/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_STACK_MAP_H_ #define ART_RUNTIME_STACK_MAP_H_ #include #include "base/bit_memory_region.h" #include "base/bit_table.h" #include "base/bit_utils.h" #include "base/bit_vector.h" #include "base/leb128.h" #include "base/memory_region.h" #include "dex/dex_file_types.h" #include "method_info.h" #include "oat_quick_method_header.h" namespace art { class VariableIndentationOutputStream; // Size of a frame slot, in bytes. This constant is a signed value, // to please the compiler in arithmetic operations involving int32_t // (signed) values. static constexpr ssize_t kFrameSlotSize = 4; class ArtMethod; class CodeInfo; /** * Classes in the following file are wrapper on stack map information backed * by a MemoryRegion. As such they read and write to the region, they don't have * their own fields. */ // Dex register location container used by DexRegisterMap and StackMapStream. class DexRegisterLocation { public: /* * The location kind used to populate the Dex register information in a * StackMapStream can either be: * - kStack: vreg stored on the stack, value holds the stack offset; * - kInRegister: vreg stored in low 32 bits of a core physical register, * value holds the register number; * - kInRegisterHigh: vreg stored in high 32 bits of a core physical register, * value holds the register number; * - kInFpuRegister: vreg stored in low 32 bits of an FPU register, * value holds the register number; * - kInFpuRegisterHigh: vreg stored in high 32 bits of an FPU register, * value holds the register number; * - kConstant: value holds the constant; * * In addition, DexRegisterMap also uses these values: * - kInStackLargeOffset: value holds a "large" stack offset (greater than * or equal to 128 bytes); * - kConstantLargeValue: value holds a "large" constant (lower than 0, or * or greater than or equal to 32); * - kNone: the register has no location, meaning it has not been set. */ enum class Kind : uint8_t { // Short location kinds, for entries fitting on one byte (3 bits // for the kind, 5 bits for the value) in a DexRegisterMap. kInStack = 0, // 0b000 kInRegister = 1, // 0b001 kInRegisterHigh = 2, // 0b010 kInFpuRegister = 3, // 0b011 kInFpuRegisterHigh = 4, // 0b100 kConstant = 5, // 0b101 // Large location kinds, requiring a 5-byte encoding (1 byte for the // kind, 4 bytes for the value). // Stack location at a large offset, meaning that the offset value // divided by the stack frame slot size (4 bytes) cannot fit on a // 5-bit unsigned integer (i.e., this offset value is greater than // or equal to 2^5 * 4 = 128 bytes). kInStackLargeOffset = 6, // 0b110 // Large constant, that cannot fit on a 5-bit signed integer (i.e., // lower than 0, or greater than or equal to 2^5 = 32). kConstantLargeValue = 7, // 0b111 // Entries with no location are not stored and do not need own marker. kNone = static_cast(-1), kLastLocationKind = kConstantLargeValue }; static_assert( sizeof(Kind) == 1u, "art::DexRegisterLocation::Kind has a size different from one byte."); static bool IsShortLocationKind(Kind kind) { switch (kind) { case Kind::kInStack: case Kind::kInRegister: case Kind::kInRegisterHigh: case Kind::kInFpuRegister: case Kind::kInFpuRegisterHigh: case Kind::kConstant: return true; case Kind::kInStackLargeOffset: case Kind::kConstantLargeValue: return false; case Kind::kNone: LOG(FATAL) << "Unexpected location kind"; } UNREACHABLE(); } // Convert `kind` to a "surface" kind, i.e. one that doesn't include // any value with a "large" qualifier. // TODO: Introduce another enum type for the surface kind? static Kind ConvertToSurfaceKind(Kind kind) { switch (kind) { case Kind::kInStack: case Kind::kInRegister: case Kind::kInRegisterHigh: case Kind::kInFpuRegister: case Kind::kInFpuRegisterHigh: case Kind::kConstant: return kind; case Kind::kInStackLargeOffset: return Kind::kInStack; case Kind::kConstantLargeValue: return Kind::kConstant; case