // .... () { // if (...) { // v1 gets assigned a type of resolved class Foo // } else { // v1 gets assigned a type of unresolved class Bar // } // iput x = v1 // } } // when we merge v1 following the if-the-else it results in Conflict // (see verifier::RegType::Merge) as we can't know the type of Bar and we could possibly be // allowing an unsafe assignment to the field x in the iput (javac may have compiled this as // it knew Bar was a sub-class of Foo, but for us this may have been moved into a separate apk // at compile time). return false; } if (oat_file_class_status == Class::kStatusError) { // Compile time verification failed with a hard error. This is caused by invalid instructions // in the class. These errors are unrecoverable. return false; } if (oat_file_class_status == Class::kStatusNotReady) { // Status is uninitialized if we couldn't determine the status at compile time, for example, // not loading the class. // TODO: when the verifier doesn't rely on Class-es failing to resolve/load the type hierarchy // isn't a problem and this case shouldn't occur return false; } LOG(FATAL) << "Unexpected class status: " << oat_file_class_status << " " << dex_file.GetLocation() << " " << PrettyClass(klass) << " " << descriptor; return false; } void ClassLinker::ResolveClassExceptionHandlerTypes(const DexFile& dex_file, Class* klass) { for (size_t i = 0; i < klass->NumDirectMethods(); i++) { ResolveMethodExceptionHandlerTypes(dex_file, klass->GetDirectMethod(i)); } for (size_t i = 0; i < klass->NumVirtualMethods(); i++) { ResolveMethodExceptionHandlerTypes(dex_file, klass->GetVirtualMethod(i)); } } void ClassLinker::ResolveMethodExceptionHandlerTypes(const DexFile& dex_file, Method* method) { // similar to DexVerifier::ScanTryCatchBlocks and dex2oat's ResolveExceptionsForMethod. const DexFile::CodeItem* code_item = dex_file.GetCodeItem(method->GetCodeItemOffset()); if (code_item == NULL) { return; // native or abstract method } if (code_item->tries_size_ == 0) { return; // nothing to process } const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item, 0); uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr); ClassLinker* linker = Runtime::Current()->GetClassLinker(); for (uint32_t idx = 0; idx < handlers_size; idx++) { CatchHandlerIterator iterator(handlers_ptr); for (; iterator.HasNext(); iterator.Next()) { // Ensure exception types are resolved so that they don't need resolution to be delivered, // unresolved exception types will be ignored by exception delivery if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) { Class* exception_type = linker->ResolveType(iterator.GetHandlerTypeIndex(), method); if (exception_type == NULL) { DCHECK(Thread::Current()->IsExceptionPending()); Thread::Current()->ClearException(); } } } handlers_ptr = iterator.EndDataPointer(); } } static void CheckProxyConstructor(Method* constructor); static void CheckProxyMethod(Method* method, SirtRef& prototype); Class* ClassLinker::CreateProxyClass(String* name, ObjectArray* interfaces, ClassLoader* loader, ObjectArray* methods, ObjectArray >* throws) { SirtRef klass(AllocClass(GetClassRoot(kJavaLangClass), sizeof(SynthesizedProxyClass))); CHECK(klass.get() != NULL); DCHECK(klass->GetClass() != NULL); klass->SetObjectSize(sizeof(Proxy)); klass->SetAccessFlags(kAccClassIsProxy | kAccPublic | kAccFinal); klass->SetClassLoader(loader); DCHECK_EQ(klass->GetPrimitiveType(), Primitive::kPrimNot); klass->SetName(name); Class* proxy_class = GetClassRoot(kJavaLangReflectProxy); klass->SetDexCache(proxy_class->GetDexCache()); klass->SetStatus(Class::kStatusIdx); klass->SetDexTypeIndex(DexFile::kDexNoIndex16); // Instance fields are inherited, but we add a couple of static fields... klass->SetSFields(AllocObjectArray(2)); // 1. Create a static field 'interfaces' that holds the _declared_ interfaces implemented by // our proxy, so Class.getInterfaces doesn't return the flattened set. SirtRef interfaces_sfield(AllocField()); klass->SetStaticField(0, interfaces_sfield.get()); interfaces_sfield->SetDexFieldIndex(0); interfaces_sfield->SetDeclaringClass(klass.get()); interfaces_sfield->SetAccessFlags(kAccStatic | kAccPublic | kAccFinal); // 2. Create a static field 'throws' that holds exceptions thrown by our methods. SirtRef throws_sfield(AllocField()); klass->SetStaticField(1, throws_sfield.get()); throws_sfield->SetDexFieldIndex(1); throws_sfield->SetDeclaringClass(klass.get()); throws_sfield->SetAccessFlags(kAccStatic | kAccPublic | kAccFinal); // Proxies have 1 direct method, the constructor klass->SetDirectMethods(AllocObjectArray(1)); klass->SetDirectMethod(0, CreateProxyConstructor(klass, proxy_class)); // Create virtual method using specified prototypes size_t num_virtual_methods = methods->GetLength(); klass->SetVirtualMethods(AllocObjectArray(num_virtual_methods)); for (size_t i = 0; i < num_virtual_methods; ++i) { SirtRef prototype(methods->Get(i)); klass->SetVirtualMethod(i, CreateProxyMethod(klass, prototype)); } klass->SetSuperClass(proxy_class); // The super class is java.lang.reflect.Proxy klass->SetStatus(Class::kStatusLoaded); // Class is now effectively in the loaded state DCHECK(!Thread::Current()->IsExceptionPending()); // Link the fields and virtual methods, creating vtable and iftables if (!LinkClass(klass, interfaces)) { klass->SetStatus(Class::kStatusError); return NULL; } interfaces_sfield->SetObject(NULL, interfaces); throws_sfield->SetObject(NULL, throws); klass->SetStatus(Class::kStatusInitialized); // sanity checks if (kIsDebugBuild) { CHECK(klass->GetIFields() == NULL); CheckProxyConstructor(klass->GetDirectMethod(0)); for (size_t i = 0; i < num_virtual_methods; ++i) { SirtRef prototype(methods->Get(i)); CheckProxyMethod(klass->GetVirtualMethod(i), prototype); } std::string interfaces_field_name(StringPrintf("java.lang.Class[] %s.interfaces", name->ToModifiedUtf8().c_str())); CHECK_EQ(PrettyField(klass->GetStaticField(0)), interfaces_field_name); std::string throws_field_name(StringPrintf("java.lang.Class[][] %s.throws", name->ToModifiedUtf8().c_str())); CHECK_EQ(PrettyField(klass->GetStaticField(1)), throws_field_name); SynthesizedProxyClass* synth_proxy_class = down_cast(klass.get()); CHECK_EQ(synth_proxy_class->GetInterfaces(), interfaces); CHECK_EQ(synth_proxy_class->GetThrows(), throws); } return klass.get(); } std::string ClassLinker::GetDescriptorForProxy(const Class* proxy_class) { DCHECK(proxy_class->IsProxyClass()); String* name = proxy_class->GetName(); DCHECK(name != NULL); return DotToDescriptor(name->ToModifiedUtf8().c_str()); } Method* ClassLinker::FindMethodForProxy(const Class* proxy_class, const Method* proxy_method) { DCHECK(proxy_class->IsProxyClass()); DCHECK(proxy_method->IsProxyMethod()); // Locate the dex cache of the original interface/Object DexCache* dex_cache = NULL; { ObjectArray* resolved_types = proxy_method->GetDexCacheResolvedTypes(); MutexLock mu(dex_lock_); for (size_t i = 0; i != dex_caches_.size(); ++i) { if (dex_caches_[i]->GetResolvedTypes() == resolved_types) { dex_cache = dex_caches_[i]; break; } } } CHECK(dex_cache != NULL); uint32_t method_idx = proxy_method->GetDexMethodIndex(); Method* resolved_method = dex_cache->GetResolvedMethod(method_idx); CHECK(resolved_method != NULL); return resolved_method; } Method* ClassLinker::CreateProxyConstructor(SirtRef& klass, Class* proxy_class) { // Create constructor for Proxy that must initialize h ObjectArray* proxy_direct_methods = proxy_class->GetDirectMethods(); CHECK_EQ(proxy_direct_methods->GetLength(), 15); Method* proxy_constructor = proxy_direct_methods->Get(2); // Clone the existing constructor of Proxy (our constructor would just invoke it so steal its // code_ too) Method* constructor = down_cast(proxy_constructor->Clone()); // Make this constructor public and fix the class to be our Proxy version constructor->SetAccessFlags((constructor->GetAccessFlags() & ~kAccProtected) | kAccPublic); constructor->SetDeclaringClass(klass.get()); return constructor; } static void CheckProxyConstructor(Method* constructor) { CHECK(constructor->IsConstructor()); MethodHelper mh(constructor); CHECK_STREQ(mh.GetName(), ""); CHECK_EQ(mh.GetSignature(), std::string("(Ljava/lang/reflect/InvocationHandler;)V")); DCHECK(constructor->IsPublic()); } Method* ClassLinker::CreateProxyMethod(SirtRef& klass, SirtRef& prototype) { // Ensure prototype is in dex cache so that we can use the dex cache to look up the overridden // prototype method prototype->GetDeclaringClass()->GetDexCache()->SetResolvedMethod(prototype->GetDexMethodIndex(), prototype.get()); // We steal everything from the prototype (such as DexCache, invoke stub, etc.) then specialize // as necessary Method* method = down_cast(prototype->Clone()); // Set class to be the concrete proxy class and clear the abstract flag, modify exceptions to // the intersection of throw exceptions as defined in Proxy method->SetDeclaringClass(klass.get()); method->SetAccessFlags((method->GetAccessFlags() & ~kAccAbstract) | kAccFinal); // At runtime the method looks like a reference and argument saving method, clone the code // related parameters from this method. Method* refs_and_args = Runtime::Current()->GetCalleeSaveMethod(Runtime::kRefsAndArgs); method->SetCoreSpillMask(refs_and_args->GetCoreSpillMask()); method->SetFpSpillMask(refs_and_args->GetFpSpillMask()); method->SetFrameSizeInBytes(refs_and_args->GetFrameSizeInBytes()); #if !defined(ART_USE_LLVM_COMPILER) method->SetCode(reinterpret_cast(art_proxy_invoke_handler)); #else OatFile::OatMethod oat_method = GetOatMethodFor(prototype.get()); method->SetCode(oat_method.GetProxyStub()); #endif return method; } static void CheckProxyMethod(Method* method, SirtRef& prototype) { // Basic sanity CHECK(!prototype->IsFinal()); CHECK(method->IsFinal()); CHECK(!method->IsAbstract()); // The proxy method doesn't have its own dex cache or dex file and so it steals those of its // interface prototype. The exception to this are Constructors and the Class of the Proxy itself. CHECK_EQ(prototype->GetDexCacheStrings(), method->GetDexCacheStrings()); CHECK_EQ(prototype->GetDexCacheResolvedMethods(), method->GetDexCacheResolvedMethods()); CHECK_EQ(prototype->GetDexCacheResolvedTypes(), method->GetDexCacheResolvedTypes()); CHECK_EQ(prototype->GetDexCacheInitializedStaticStorage(), method->GetDexCacheInitializedStaticStorage()); CHECK_EQ(prototype->GetDexMethodIndex(), method->GetDexMethodIndex()); MethodHelper mh(method); MethodHelper mh2(prototype.get()); CHECK_STREQ(mh.GetName(), mh2.GetName()); CHECK_STREQ(mh.GetShorty(), mh2.GetShorty()); // More complex sanity - via dex cache CHECK_EQ(mh.GetReturnType(), mh2.GetReturnType()); } bool ClassLinker::InitializeClass(Class* klass, bool can_run_clinit, bool can_init_statics) { CHECK(klass->IsResolved() || klass->IsErroneous()) << PrettyClass(klass) << " is " << klass->GetStatus(); Thread* self = Thread::Current(); Method* clinit = NULL; { // see JLS 3rd edition, 12.4.2 "Detailed Initialization Procedure" for the locking protocol ObjectLock lock(klass); if (klass->GetStatus() == Class::kStatusInitialized) { return true; } if (klass->IsErroneous()) { ThrowEarlierClassFailure(klass); return false; } if (klass->GetStatus() == Class::kStatusResolved || klass->GetStatus() == Class::kStatusRetryVerificationAtRuntime) { VerifyClass(klass); if (klass->GetStatus() != Class::kStatusVerified) { if (klass->GetStatus() == Class::kStatusError) { CHECK(self->IsExceptionPending()); } return false; } } clinit = klass->FindDeclaredDirectMethod("", "()V"); if (clinit != NULL && !can_run_clinit) { // if the class has a but we can't run it during compilation, // don't bother going to kStatusInitializing. We return false so that // sub-classes don't believe this class is initialized. // Opportunistically link non-static methods, TODO: don't initialize and dirty pages // in second pass. return false; } // If the class is kStatusInitializing, either this thread is // initializing higher up the stack or another thread has beat us // to initializing and we need to wait. Either way, this // invocation of InitializeClass will not be responsible for // running and will return. if (klass->GetStatus() == Class::kStatusInitializing) { // We caught somebody else in the act; was it us? if (klass->GetClinitThreadId() == self->GetTid()) { // Yes. That's fine. Return so we can continue initializing. return true; } // No. That's fine. Wait for another thread to finish initializing. return