/* * Copyright (C) 2012 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_VERIFIER_REGISTER_LINE_H_ #define ART_RUNTIME_VERIFIER_REGISTER_LINE_H_ #include #include #include #include #include "base/arena_containers.h" #include "base/locks.h" #include "base/macros.h" #include "base/safe_map.h" #include "reg_type.h" namespace art HIDDEN { class Instruction; namespace verifier { class MethodVerifier; class RegType; class RegTypeCache; /* * Register type categories, for type checking. * * The spec says category 1 includes boolean, byte, char, short, int, float, reference, and * returnAddress. Category 2 includes long and double. * * We treat object references separately, so we have "category1nr". We don't support jsr/ret, so * there is no "returnAddress" type. */ enum TypeCategory { kTypeCategoryUnknown = 0, kTypeCategory1nr = 1, // boolean, byte, char, short, int, float kTypeCategory2 = 2, // long, double kTypeCategoryRef = 3, // object reference }; // What to do with the lock levels when setting the register type. enum class LockOp { kClear, // Clear the lock levels recorded. kKeep // Leave the lock levels alone. }; // During verification, we associate one of these with every "interesting" instruction. We track // the status of all registers, and (if the method has any monitor-enter instructions) maintain a // stack of entered monitors (identified by code unit offset). class RegisterLine { public: using RegisterStackMask = uint32_t; // A map from register to a bit vector of indices into the monitors_ stack. using RegToLockDepthsMap = ArenaSafeMap; // Maximum number of nested monitors to track before giving up and // taking the slow path. static constexpr size_t kMaxMonitorStackDepth = std::numeric_limits::digits; // Create a register line of num_regs registers. static RegisterLine* Create(size_t num_regs, ArenaAllocator& allocator); // Copy reference (or conflict) register. void CopyReference(uint32_t vdst, uint32_t vsrc, const RegType& type) REQUIRES_SHARED(Locks::mutator_lock_); // Implement "move-result". Copy the category-1 value from the result register to another // register, and reset the result register. void CopyResultRegister1(MethodVerifier* verifier, uint32_t vdst, bool is_reference) REQUIRES_SHARED(Locks::mutator_lock_); // Implement "move-result-wide". Copy the category-2 value from the result register to another // register, and reset the result register. void CopyResultRegister2(MethodVerifier* verifier, uint32_t vdst) REQUIRES_SHARED(Locks::mutator_lock_); // Set the invisible result register to unknown void SetResultTypeToUnknown() REQUIRES_SHARED(Locks::mutator_lock_); // Set the type of register N, verifying that the register is valid. If "newType" is the "Lo" // part of a 64-bit value, register N+1 will be set to "newType+1". // The register index was validated during the static pass, so we don't need to check it here. // // LockOp::kClear should be used by default; it will clear the lock levels associated with the // register. An example is setting the register type because an instruction writes to the // register. // LockOp::kKeep keeps the lock levels of the register and only changes the register type. This // is typical when the underlying value did not change, but we have "different" type information // available now. An example is sharpening types after a check-cast. Note that when given kKeep, // the new_type is dchecked to be a reference type. ALWAYS_INLINE void SetRegisterType(uint32_t vdst, RegType::Kind new_kind) REQUIRES_SHARED(Locks::mutator_lock_); template ALWAYS_INLINE void SetRegisterType(uint32_t vdst, const RegType& new_type) REQUIRES_SHARED(Locks::mutator_lock_); void SetRegisterTypeWide(uint32_t vdst, RegType::Kind new_kind1, RegType::Kind new_kind2) REQUIRES_SHARED(Locks::mutator_lock_); void SetRegisterTypeWide(uint32_t vdst, const RegType& new_type1, const RegType& new_type2) REQUIRES_SHARED(Locks::mutator_lock_); /* Set the type of the "result" register. */ void SetResultRegisterType(const RegType& new_type) REQUIRES_SHARED(Locks::mutator_lock_); void SetResultRegisterTypeWide(const RegType& new_type1, const RegType& new_type2) REQUIRES_SHARED(Locks::mutator_lock_); /* * Set register type for a `new-instance` instruction. * For `new-instance`, we additionally record the allocation dex pc for vreg `vdst`. * This is used to keep track of registers that hold the same uninitialized reference, * so that we can update them all when a constructor is called on any of them. */ void SetRegisterTypeForNewInstance(uint32_t vdst, const RegType& uninit_type, uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_); // Get the id of the register tyoe of register vsrc. uint16_t GetRegisterTypeId(uint32_t vsrc) const; // Get the type of register vsrc. const RegType& GetRegisterType(MethodVerifier* verifier, uint32_t vsrc) const; void CopyFromLine(const RegisterLine* src); std::string Dump(MethodVerifier* verifier) const REQUIRES_SHARED(Locks::mutator_lock_); void FillWithGarbage() { memset(&line_, 0xf1, num_regs_ * sizeof(uint16_t)); monitors_.clear(); reg_to_lock_depths_.clear(); } /* * In debug mode, assert that the register line does not contain an uninitialized register * type for a `new-instance` allocation at a specific dex pc. We do this check before recording * the uninitialized register type and dex pc for a `new-instance` instruction. */ void DCheckUniqueNewInstanceDexPc(MethodVerifier* verifier, uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_); /* * Update all registers holding the uninitialized type currently recorded for vreg `vsrc` to * instead hold the corresponding