Kind::kNone: return kind; } UNREACHABLE(); } // Required by art::StackMapStream::LocationCatalogEntriesIndices. DexRegisterLocation() : kind_(Kind::kNone), value_(0) {} DexRegisterLocation(Kind kind, int32_t value) : kind_(kind), value_(value) {} static DexRegisterLocation None() { return DexRegisterLocation(Kind::kNone, 0); } // Get the "surface" kind of the location, i.e., the one that doesn't // include any value with a "large" qualifier. Kind GetKind() const { return ConvertToSurfaceKind(kind_); } // Get the value of the location. int32_t GetValue() const { return value_; } // Get the actual kind of the location. Kind GetInternalKind() const { return kind_; } bool operator==(DexRegisterLocation other) const { return kind_ == other.kind_ && value_ == other.value_; } bool operator!=(DexRegisterLocation other) const { return !(*this == other); } private: Kind kind_; int32_t value_; friend class DexRegisterLocationHashFn; }; std::ostream& operator<<(std::ostream& stream, const DexRegisterLocation::Kind& kind); /** * Store information on unique Dex register locations used in a method. * The information is of the form: * * [DexRegisterLocation+]. * * DexRegisterLocations are either 1- or 5-byte wide (see art::DexRegisterLocation::Kind). */ class DexRegisterLocationCatalog { public: explicit DexRegisterLocationCatalog(MemoryRegion region) : region_(region) {} // Short (compressed) location, fitting on one byte. typedef uint8_t ShortLocation; void SetRegisterInfo(size_t offset, const DexRegisterLocation& dex_register_location) { DexRegisterLocation::Kind kind = ComputeCompressedKind(dex_register_location); int32_t value = dex_register_location.GetValue(); if (DexRegisterLocation::IsShortLocationKind(kind)) { // Short location. Compress the kind and the value as a single byte. if (kind == DexRegisterLocation::Kind::kInStack) { // Instead of storing stack offsets expressed in bytes for // short stack locations, store slot offsets. A stack offset // is a multiple of 4 (kFrameSlotSize). This means that by // dividing it by 4, we can fit values from the [0, 128) // interval in a short stack location, and not just values // from the [0, 32) interval. DCHECK_EQ(value % kFrameSlotSize, 0); value /= kFrameSlotSize; } DCHECK(IsShortValue(value)) << value; region_.StoreUnaligned(offset, MakeShortLocation(kind, value)); } else { // Large location. Write the location on one byte and the value // on 4 bytes. DCHECK(!IsShortValue(value)) << value; if (kind == DexRegisterLocation::Kind::kInStackLargeOffset) { // Also divide large stack offsets by 4 for the sake of consistency. DCHECK_EQ(value % kFrameSlotSize, 0); value /= kFrameSlotSize; } // Data can be unaligned as the written Dex register locations can // either be 1-byte or 5-byte wide. Use // art::MemoryRegion::StoreUnaligned instead of // art::MemoryRegion::Store to prevent unligned word accesses on ARM. region_.StoreUnaligned(offset, kind); region_.StoreUnaligned(offset + sizeof(DexRegisterLocation::Kind), value); } } // Find the offset of the location catalog entry number `location_catalog_entry_index`. size_t FindLocationOffset(size_t location_catalog_entry_index) const { size_t offset = kFixedSize; // Skip the first `location_catalog_entry_index - 1` entries. for (uint16_t i = 0; i < location_catalog_entry_index; ++i) { // Read the first next byte and inspect its first 3 bits to decide // whether it is a short or a large location. DexRegisterLocation::Kind kind = ExtractKindAtOffset(offset); if (DexRegisterLocation::IsShortLocationKind(kind)) { // Short location. Skip the current byte. offset += SingleShortEntrySize(); } else { // Large location. Skip the 5 next bytes. offset += SingleLargeEntrySize(); } } return offset; } // Get the internal kind of entry at `location_catalog_entry_index`. DexRegisterLocation::Kind GetLocationInternalKind(size_t location_catalog_entry_index) const { if (location_catalog_entry_index == kNoLocationEntryIndex) { return DexRegisterLocation::Kind::kNone; } return ExtractKindAtOffset(FindLocationOffset(location_catalog_entry_index)); } // Get the (surface) kind and value of entry at `location_catalog_entry_index`. DexRegisterLocation GetDexRegisterLocation(size_t location_catalog_entry_index) const { if (location_catalog_entry_index == kNoLocationEntryIndex) { return DexRegisterLocation::None(); } size_t offset = FindLocationOffset(location_catalog_entry_index); // Read the first byte and inspect its first 3 bits to get the location. ShortLocation first_byte = region_.LoadUnaligned(offset); DexRegisterLocation::Kind kind = ExtractKindFromShortLocation(first_byte); if (DexRegisterLocation::IsShortLocationKind(kind)) { // Short location. Extract the value from the remaining 5 bits. int32_t value = ExtractValueFromShortLocation(first_byte); if (kind == DexRegisterLocation::Kind::kInStack) { // Convert the stack slot (short) offset to a byte offset value. value *= kFrameSlotSize; } return DexRegisterLocation(kind, value); } else { // Large location. Read the four next bytes to get the value. int32_t value = region_.LoadUnaligned(offset + sizeof(DexRegisterLocation::Kind)); if (kind == DexRegisterLocation::Kind::kInStackLargeOffset) { // Convert the stack slot (large) offset to a byte offset value. value *= kFrameSlotSize; } return DexRegisterLocation(kind, value); } } // Compute the compressed kind of `location`. static DexRegisterLocation::Kind ComputeCompressedKind(const DexRegisterLocation& location) { DexRegisterLocation::Kind kind = location.GetInternalKind(); switch (kind) { case DexRegisterLocation::Kind::kInStack: return IsShortStackOffsetValue(location.GetValue()) ? DexRegisterLocation::Kind::kInStack : DexRegisterLocation::Kind::kInStackLargeOffset; case DexRegisterLocation::Kind::kInRegister: case DexRegisterLocation::Kind::kInRegisterHigh: DCHECK_GE(location.GetValue(), 0); DCHECK_LT(location.GetValue(), 1 << kValueBits); return kind; case DexRegisterLocation::Kind::kInFpuRegister: case DexRegisterLocation::Kind::kInFpuRegisterHigh: DCHECK_GE(location.GetValue(), 0); DCHECK_LT(location.GetValue(), 1 << kValueBits); return kind; case DexRegisterLocation::Kind::kConstant: return IsShortConstantValue(location.GetValue()) ? DexRegisterLocation::Kind::kConstant : DexRegisterLocation::Kind::kConstantLargeValue; case DexRegisterLocation::Kind::kConstantLargeValue: case DexRegisterLocation::Kind::kInStackLargeOffset: case DexRegisterLocation::Kind::kNone: LOG(FATAL) << "Unexpected location kind " << kind; } UNREACHABLE(); } // Can `location` be turned into a short location? static bool CanBeEncodedAsShortLocation(const DexRegisterLocation& location) { DexRegisterLocation::Kind kind = location.GetInternalKind(); switch (kind) { case DexRegisterLocation::Kind::kInStack: return IsShortStackOffsetValue(location.GetValue()); case DexRegisterLocation::Kind::kInRegister: case DexRegisterLocation::Kind::kInRegisterHigh: case DexRegisterLocation::Kind::kInFpuRegister: case DexRegisterLocation::Kind::kInFpuRegisterHigh: return true; case DexRegisterLocation::Kind::kConstant: return IsShortConstantValue(location.GetValue()); case DexRegisterLocation::Kind::kConstantLargeValue: case DexRegisterLocation::Kind::kInStackLargeOffset: case DexRegisterLocation::Kind::kNone: LOG(FATAL) << "Unexpected location kind " << kind; } UNREACHABLE(); } static size_t EntrySize(const DexRegisterLocation& location) { return CanBeEncodedAsShortLocation(location) ? SingleShortEntrySize() : SingleLargeEntrySize(); } static size_t SingleShortEntrySize() { return sizeof(ShortLocation); } static size_t SingleLargeEntrySize() { return sizeof(DexRegisterLocation::Kind) + sizeof(int32_t); } size_t Size() const { return region_.size(); } void Dump(VariableIndentationOutputStream* vios, const CodeInfo& code_info); // Special (invalid) Dex register location catalog entry index