WaitForInitializeClass(klass, self, lock); } if (!ValidateSuperClassDescriptors(klass)) { klass->SetStatus(Class::kStatusError); return false; } DCHECK_EQ(klass->GetStatus(), Class::kStatusVerified) << PrettyClass(klass); klass->SetClinitThreadId(self->GetTid()); klass->SetStatus(Class::kStatusInitializing); } uint64_t t0 = NanoTime(); if (!InitializeSuperClass(klass, can_run_clinit, can_init_statics)) { // Super class initialization failed, this can be because we can't run // super-class class initializers in which case we'll be verified. // Otherwise this class is erroneous. if (!can_run_clinit) { CHECK(klass->IsVerified()); } else { CHECK(klass->IsErroneous()); } return false; } bool has_static_field_initializers = InitializeStaticFields(klass); if (clinit != NULL) { clinit->Invoke(self, NULL, NULL, NULL); } FixupStaticTrampolines(klass); uint64_t t1 = NanoTime(); bool success = true; { ObjectLock lock(klass); if (self->IsExceptionPending()) { WrapExceptionInInitializer(); klass->SetStatus(Class::kStatusError); success = false; } else { RuntimeStats* global_stats = Runtime::Current()->GetStats(); RuntimeStats* thread_stats = self->GetStats(); ++global_stats->class_init_count; ++thread_stats->class_init_count; global_stats->class_init_time_ns += (t1 - t0); thread_stats->class_init_time_ns += (t1 - t0); // Set the class as initialized except if we can't initialize static fields and static field // initialization is necessary. if (!can_init_statics && has_static_field_initializers) { klass->SetStatus(Class::kStatusVerified); // Don't leave class in initializing state. success = false; } else { klass->SetStatus(Class::kStatusInitialized); } if (VLOG_IS_ON(class_linker)) { ClassHelper kh(klass); LOG(INFO) << "Initialized class " << kh.GetDescriptor() << " from " << kh.GetLocation(); } } lock.NotifyAll(); } return success; } bool ClassLinker::WaitForInitializeClass(Class* klass, Thread* self, ObjectLock& lock) { while (true) { CHECK(!self->IsExceptionPending()) << PrettyTypeOf(self->GetException()); lock.Wait(); // When we wake up, repeat the test for init-in-progress. If // there's an exception pending (only possible if // "interruptShouldThrow" was set), bail out. if (self->IsExceptionPending()) { WrapExceptionInInitializer(); klass->SetStatus(Class::kStatusError); return false; } // Spurious wakeup? Go back to waiting. if (klass->GetStatus() == Class::kStatusInitializing) { continue; } if (klass->IsErroneous()) { // The caller wants an exception, but it was thrown in a // different thread. Synthesize one here. ThrowNoClassDefFoundError(" failed for class %s; see exception in other thread", PrettyDescriptor(klass).c_str()); return false; } if (klass->IsInitialized()) { return true; } LOG(FATAL) << "Unexpected class status. " << PrettyClass(klass) << " is " << klass->GetStatus(); } LOG(FATAL) << "Not Reached" << PrettyClass(klass); } bool ClassLinker::ValidateSuperClassDescriptors(const Class* klass) { if (klass->IsInterface()) { return true; } // begin with the methods local to the superclass if (klass->HasSuperClass() && klass->GetClassLoader() != klass->GetSuperClass()->GetClassLoader()) { const Class* super = klass->GetSuperClass(); for (int i = super->GetVTable()->GetLength() - 1; i >= 0; --i) { const Method* method = klass->GetVTable()->Get(i); if (method != super->GetVTable()->Get(i) && !IsSameMethodSignatureInDifferentClassContexts(method, super, klass)) { ThrowLinkageError("Class %s method %s resolves differently in superclass %s", PrettyDescriptor(klass).c_str(), PrettyMethod(method).c_str(), PrettyDescriptor(super).c_str()); return false; } } } for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) { InterfaceEntry* interface_entry = klass->GetIfTable()->Get(i); Class* interface = interface_entry->GetInterface(); if (klass->GetClassLoader() != interface->GetClassLoader()) { for (size_t j = 0; j < interface->NumVirtualMethods(); ++j) { const Method* method = interface_entry->GetMethodArray()->Get(j); if (!IsSameMethodSignatureInDifferentClassContexts(method, interface, method->GetDeclaringClass())) { ThrowLinkageError("Class %s method %s resolves differently in interface %s", PrettyDescriptor(method->GetDeclaringClass()).c_str(), PrettyMethod(method).c_str(), PrettyDescriptor(interface).c_str()); return false; } } } } return true; } // Returns true if classes referenced by the signature of the method are the // same classes in klass1 as they are in klass2. bool ClassLinker::IsSameMethodSignatureInDifferentClassContexts(const Method* method, const Class* klass1, const Class* klass2) { if (klass1 == klass2) { return true; } const DexFile& dex_file = FindDexFile(method->GetDeclaringClass()->GetDexCache()); const DexFile::ProtoId& proto_id = dex_file.GetMethodPrototype(dex_file.GetMethodId(method->GetDexMethodIndex())); for (DexFileParameterIterator it(dex_file, proto_id); it.HasNext(); it.Next()) { const char* descriptor = it.GetDescriptor(); if (descriptor == NULL) { break; } if (descriptor[0] == 'L' || descriptor[0] == '[') { // Found a non-primitive type. if (!IsSameDescriptorInDifferentClassContexts(descriptor, klass1, klass2)) { return false; } } } // Check the return type const char* descriptor = dex_file.GetReturnTypeDescriptor(proto_id); if (descriptor[0] == 'L' || descriptor[0] == '[') { if (!IsSameDescriptorInDifferentClassContexts(descriptor, klass1, klass2)) { return false; } } return true; } // Returns true if the descriptor resolves to the same class in the context of klass1 and klass2. bool ClassLinker::IsSameDescriptorInDifferentClassContexts(const char* descriptor, const Class* klass1, const Class* klass2) { CHECK(descriptor != NULL); CHECK(klass1 != NULL); CHECK(klass2 != NULL); if (klass1 == klass2) { return true; } Class* found1 = FindClass(descriptor, klass1->GetClassLoader()); if (found1 == NULL) { Thread::Current()->ClearException(); } Class* found2 = FindClass(descriptor, klass2->GetClassLoader()); if (found2 == NULL) { Thread::Current()->ClearException(); } return found1 == found2; } bool ClassLinker::InitializeSuperClass(Class* klass, bool can_run_clinit, bool can_init_fields) { CHECK(klass != NULL); if (!klass->IsInterface() && klass->HasSuperClass()) { Class* super_class = klass->GetSuperClass(); if (super_class->GetStatus() != Class::kStatusInitialized) { CHECK(!super_class->IsInterface()); Thread* self = Thread::Current(); klass->MonitorEnter(self); bool super_initialized = InitializeClass(super_class, can_run_clinit, can_init_fields); klass->MonitorExit(self); // TODO: check for a pending exception if (!super_initialized) { if (!can_run_clinit) { // Don't set status to error when we can't run . CHECK_EQ(klass->GetStatus(), Class::kStatusInitializing) << PrettyClass(klass); klass->SetStatus(Class::kStatusVerified); return false; } klass->SetStatus(Class::kStatusError); klass->NotifyAll(); return false; } } } return true; } bool ClassLinker::EnsureInitialized(Class* c, bool can_run_clinit, bool can_init_fields) { CHECK(c != NULL); if (c->IsInitialized()) { return true; } Thread* self = Thread::Current(); ScopedThreadStateChange tsc(self, kRunnable); bool success = InitializeClass(c, can_run_clinit, can_init_fields); if (!success) { CHECK(self->IsExceptionPending() || !can_run_clinit) << PrettyClass(c); } return success; } void ClassLinker::ConstructFieldMap(const DexFile& dex_file, const DexFile::ClassDef& dex_class_def, Class* c, SafeMap& field_map) { ClassLoader* cl = c->GetClassLoader(); const byte* class_data = dex_file.GetClassData(dex_class_def); ClassDataItemIterator it(dex_file, class_data); for (size_t i = 0; it.HasNextStaticField(); i++, it.Next()) { field_map.Put(i, ResolveField(dex_file, it.GetMemberIndex(), c->GetDexCache(), cl, true)); } } bool ClassLinker::InitializeStaticFields(Class* klass) { size_t num_static_fields = klass->NumStaticFields(); if (num_static_fields == 0) { return false; } DexCache* dex_cache = klass->GetDexCache(); // TODO: this seems like the wrong check. do we really want !IsPrimitive && !IsArray? if (dex_cache == NULL) { return false; } ClassHelper kh(klass); const DexFile::ClassDef* dex_class_def = kh.GetClassDef(); CHECK(dex_class_def != NULL); const DexFile& dex_file = kh.GetDexFile(); EncodedStaticFieldValueIterator it(dex_file, dex_cache, this, *dex_class_def); if (it.HasNext()) { // We reordered the fields, so we need to be able to map the field indexes to the right fields. SafeMap field_map; ConstructFieldMap(dex_file, *dex_class_def, klass, field_map); for (size_t i = 0; it.HasNext(); i++, it.Next()) { it.ReadValueToField(field_map.Get(i)); } return true; } return false; } bool ClassLinker::LinkClass(SirtRef& klass, ObjectArray* interfaces) { CHECK_EQ(Class::kStatusLoaded, klass->GetStatus()); if (!LinkSuperClass(klass)) { return false; } if (!LinkMethods(klass, interfaces)) { return false; } if (!LinkInstanceFields(klass)) { return false; } if (!LinkStaticFields(klass)) { return false; } CreateReferenceInstanceOffsets(klass); CreateReferenceStaticOffsets(klass); CHECK_EQ(Class::kStatusLoaded, klass->GetStatus()); klass->SetStatus(Class::kStatusResolved); return true; } bool ClassLinker::LoadSuperAndInterfaces(SirtRef& klass, const DexFile& dex_file) { CHECK_EQ(Class::kStatusIdx, klass->GetStatus()); StringPiece descriptor(dex_file.StringByTypeIdx(klass->GetDexTypeIndex())); const DexFile::ClassDef* class_def = dex_file.FindClassDef(descriptor); CHECK(class_def != NULL); uint16_t super_class_idx = class_def->superclass_idx_; if (super_class_idx != DexFile::kDexNoIndex16) { Class* super_class = ResolveType(dex_file, super_class_idx, klass.get()); if (super_class == NULL) { DCHECK(Thread::Current()->IsExceptionPending()); return false; } // Verify if (!klass->CanAccess(super_class)) { Thread::Current()->ThrowNewExceptionF("Ljava/lang/IllegalAccessError;", "Class %s extended by class %s is inaccessible", PrettyDescriptor(super_class).c_str(), PrettyDescriptor(klass.get()).c_str()); return false; } klass->SetSuperClass(super_class); } const DexFile::TypeList* interfaces = dex_file.GetInterfacesList(*class_def); if (interfaces != NULL) { for (size_t i = 0; i < interfaces->Size(); i++) { uint16_t idx = interfaces->GetTypeItem(i).type_idx_; Class* interface = ResolveType(dex_file, idx, klass.get()); if (interface == NULL) { DCHECK(Thread::Current()->IsExceptionPending()); return false; } // Verify if (!klass->CanAccess(interface)) { // TODO: the RI seemed to ignore this in my testing. Thread::Current()->ThrowNewExceptionF("Ljava/lang/IllegalAccessError;", "Interface %s implemented by class %s is inaccessible", PrettyDescriptor(interface).c_str(), PrettyDescriptor(klass.get()).c_str()); return false; } } } // Mark the class as loaded. klass->SetStatus(Class::kStatusLoaded); return true; } bool ClassLinker::LinkSuperClass(SirtRef& klass) { CHECK(!klass->IsPrimitive()); Class* super = klass->GetSuperClass(); if (klass.get() == GetClassRoot(kJavaLangObject)) { if (super != NULL) { Thread::Current()->ThrowNewExceptionF("Ljava/lang/ClassFormatError;", "java.lang.Object must not have a superclass"); return false; } return true; } if (super == NULL) { ThrowLinkageError("No superclass defined for class %s", PrettyDescriptor(klass.get()).c_str()); return false; } // Verify if (super->IsFinal() || super->IsInterface()) { Thread* self = Thread::Current(); self->ThrowNewExceptionF("Ljava/lang/IncompatibleClassChangeError;", "Superclass %s of %s is %s", PrettyDescriptor(super).c_str(), PrettyDescriptor(klass.get()).c_str(), super->IsFinal() ? "declared final" : "an interface"); return false; } if (!klass->CanAccess(super)) { Thread::Current()->ThrowNewExceptionF("Ljava/lang/IllegalAccessError;", "Superclass %s is inaccessible by %s", PrettyDescriptor(super).c_str(), PrettyDescriptor(klass.get()).c_str()); return false; } // Inherit kAccClassIsFinalizable from the superclass in case this class doesn't override finalize. if (super->IsFinalizable()) { klass->SetFinalizable(); } // Inherit reference flags (if any) from the superclass. int reference_flags = (super->GetAccessFlags() & kAccReferenceFlagsMask); if (reference_flags != 0) { klass->SetAccessFlags(klass->GetAccessFlags() | reference_flags); } // Disallow custom direct subclasses of java.lang.ref.Reference. if (init_done_ && super == GetClassRoot(kJavaLangRefReference)) { ThrowLinkageError("Class %s attempts to subclass java.lang.ref.Reference, which is not allowed", PrettyDescriptor(klass.get()).c_str()); return