initialized reference type. This is called when an appropriate * constructor is invoked -- all copies of the reference must be marked as initialized. */ void MarkRefsAsInitialized(MethodVerifier* verifier, uint32_t vsrc) REQUIRES_SHARED(Locks::mutator_lock_); void SetThisInitialized() { this_initialized_ = true; } void CopyThisInitialized(const RegisterLine& src) { this_initialized_ = src.this_initialized_; } /* * Check constraints on constructor return. Specifically, make sure that the "this" argument got * initialized. * The "this" argument to uses code offset kUninitThisArgAddr, which puts it at the start * of the list in slot 0. If we see a register with an uninitialized slot 0 reference, we know it * somehow didn't get initialized. */ bool CheckConstructorReturn(MethodVerifier* verifier) const; // Compare two register lines. Returns 0 if they match. // Using this for a sort is unwise, since the value can change based on machine endianness. int CompareLine(const RegisterLine* line2) const { if (monitors_ != line2->monitors_) { return 1; } // TODO: DCHECK(reg_to_lock_depths_ == line2->reg_to_lock_depths_); return memcmp(&line_, &line2->line_, num_regs_ * sizeof(uint16_t)); } size_t NumRegs() const { return num_regs_; } // Return how many bytes of memory a register line uses. ALWAYS_INLINE static size_t ComputeSize(size_t num_regs); // Verify/push monitor onto the monitor stack, locking the value in reg_idx at location insn_idx. void PushMonitor( MethodVerifier* verifier, uint32_t vreg, const RegType& reg_type, int32_t insn_idx) REQUIRES_SHARED(Locks::mutator_lock_); // Verify/pop monitor from monitor stack ensuring that we believe the monitor is locked void PopMonitor(MethodVerifier* verifier, uint32_t vreg, const RegType& reg_type) REQUIRES_SHARED(Locks::mutator_lock_); // Stack of currently held monitors and where they were locked size_t MonitorStackDepth() const { return monitors_.size(); } // We expect no monitors to be held at certain points, such a method returns. Verify the stack // is empty, queueing a LOCKING error else. void VerifyMonitorStackEmpty(MethodVerifier* verifier) const; bool MergeRegisters(MethodVerifier* verifier, const RegisterLine* incoming_line) REQUIRES_SHARED(Locks::mutator_lock_); size_t GetMonitorEnterCount() const { return monitors_.size(); } uint32_t GetMonitorEnterDexPc(size_t i) const { return monitors_[i]; } // We give access to the lock depth map to avoid an expensive poll loop for FindLocksAtDexPC. template void IterateRegToLockDepths(T fn) const { for (const auto& pair : reg_to_lock_depths_) { const uint32_t reg = pair.first; uint32_t depths = pair.second; uint32_t depth = 0; while (depths != 0) { if ((depths & 1) != 0) { fn(reg, depth); } depths >>= 1; depth++; } } } private: // For uninitialized types we need to check for allocation dex pc mismatch when merging. // This does not apply to uninitialized "this" reference types. static bool NeedsAllocationDexPc(const RegType& reg_type); void EnsureAllocationDexPcsAvailable(); template ALWAYS_INLINE void SetRegisterTypeImpl(uint32_t vdst, uint16_t new_id) REQUIRES_SHARED(Locks::mutator_lock_); void SetRegisterTypeWideImpl(uint32_t vdst, uint16_t new_id1, uint16_t new_id2) REQUIRES_SHARED(Locks::mutator_lock_); void CopyRegToLockDepth(size_t dst, size_t src) { // Note: We do not clear the entry for `dst` before copying, so we need to `Overwrite()` // or `erase()`. This preserves the lock depths in the unlikely case that `dst == src`. auto it = reg_to_lock_depths_.find(src); if (it != reg_to_lock_depths_.end()) { reg_to_lock_depths_.Overwrite(dst, it->second); } else { reg_to_lock_depths_.erase(dst); } } bool IsSetLockDepth(size_t reg, size_t depth) { auto it = reg_to_lock_depths_.find(reg); if (it != reg_to_lock_depths_.end()) { return (it->second & (1 << depth)) != 0; } else { return false; } } bool SetRegToLockDepth(size_t reg, size_t depth) { CHECK_LT(depth, kMaxMonitorStackDepth); if (IsSetLockDepth(reg, depth)) { return false; // Register already holds lock so locking twice is erroneous. } auto it = reg_to_lock_depths_.find(reg); if (it == reg_to_lock_depths_.end()) { reg_to_lock_depths_.Put(reg, 1 << depth); } else { it->second |= (1 << depth); } return true; } void ClearRegToLockDepth(size_t reg, size_t depth); void ClearAllRegToLockDepths(size_t reg) { reg_to_lock_depths_.erase(reg); } RegisterLine(size_t num_regs, ArenaAllocator& allocator); static constexpr uint32_t kNoDexPc = static_cast(-1); // Length of reg_types_ const uint32_t num_regs_; // Storage for the result register's type, valid after an invocation. uint16_t result_[2]; // Track allocation dex pcs for `new-instance` results moved to other registers. uint32_t* allocation_dex_pcs_; // A stack of monitor enter locations. ArenaVector monitors_; // A map from register to a bit vector of indices into the monitors_ stack. As we pop the monitor // stack we verify that monitor-enter/exit are correctly nested. That is, if there was a // monitor-enter on v5 and then on v6, we expect the monitor-exit to be on v6 then on v5. RegToLockDepthsMap reg_to_lock_depths_; // Whether "this" initialization (a constructor supercall) has happened. bool this_initialized_; // An array of RegType Ids associated with each dex register. uint16_t line_[1]; friend class RegisterLineArenaDelete; DISALLOW_COPY_AND_ASSIGN(RegisterLine); }; class RegisterLineArenaDelete : public ArenaDelete { public: void operator()(RegisterLine* ptr) const; }; using RegisterLineArenaUniquePtr = std::unique_ptr; } // namespace verifier } // namespace art #endif // ART_RUNTIME_VERIFIER_REGISTER_LINE_H_