meaning // that there is no location for a given Dex register (i.e., it is // mapped to a DexRegisterLocation::Kind::kNone location). static constexpr size_t kNoLocationEntryIndex = -1; private: static constexpr int kFixedSize = 0; // Width of the kind "field" in a short location, in bits. static constexpr size_t kKindBits = 3; // Width of the value "field" in a short location, in bits. static constexpr size_t kValueBits = 5; static constexpr uint8_t kKindMask = (1 << kKindBits) - 1; static constexpr int32_t kValueMask = (1 << kValueBits) - 1; static constexpr size_t kKindOffset = 0; static constexpr size_t kValueOffset = kKindBits; static bool IsShortStackOffsetValue(int32_t value) { DCHECK_EQ(value % kFrameSlotSize, 0); return IsShortValue(value / kFrameSlotSize); } static bool IsShortConstantValue(int32_t value) { return IsShortValue(value); } static bool IsShortValue(int32_t value) { return IsUint(value); } static ShortLocation MakeShortLocation(DexRegisterLocation::Kind kind, int32_t value) { uint8_t kind_integer_value = static_cast(kind); DCHECK(IsUint(kind_integer_value)) << kind_integer_value; DCHECK(IsShortValue(value)) << value; return (kind_integer_value & kKindMask) << kKindOffset | (value & kValueMask) << kValueOffset; } static DexRegisterLocation::Kind ExtractKindFromShortLocation(ShortLocation location) { uint8_t kind = (location >> kKindOffset) & kKindMask; DCHECK_LE(kind, static_cast(DexRegisterLocation::Kind::kLastLocationKind)); // We do not encode kNone locations in the stack map. DCHECK_NE(kind, static_cast(DexRegisterLocation::Kind::kNone)); return static_cast(kind); } static int32_t ExtractValueFromShortLocation(ShortLocation location) { return (location >> kValueOffset) & kValueMask; } // Extract a location kind from the byte at position `offset`. DexRegisterLocation::Kind ExtractKindAtOffset(size_t offset) const { ShortLocation first_byte = region_.LoadUnaligned(offset); return ExtractKindFromShortLocation(first_byte); } MemoryRegion region_; friend class CodeInfo; friend class StackMapStream; }; /* Information on Dex register locations for a specific PC, mapping a * stack map's Dex register to a location entry in a DexRegisterLocationCatalog. * The information is of the form: * * [live_bit_mask, entries*] * * where entries are concatenated unsigned integer values encoded on a number * of bits (fixed per DexRegisterMap instances of a CodeInfo object) depending * on the number of entries in the Dex register location catalog * (see DexRegisterMap::SingleEntrySizeInBits). The map is 1-byte aligned. */ class DexRegisterMap { public: DexRegisterMap(MemoryRegion region, uint16_t number_of_dex_registers, const CodeInfo& code_info) : region_(region), number_of_dex_registers_(number_of_dex_registers), code_info_(code_info) {} bool IsValid() const { return region_.IsValid(); } // Get the surface kind of Dex register `dex_register_number`. DexRegisterLocation::Kind GetLocationKind(uint16_t dex_register_number) const { return DexRegisterLocation::ConvertToSurfaceKind(GetLocationInternalKind(dex_register_number)); } // Get the internal kind of Dex register `dex_register_number`. DexRegisterLocation::Kind GetLocationInternalKind(uint16_t dex_register_number) const; // Get the Dex register location `dex_register_number`. DexRegisterLocation GetDexRegisterLocation(uint16_t dex_register_number) const; int32_t GetStackOffsetInBytes(uint16_t dex_register_number) const { DexRegisterLocation location = GetDexRegisterLocation(dex_register_number); DCHECK(location.GetKind() == DexRegisterLocation::Kind::kInStack); // GetDexRegisterLocation returns the offset in bytes. return location.GetValue(); } int32_t GetConstant(uint16_t dex_register_number) const { DexRegisterLocation location = GetDexRegisterLocation(dex_register_number); DCHECK_EQ(location.GetKind(), DexRegisterLocation::Kind::kConstant); return location.GetValue(); } int32_t GetMachineRegister(uint16_t