false; } #ifndef NDEBUG // Ensure super classes are fully resolved prior to resolving fields.. while (super != NULL) { CHECK(super->IsResolved()); super = super->GetSuperClass(); } #endif return true; } // Populate the class vtable and itable. Compute return type indices. bool ClassLinker::LinkMethods(SirtRef& klass, ObjectArray* interfaces) { if (klass->IsInterface()) { // No vtable. size_t count = klass->NumVirtualMethods(); if (!IsUint(16, count)) { ThrowClassFormatError("Too many methods on interface: %zd", count); return false; } for (size_t i = 0; i < count; ++i) { klass->GetVirtualMethodDuringLinking(i)->SetMethodIndex(i); } // Link interface method tables return LinkInterfaceMethods(klass, interfaces); } else { // Link virtual and interface method tables return LinkVirtualMethods(klass) && LinkInterfaceMethods(klass, interfaces); } return true; } bool ClassLinker::LinkVirtualMethods(SirtRef& klass) { if (klass->HasSuperClass()) { uint32_t max_count = klass->NumVirtualMethods() + klass->GetSuperClass()->GetVTable()->GetLength(); size_t actual_count = klass->GetSuperClass()->GetVTable()->GetLength(); CHECK_LE(actual_count, max_count); // TODO: do not assign to the vtable field until it is fully constructed. SirtRef > vtable(klass->GetSuperClass()->GetVTable()->CopyOf(max_count)); // See if any of our virtual methods override the superclass. MethodHelper local_mh(NULL, this); MethodHelper super_mh(NULL, this); for (size_t i = 0; i < klass->NumVirtualMethods(); ++i) { Method* local_method = klass->GetVirtualMethodDuringLinking(i); local_mh.ChangeMethod(local_method); size_t j = 0; for (; j < actual_count; ++j) { Method* super_method = vtable->Get(j); super_mh.ChangeMethod(super_method); if (local_mh.HasSameNameAndSignature(&super_mh)) { if (klass->CanAccessMember(super_method->GetDeclaringClass(), super_method->GetAccessFlags())) { if (super_method->IsFinal()) { ThrowLinkageError("Method %s overrides final method in class %s", PrettyMethod(local_method).c_str(), super_mh.GetDeclaringClassDescriptor()); return false; } vtable->Set(j, local_method); local_method->SetMethodIndex(j); break; } else { LOG(WARNING) << "Before Android 4.1, method " << PrettyMethod(local_method) << " would have incorrectly overridden the package-private method in " << PrettyDescriptor(super_mh.GetDeclaringClassDescriptor()); } } } if (j == actual_count) { // Not overriding, append. vtable->Set(actual_count, local_method); local_method->SetMethodIndex(actual_count); actual_count += 1; } } if (!IsUint(16, actual_count)) { ThrowClassFormatError("Too many methods defined on class: %zd", actual_count); return false; } // Shrink vtable if possible CHECK_LE(actual_count, max_count); if (actual_count < max_count) { vtable.reset(vtable->CopyOf(actual_count)); } klass->SetVTable(vtable.get()); } else { CHECK(klass.get() == GetClassRoot(kJavaLangObject)); uint32_t num_virtual_methods = klass->NumVirtualMethods(); if (!IsUint(16, num_virtual_methods)) { ThrowClassFormatError("Too many methods: %d", num_virtual_methods); return false; } SirtRef > vtable(AllocObjectArray(num_virtual_methods)); for (size_t i = 0; i < num_virtual_methods; ++i) { Method* virtual_method = klass->GetVirtualMethodDuringLinking(i); vtable->Set(i, virtual_method); virtual_method->SetMethodIndex(i & 0xFFFF); } klass->SetVTable(vtable.get()); } return true; } bool ClassLinker::LinkInterfaceMethods(SirtRef& klass, ObjectArray* interfaces) { size_t super_ifcount; if (klass->HasSuperClass()) { super_ifcount = klass->GetSuperClass()->GetIfTableCount(); } else { super_ifcount = 0; } size_t ifcount = super_ifcount; ClassHelper kh(klass.get(), this); uint32_t num_interfaces = interfaces == NULL ? kh.NumDirectInterfaces() : interfaces->GetLength(); ifcount += num_interfaces; for (size_t i = 0; i < num_interfaces; i++) { Class* interface = interfaces == NULL ? kh.GetDirectInterface(i) : interfaces->Get(i); ifcount += interface->GetIfTableCount(); } if (ifcount == 0) { // TODO: enable these asserts with klass status validation // DCHECK_EQ(klass->GetIfTableCount(), 0); // DCHECK(klass->GetIfTable() == NULL); return true; } SirtRef > iftable(AllocObjectArray(ifcount)); if (super_ifcount != 0) { ObjectArray* super_iftable = klass->GetSuperClass()->GetIfTable(); for (size_t i = 0; i < super_ifcount; i++) { Class* super_interface = super_iftable->Get(i)->GetInterface(); iftable->Set(i, AllocInterfaceEntry(super_interface)); } } // Flatten the interface inheritance hierarchy. size_t idx = super_ifcount; for (size_t i = 0; i < num_interfaces; i++) { Class* interface = interfaces == NULL ? kh.GetDirectInterface(i) : interfaces->Get(i); DCHECK(interface != NULL); if (!interface->IsInterface()) { ClassHelper ih(interface); Thread* self = Thread::Current(); self->ThrowNewExceptionF("Ljava/lang/IncompatibleClassChangeError;", "Class %s implements non-interface class %s", PrettyDescriptor(klass.get()).c_str(), PrettyDescriptor(ih.GetDescriptor()).c_str()); return false; } // Check if interface is already in iftable bool duplicate = false; for (size_t j = 0; j < idx; j++) { Class* existing_interface = iftable->Get(j)->GetInterface(); if (existing_interface == interface) { duplicate = true; break; } } if (!duplicate) { // Add this non-duplicate interface. iftable->Set(idx++, AllocInterfaceEntry(interface)); // Add this interface's non-duplicate super-interfaces. for (int32_t j = 0; j < interface->GetIfTableCount(); j++) { Class* super_interface = interface->GetIfTable()->Get(j)->GetInterface(); bool super_duplicate = false; for (size_t k = 0; k < idx; k++) { Class* existing_interface = iftable->Get(k)->GetInterface(); if (existing_interface == super_interface) { super_duplicate = true; break; } } if (!super_duplicate) { iftable->Set(idx++, AllocInterfaceEntry(super_interface)); } } } } // Shrink iftable in case duplicates were found if (idx < ifcount) { iftable.reset(iftable->CopyOf(idx)); ifcount = idx; } else { CHECK_EQ(idx, ifcount); } klass->SetIfTable(iftable.get()); // If we're an interface, we don't need the vtable pointers, so we're done. if (klass->IsInterface() /*|| super_ifcount == ifcount*/) { return true; } std::vector miranda_list; MethodHelper vtable_mh(NULL, this); MethodHelper