dex_register_number) const { DexRegisterLocation location = GetDexRegisterLocation(dex_register_number); DCHECK(location.GetInternalKind() == DexRegisterLocation::Kind::kInRegister || location.GetInternalKind() == DexRegisterLocation::Kind::kInRegisterHigh || location.GetInternalKind() == DexRegisterLocation::Kind::kInFpuRegister || location.GetInternalKind() == DexRegisterLocation::Kind::kInFpuRegisterHigh) << location.GetInternalKind(); return location.GetValue(); } // Get the index of the entry in the Dex register location catalog // corresponding to `dex_register_number`. size_t GetLocationCatalogEntryIndex(uint16_t dex_register_number, size_t number_of_location_catalog_entries) const { if (!IsDexRegisterLive(dex_register_number)) { return DexRegisterLocationCatalog::kNoLocationEntryIndex; } if (number_of_location_catalog_entries == 1) { // We do not allocate space for location maps in the case of a // single-entry location catalog, as it is useless. The only valid // entry index is 0; return 0; } // The bit offset of the beginning of the map locations. size_t map_locations_offset_in_bits = GetLocationMappingDataOffset(number_of_dex_registers_) * kBitsPerByte; size_t index_in_dex_register_map = GetIndexInDexRegisterMap(dex_register_number); DCHECK_LT(index_in_dex_register_map, GetNumberOfLiveDexRegisters()); // The bit size of an entry. size_t map_entry_size_in_bits = SingleEntrySizeInBits(number_of_location_catalog_entries); // The bit offset where `index_in_dex_register_map` is located. size_t entry_offset_in_bits = map_locations_offset_in_bits + index_in_dex_register_map * map_entry_size_in_bits; size_t location_catalog_entry_index = region_.LoadBits(entry_offset_in_bits, map_entry_size_in_bits); DCHECK_LT(location_catalog_entry_index, number_of_location_catalog_entries); return location_catalog_entry_index; } // Map entry at `index_in_dex_register_map` to `location_catalog_entry_index`. void SetLocationCatalogEntryIndex(size_t index_in_dex_register_map, size_t location_catalog_entry_index, size_t number_of_location_catalog_entries) { DCHECK_LT(index_in_dex_register_map, GetNumberOfLiveDexRegisters()); DCHECK_LT(location_catalog_entry_index, number_of_location_catalog_entries); if (number_of_location_catalog_entries == 1) { // We do not allocate space for location maps in the case of a // single-entry location catalog, as it is useless. return; } // The bit offset of the beginning of the map locations. size_t map_locations_offset_in_bits = GetLocationMappingDataOffset(number_of_dex_registers_) * kBitsPerByte; // The bit size of an entry. size_t map_entry_size_in_bits = SingleEntrySizeInBits(number_of_location_catalog_entries); // The bit offset where `index_in_dex_register_map` is located. size_t entry_offset_in_bits = map_locations_offset_in_bits + index_in_dex_register_map * map_entry_size_in_bits; region_.StoreBits(entry_offset_in_bits, location_catalog_entry_index, map_entry_size_in_bits); } void SetLiveBitMask(uint16_t number_of_dex_registers, const BitVector& live_dex_registers_mask) { size_t live_bit_mask_offset_in_bits = GetLiveBitMaskOffset() * kBitsPerByte; for (uint16_t i = 0; i < number_of_dex_registers; ++i) { region_.StoreBit(live_bit_mask_offset_in_bits + i, live_dex_registers_mask.IsBitSet(i)); } } ALWAYS_INLINE bool IsDexRegisterLive(uint16_t dex_register_number) const { size_t live_bit_mask_offset_in_bits = GetLiveBitMaskOffset() * kBitsPerByte; return region_.LoadBit(live_bit_mask_offset_in_bits + dex_register_number); } size_t GetNumberOfLiveDexRegisters(uint16_t number_of_dex_registers) const { size_t number_of_live_dex_registers = 0; for (size_t i = 0; i < number_of_dex_registers; ++i) { if (IsDexRegisterLive(i)) { ++number_of_live_dex_registers; } } return number_of_live_dex_registers; } size_t GetNumberOfLiveDexRegisters() const { return GetNumberOfLiveDexRegisters(number_of_dex_registers_); } static size_t GetLiveBitMaskOffset() { return kFixedSize; } // Compute the size of the live register bit mask (in bytes), for a // method having `number_of_dex_registers` Dex registers. static size_t GetLiveBitMaskSize(uint16_t number_of_dex_registers) { return RoundUp(number_of_dex_registers, kBitsPerByte) / kBitsPerByte; } static size_t GetLocationMappingDataOffset(uint16_t number_of_dex_registers) { return GetLiveBitMaskOffset() + GetLiveBitMaskSize(number_of_dex_registers); } size_t GetLocationMappingDataSize(size_t number_of_location_catalog_entries) const { size_t location_mapping_data_size_in_bits = GetNumberOfLiveDexRegisters() * SingleEntrySizeInBits(number_of_location_catalog_entries); return RoundUp(location_mapping_data_size_in_bits, kBitsPerByte) / kBitsPerByte; } // Return the size of a map entry in bits. Note that if // `number_of_location_catalog_entries` equals 1, this function returns 0, // which is fine, as there is no need to allocate a map for a // single-entry location catalog; the only valid location catalog entry index // for a live register in this case is 0 and there is no need to // store it. static size_t SingleEntrySizeInBits(size_t number_of_location_catalog_entries) { // Handle the case of 0, as we cannot pass 0 to art::WhichPowerOf2. return number_of_location_catalog_entries == 0 ? 0u : WhichPowerOf2(RoundUpToPowerOfTwo(number_of_location_catalog_entries)); } // Return the size of the DexRegisterMap object, in bytes. size_t Size() const { return BitsToBytesRoundUp(region_.size_in_bits()); } void Dump(VariableIndentationOutputStream* vios) const; private: // Return the index in the Dex register map corresponding to the Dex // register number `dex_register_number`. size_t GetIndexInDexRegisterMap(uint16_t dex_register_number) const { if (!IsDexRegisterLive(dex_register_number)) { return kInvalidIndexInDexRegisterMap; } return GetNumberOfLiveDexRegisters(dex_register_number); } // Special (invalid) Dex register map entry index meaning that there // is no index in the map for a given Dex register (i.e., it must // have been mapped to a DexRegisterLocation::Kind::kNone location). static constexpr size_t kInvalidIndexInDexRegisterMap = -1; static constexpr int kFixedSize = 0; BitMemoryRegion region_; uint16_t number_of_dex_registers_; const CodeInfo& code_info_; friend class CodeInfo; friend class StackMapStream; }; /** * A Stack Map holds compilation information for a specific PC necessary for: * - Mapping it to a dex PC, * - Knowing which stack entries are objects, * - Knowing which registers hold objects, * - Knowing the inlining information, * - Knowing the values of dex registers. */ class StackMap : public BitTable<6>::Accessor { public: enum Field { kPackedNativePc, kDexPc, kDexRegisterMapOffset, kInlineInfoIndex, kRegisterMaskIndex, kStackMaskIndex, kCount, }; StackMap() : BitTable::Accessor(nullptr, -1) {} StackMap(const BitTable* table, uint32_t row) : BitTable::Accessor(table, row) {} ALWAYS_INLINE uint32_t GetNativePcOffset(InstructionSet instruction_set) const { return UnpackNativePc(Get(), instruction_set); } uint32_t GetDexPc() const { return Get(); } uint32_t GetDexRegisterMapOffset() const { return Get(); } bool HasDexRegisterMap() const { return GetDexRegisterMapOffset() != kNoValue; } uint32_t GetInlineInfoIndex() const { return Get(); } bool HasInlineInfo() const { return GetInlineInfoIndex() != kNoValue; } uint32_t GetRegisterMaskIndex() const { return Get(); } uint32_t GetStackMaskIndex() const { return Get(); } static uint32_t PackNativePc(uint32_t native_pc, InstructionSet isa) { DCHECK_ALIGNED_PARAM(native_pc, GetInstructionSetInstructionAlignment(isa)); return native_pc / GetInstructionSetInstructionAlignment(isa); } static uint32_t UnpackNativePc(uint32_t packed_native_pc, InstructionSet isa) { uint32_t native_pc = packed_native_pc * GetInstructionSetInstructionAlignment(isa); DCHECK_EQ(native_pc / GetInstructionSetInstructionAlignment(isa), packed_native_pc); return