interface_mh(NULL, this); for (size_t i = 0; i < ifcount; ++i) { InterfaceEntry* interface_entry = iftable->Get(i); Class* interface = interface_entry->GetInterface(); ObjectArray* method_array = AllocObjectArray(interface->NumVirtualMethods()); interface_entry->SetMethodArray(method_array); ObjectArray* vtable = klass->GetVTableDuringLinking(); for (size_t j = 0; j < interface->NumVirtualMethods(); ++j) { Method* interface_method = interface->GetVirtualMethod(j); interface_mh.ChangeMethod(interface_method); int32_t k; // For each method listed in the interface's method list, find the // matching method in our class's method list. We want to favor the // subclass over the superclass, which just requires walking // back from the end of the vtable. (This only matters if the // superclass defines a private method and this class redefines // it -- otherwise it would use the same vtable slot. In .dex files // those don't end up in the virtual method table, so it shouldn't // matter which direction we go. We walk it backward anyway.) for (k = vtable->GetLength() - 1; k >= 0; --k) { Method* vtable_method = vtable->Get(k); vtable_mh.ChangeMethod(vtable_method); if (interface_mh.HasSameNameAndSignature(&vtable_mh)) { if (!vtable_method->IsPublic()) { Thread::Current()->ThrowNewExceptionF("Ljava/lang/IllegalAccessError;", "Implementation not public: %s", PrettyMethod(vtable_method).c_str()); return false; } method_array->Set(j, vtable_method); break; } } if (k < 0) { SirtRef miranda_method(NULL); for (size_t mir = 0; mir < miranda_list.size(); mir++) { Method* mir_method = miranda_list[mir]; vtable_mh.ChangeMethod(mir_method); if (interface_mh.HasSameNameAndSignature(&vtable_mh)) { miranda_method.reset(miranda_list[mir]); break; } } if (miranda_method.get() == NULL) { // point the interface table at a phantom slot miranda_method.reset(AllocMethod()); memcpy(miranda_method.get(), interface_method, sizeof(Method)); miranda_list.push_back(miranda_method.get()); } method_array->Set(j, miranda_method.get()); } } } if (!miranda_list.empty()) { int old_method_count = klass->NumVirtualMethods(); int new_method_count = old_method_count + miranda_list.size(); klass->SetVirtualMethods((old_method_count == 0) ? AllocObjectArray(new_method_count) : klass->GetVirtualMethods()->CopyOf(new_method_count)); SirtRef > vtable(klass->GetVTableDuringLinking()); CHECK(vtable.get() != NULL); int old_vtable_count = vtable->GetLength(); int new_vtable_count = old_vtable_count + miranda_list.size(); vtable.reset(vtable->CopyOf(new_vtable_count)); for (size_t i = 0; i < miranda_list.size(); ++i) { Method* method = miranda_list[i]; // Leave the declaring class alone as type indices are relative to it method->SetAccessFlags(method->GetAccessFlags() | kAccMiranda); method->SetMethodIndex(0xFFFF & (old_vtable_count + i)); klass->SetVirtualMethod(old_method_count + i, method); vtable->Set(old_vtable_count + i, method); } // TODO: do not assign to the vtable field until it is fully constructed. klass->SetVTable(vtable.get()); } ObjectArray* vtable = klass->GetVTableDuringLinking(); for (int i = 0; i < vtable->GetLength(); ++i) { CHECK(vtable->Get(i) != NULL); } // klass->DumpClass(std::cerr, Class::kDumpClassFullDetail); return true; } bool ClassLinker::LinkInstanceFields(SirtRef& klass) { CHECK(klass.get() != NULL); return LinkFields(klass, false); } bool ClassLinker::LinkStaticFields(SirtRef& klass) { CHECK(klass.get() != NULL); size_t allocated_class_size = klass->GetClassSize(); bool success = LinkFields(klass, true); CHECK_EQ(allocated_class_size, klass->GetClassSize()); return success; } struct LinkFieldsComparator { explicit LinkFieldsComparator(FieldHelper* fh) : fh_(fh) {} bool operator()(const Field* field1, const Field* field2) { // First come reference fields, then 64-bit, and finally 32-bit fh_->ChangeField(field1); Primitive::Type type1 = fh_->GetTypeAsPrimitiveType(); fh_->ChangeField(field2); Primitive::Type type2 = fh_->GetTypeAsPrimitiveType(); bool isPrimitive1 = type1 != Primitive::kPrimNot; bool isPrimitive2 = type2 != Primitive::kPrimNot; bool is64bit1 = isPrimitive1 && (type1 == Primitive::kPrimLong || type1 == Primitive::kPrimDouble); bool is64bit2 = isPrimitive2 && (type2 == Primitive::kPrimLong || type2 == Primitive::kPrimDouble); int order1 = (!isPrimitive1 ? 0 : (is64bit1 ? 1 : 2)); int order2 = (!isPrimitive2 ? 0 : (is64bit2 ? 1 : 2)); if (order1 != order2) { return order1 < order2; } // same basic group? then sort by string. fh_->ChangeField(field1); StringPiece name1(fh_->GetName()); fh_->ChangeField(field2); StringPiece name2(fh_->GetName()); return name1 < name2; } FieldHelper* fh_; }; bool ClassLinker::LinkFields(SirtRef& klass, bool is_static) { size_t num_fields = is_static ? klass->NumStaticFields() : klass->NumInstanceFields(); ObjectArray* fields = is_static ? klass->GetSFields() : klass->GetIFields(); // Initialize size and field_offset size_t size; MemberOffset field_offset(0); if (is_static) { size = klass->GetClassSize(); field_offset = Class::FieldsOffset(); } else { Class* super_class = klass->GetSuperClass(); if (super_class != NULL) { CHECK(super_class->IsResolved()); field_offset = MemberOffset(super_class->GetObjectSize()); } size = field_offset.Uint32Value(); } CHECK_EQ(num_fields == 0, fields == NULL); // we want a relatively stable order so that adding new fields // minimizes disruption of C++ version such as Class and Method. std::deque grouped_and_sorted_fields; for (size_t i = 0; i < num_fields; i++) { grouped_and_sorted_fields.push_back(fields->Get(i)); } FieldHelper fh(NULL, this); std::sort(grouped_and_sorted_fields.begin(), grouped_and_sorted_fields.end(), LinkFieldsComparator(&fh)); // References should be at the front. size_t current_field = 0; size_t num_reference_fields = 0; for (; current_field < num_fields; current_field++) { Field* field = grouped_and_sorted_fields.front(); fh.ChangeField(field); Primitive::Type type = fh.GetTypeAsPrimitiveType(); bool isPrimitive = type != Primitive::kPrimNot; if (isPrimitive) { break; // past last reference, move on to the next phase } grouped_and_sorted_fields.pop_front(); num_reference_fields++; fields->Set(current_field, field); field->SetOffset(field_offset); field_offset = MemberOffset(field_offset.Uint32Value() + sizeof(uint32_t)); } // Now we want to pack all of the double-wide fields together. If // we're not aligned, though, we want to shuffle one 32-bit field // into place. If we can't find one, we'll have to pad it. if (current_field != num_fields && !IsAligned<8>(field_offset.Uint32Value())) { for (size_t i = 0; i < grouped_and_sorted_fields.size(); i++) { Field* field = grouped_and_sorted_fields[i]; fh.ChangeField(field); Primitive::Type type = fh.GetTypeAsPrimitiveType(); CHECK(type != Primitive::kPrimNot); // should only be working on primitive types if (type == Primitive::kPrimLong || type == Primitive::kPrimDouble) { continue; } fields->Set(current_field++, field); field->SetOffset(field_offset); // drop the consumed field grouped_and_sorted_fields.erase(grouped_and_sorted_fields.begin() + i); break; } // whether we found a 32-bit field for padding or not, we advance field_offset = MemberOffset(field_offset.Uint32Value() + sizeof(uint32_t)); } // Alignment is good, shuffle any double-wide fields forward, and // finish assigning field offsets to all fields. DCHECK(current_field == num_fields || IsAligned<8>(field_offset.Uint32Value())); while (!grouped_and_sorted_fields.empty()) { Field* field = grouped_and_sorted_fields.front(); grouped_and_sorted_fields.pop_front(); fh.ChangeField(field); Primitive::Type type = fh.GetTypeAsPrimitiveType(); CHECK(type != Primitive::kPrimNot); // should only be working on primitive types fields->Set(current_field, field); field->SetOffset(field_offset); field_offset = MemberOffset(field_offset.Uint32Value() + ((type == Primitive::kPrimLong || type == Primitive::kPrimDouble) ? sizeof(uint64_t) : sizeof(uint32_t))); current_field++; } // We lie to the GC about the java.lang.ref.Reference.referent field, so it doesn't scan it. std::string descriptor(ClassHelper(klass.get(), this).GetDescriptor()); if (!is_static && descriptor == "Ljava/lang/ref/Reference;") { // We know there are no non-reference fields in the Reference classes, and we know // that 'referent' is alphabetically last, so this is easy... CHECK_EQ(num_reference_fields, num_fields); fh.ChangeField(fields->Get(num_fields - 1)); CHECK_STREQ(fh.GetName(), "referent"); --num_reference_fields; } #ifndef NDEBUG // Make sure that all reference fields appear before // non-reference fields, and all double-wide fields are aligned. bool seen_non_ref = false; for (size_t i = 0; i < num_fields; i++) { Field* field = fields->Get(i); if (false) { // enable to debug field layout LOG(INFO) << "LinkFields: " << (is_static ? "static" : "instance") << " class=" << PrettyClass(klass.get()) << " field=" << PrettyField(field) << " offset=" << field->GetField32(MemberOffset(Field::OffsetOffset()), false); } fh.ChangeField(field); Primitive::Type type = fh.GetTypeAsPrimitiveType(); bool is_primitive = type != Primitive::kPrimNot; if (descriptor == "Ljava/lang/ref/Reference;" && StringPiece(fh.GetName()) == "referent") { is_primitive = true; // We lied above, so we have to expect a lie here. } if (is_primitive) { if (!seen_non_ref) { seen_non_ref = true; DCHECK_EQ(num_reference_fields, i); } } else { DCHECK(!seen_non_ref); } } if (!seen_non_ref) { DCHECK_EQ(num_fields, num_reference_fields); } #endif size = field_offset.Uint32Value(); // Update klass if (is_static) { klass->SetNumReferenceStaticFields(num_reference_fields); klass->SetClassSize(size); } else { klass->SetNumReferenceInstanceFields(num_reference_fields); if (!klass->IsVariableSize()) { klass->SetObjectSize(size); } } return true; } // Set the bitmap of reference offsets, refOffsets, from the ifields // list. void ClassLinker::CreateReferenceInstanceOffsets(SirtRef& klass) { uint32_t reference_offsets = 0; Class* super_class = klass->GetSuperClass(); if (super_class != NULL) { reference_offsets = super_class->GetReferenceInstanceOffsets(); // If our superclass overflowed, we don't stand a chance. if (reference_offsets == CLASS_WALK_SUPER) { klass->SetReferenceInstanceOffsets(reference_offsets); return; } } CreateReferenceOffsets(klass, false, reference_offsets); } void ClassLinker::CreateReferenceStaticOffsets(SirtRef& klass) { CreateReferenceOffsets(klass, true, 0); } void ClassLinker::CreateReferenceOffsets(SirtRef& klass, bool is_static, uint32_t reference_offsets) { size_t num_reference_fields = is_static ? klass->NumReferenceStaticFieldsDuringLinking() : klass->NumReferenceInstanceFieldsDuringLinking(); const ObjectArray* fields = is_static ? klass->GetSFields() : klass->GetIFields(); // All of the fields that contain object references are guaranteed // to be at the beginning of the fields list. for (size_t i = 0; i < num_reference_fields; ++i) { // Note that byte_offset is the offset from the beginning of // object, not the offset into instance data const Field* field = fields->Get(i); MemberOffset byte_offset = field->GetOffsetDuringLinking(); CHECK_EQ(byte_offset.Uint32Value() & (CLASS_OFFSET_ALIGNMENT - 1), 0U); if (CLASS_CAN_ENCODE_OFFSET(byte_offset.Uint32Value())) { uint32_t new_bit = CLASS_BIT_FROM_OFFSET(byte_offset.Uint32Value()); CHECK_NE(new_bit, 0U); reference_offsets |= new_bit; } else { reference_offsets = CLASS_WALK_SUPER; break; } } // Update fields in klass if (is_static) { klass->SetReferenceStaticOffsets(reference_offsets); } else { klass->SetReferenceInstanceOffsets(reference_offsets); } } String* ClassLinker::ResolveString(const DexFile& dex_file, uint32_t string_idx, DexCache* dex_cache) { DCHECK(dex_cache != NULL); String* resolved = dex_cache->GetResolvedString(string_idx); if (resolved != NULL) { return resolved; } const DexFile::StringId& string_id = dex_file.GetStringId(string_idx); int32_t utf16_length = dex_file.GetStringLength(string_id); const char* utf8_data = dex_file.GetStringData(string_id); String* string = intern_table_->InternStrong(utf16_length, utf8_data); dex_cache->SetResolvedString(string_idx, string); return string; } Class* ClassLinker::ResolveType(const DexFile& dex_file, uint16_t type_idx, DexCache* dex_cache, ClassLoader* class_loader) { DCHECK(dex_cache != NULL); Class* resolved = dex_cache->GetResolvedType(type_idx); if (resolved == NULL) { const char* descriptor = dex_file.StringByTypeIdx(type_idx); resolved = FindClass(descriptor, class_loader); if (resolved != NULL) { // TODO: we used to throw here if resolved's class loader was not the // boot class loader. This was to permit different classes with the // same name to be loaded simultaneously by different loaders dex_cache->SetResolvedType(type_idx, resolved); } else { CHECK(Thread::Current()->IsExceptionPending()) << "Expected pending exception for failed resolution of: " << descriptor; // Convert a ClassNotFoundException to a NoClassDefFoundError if (Thread::Current()->GetException()->InstanceOf(GetClassRoot(kJavaLangClassNotFoundException))) { Thread::Current()->ClearException(); ThrowNoClassDefFoundError("Failed resolution of: %s", descriptor); } } } return resolved; } Method* ClassLinker::ResolveMethod(const DexFile& dex_file, uint32_t method_idx, DexCache* dex_cache, ClassLoader* class_loader, bool is_direct) { DCHECK(dex_cache != NULL); Method* resolved = dex_cache->GetResolvedMethod(method_idx); if (resolved != NULL) { return resolved; } const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx); Class* klass = ResolveType(dex_file, method_id.class_idx_, dex_cache, class_loader); if (klass == NULL) { DCHECK(Thread::Current()->IsExceptionPending()); return NULL; } if (is_direct) { resolved = klass->FindDirectMethod(dex_cache, method_idx); } else if (klass->IsInterface()) { resolved = klass->FindInterfaceMethod(dex_cache, method_idx); } else { resolved = klass->FindVirtualMethod(dex_cache, method_idx); } if (resolved == NULL) { const char* name = dex_file.StringDataByIdx(method_id.name_idx_); std::string signature(dex_file.CreateMethodSignature(method_id.proto_idx_, NULL)); if (is_direct) { resolved = klass->FindDirectMethod(name, signature); } else if (klass->IsInterface()) { resolved = klass->FindInterfaceMethod(name, signature); } else { resolved = klass->FindVirtualMethod(name, signature); // If a virtual method isn't found, search the direct methods. This can // happen when trying to access private methods directly, and allows the // proper exception to be thrown in the caller. if (resolved == NULL) { resolved = klass->FindDirectMethod(name, signature); } } if (resolved == NULL) { ThrowNoSuchMethodError(is_direct, klass, name, signature); return NULL; } } dex_cache->SetResolvedMethod(method_idx, resolved); return resolved; } Field* ClassLinker::ResolveField(const DexFile& dex_file, uint32_t field_idx, DexCache* dex_cache, ClassLoader* class_loader, bool is_static) { DCHECK(dex_cache != NULL); Field* resolved = dex_cache->GetResolvedField(field_idx); if (resolved != NULL) { return resolved; } const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx); Class* klass = ResolveType(dex_file, field_id.class_idx_, dex_cache, class_loader); if (klass == NULL) { DCHECK(Thread::Current()->IsExceptionPending()); return NULL; } if (is_static) { resolved = klass->FindStaticField(dex_cache, field_idx); } else { resolved = klass->FindInstanceField(dex_cache, field_idx); } if (resolved == NULL) { const char* name = dex_file.GetFieldName(field_id); const char* type = dex_file.GetFieldTypeDescriptor(field_id); if (is_static) { resolved = klass->FindStaticField(name, type); } else { resolved = klass->FindInstanceField(name, type); } if (resolved == NULL) { ThrowNoSuchFieldError(is_static ? "static " : "instance ", klass, type, name); return NULL; } } dex_cache->SetResolvedField(field_idx, resolved); return resolved; } Field* ClassLinker::ResolveFieldJLS(const DexFile& dex_file, uint32_t field_idx, DexCache* dex_cache, ClassLoader* class_loader) { DCHECK(dex_cache != NULL); Field* resolved = dex_cache->GetResolvedField(field_idx); if (resolved != NULL) { return resolved; } const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx); Class* klass = ResolveType(dex_file, field_id.class_idx_, dex_cache, class_loader); if (klass == NULL) { DCHECK(Thread::Current()->IsExceptionPending()); return NULL; } const char* name = dex_file.GetFieldName(field_id); const char* type = dex_file.GetFieldTypeDescriptor(field_id); resolved = klass->FindField(name, type); if (resolved != NULL) { dex_cache->SetResolvedField(field_idx, resolved); } else { ThrowNoSuchFieldError("", klass, type, name); } return resolved; } const char* ClassLinker::MethodShorty(uint32_t method_idx, Method* referrer, uint32_t* length) { Class* declaring_class = referrer->GetDeclaringClass(); DexCache* dex_cache = declaring_class->GetDexCache(); const DexFile& dex_file = FindDexFile(dex_cache); const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx); return dex_file.GetMethodShorty(method_id, length); } void ClassLinker::DumpAllClasses(int flags) const { // TODO: at the time this was written, it wasn't safe to call PrettyField with the ClassLinker // lock held, because it might need to resolve a field's type, which would try to take the lock. std::vector all_classes; { MutexLock mu(classes_lock_); typedef Table::const_iterator It; // TODO: C++0x auto for (It it = classes_.begin(), end = classes_.end(); it != end; ++it) { all_classes.push_back(it->second); } for (It it = image_classes_.begin(), end = image_classes_.end(); it != end; ++it) { all_classes.push_back(it->second); } } for (size_t i = 0; i < all_classes.size(); ++i) { all_classes[i]->DumpClass(std::cerr, flags); } } void ClassLinker::DumpForSigQuit(std::ostream& os) const { MutexLock mu(classes_lock_); os << "Loaded classes: " << image_classes_.size() << " image classes; " << classes_.size() << " allocated classes\n"; } size_t ClassLinker::NumLoadedClasses() const { MutexLock mu(classes_lock_); return classes_.size() + image_classes_.size(); } pid_t ClassLinker::GetClassesLockOwner() { return classes_lock_.GetOwner(); } pid_t ClassLinker::GetDexLockOwner() { return dex_lock_.GetOwner(); } void ClassLinker::SetClassRoot(ClassRoot class_root, Class* klass) { DCHECK(!init_done_); DCHECK(klass != NULL); DCHECK(klass->GetClassLoader() == NULL); DCHECK(class_roots_ != NULL); DCHECK(class_roots_->Get(class_root) == NULL); class_roots_->Set(class_root, klass); } void ClassLinker::RelocateExecutable() { MutexLock mu(dex_lock_); for (size_t i = 0; i < oat_files_.size(); ++i) { const_cast(oat_files_[i])->RelocateExecutable(); } } } // namespace art