native_pc; } static void DumpEncoding(const BitTable<6>& table, VariableIndentationOutputStream* vios); void Dump(VariableIndentationOutputStream* vios, const CodeInfo& code_info, const MethodInfo& method_info, uint32_t code_offset, uint16_t number_of_dex_registers, InstructionSet instruction_set, const std::string& header_suffix = "") const; }; /** * Inline information for a specific PC. * The row referenced from the StackMap holds information at depth 0. * Following rows hold information for further depths. */ class InlineInfo : public BitTable<5>::Accessor { public: enum Field { kIsLast, // Determines if there are further rows for further depths. kMethodIndexIdx, // Method index or ArtMethod high bits. kDexPc, kExtraData, // ArtMethod low bits or 1. kDexRegisterMapOffset, kCount, }; static constexpr uint32_t kLast = -1; static constexpr uint32_t kMore = 0; InlineInfo(const BitTable* table, uint32_t row) : BitTable::Accessor(table, row) {} ALWAYS_INLINE InlineInfo AtDepth(uint32_t depth) const { return InlineInfo(table_, this->row_ + depth); } uint32_t GetDepth() const { size_t depth = 0; while (AtDepth(depth++).Get() == kMore) { } return depth; } uint32_t GetMethodIndexIdxAtDepth(uint32_t depth) const { DCHECK(!EncodesArtMethodAtDepth(depth)); return AtDepth(depth).Get(); } uint32_t GetMethodIndexAtDepth(const MethodInfo& method_info, uint32_t depth) const { return method_info.GetMethodIndex(GetMethodIndexIdxAtDepth(depth)); } uint32_t GetDexPcAtDepth(uint32_t depth) const { return AtDepth(depth).Get(); } bool EncodesArtMethodAtDepth(uint32_t depth) const { return (AtDepth(depth).Get() & 1) == 0; } ArtMethod* GetArtMethodAtDepth(uint32_t depth) const { uint32_t low_bits = AtDepth(depth).Get(); uint32_t high_bits = AtDepth(depth).Get(); if (high_bits == 0) { return reinterpret_cast(low_bits); } else { uint64_t address = high_bits; address = address << 32; return reinterpret_cast(address | low_bits); } } uint32_t GetDexRegisterMapOffsetAtDepth(uint32_t depth) const { return AtDepth(depth).Get(); } bool HasDexRegisterMapAtDepth(uint32_t depth) const { return GetDexRegisterMapOffsetAtDepth(depth) != StackMap::kNoValue; } static void DumpEncoding(const BitTable<5>& table, VariableIndentationOutputStream* vios); void Dump(VariableIndentationOutputStream* vios, const CodeInfo& info, const MethodInfo& method_info, uint16_t* number_of_dex_registers) const; }; class InvokeInfo : public BitTable<3>::Accessor { public: enum Field { kPackedNativePc, kInvokeType, kMethodIndexIdx, kCount, }; InvokeInfo(const BitTable* table, uint32_t row) : BitTable::Accessor(table, row) {} ALWAYS_INLINE uint32_t GetNativePcOffset(InstructionSet instruction_set) const { return StackMap::UnpackNativePc(Get(), instruction_set); } uint32_t GetInvokeType() const { return Get(); } uint32_t GetMethodIndexIdx() const { return Get(); } uint32_t GetMethodIndex(MethodInfo method_info) const { return method_info.GetMethodIndex(GetMethodIndexIdx()); } }; // Register masks tend to have many trailing zero bits (caller-saves are usually not encoded), // therefore it is worth encoding the mask as value+shift. class RegisterMask : public BitTable<2>::Accessor { public: enum Field { kValue, kShift, kCount, }; RegisterMask(const BitTable* table, uint32_t row) : BitTable::Accessor(table, row) {} ALWAYS_INLINE uint32_t GetMask() const { return Get() << Get(); } }; /** * Wrapper around all compiler information collected for a method. * The information is of the form: * * [BitTable
, BitTable, BitTable, BitTable, * BitTable, BitTable, DexRegisterMap, DexLocationCatalog] * */ class CodeInfo { public: explicit CodeInfo(const void* data) { Decode(reinterpret_cast(data)); } explicit CodeInfo(MemoryRegion region) : CodeInfo(region.begin()) { DCHECK_EQ(size_, region.size()); } explicit CodeInfo(const OatQuickMethodHeader* header) : CodeInfo(header->GetOptimizedCodeInfoPtr()) { } size_t Size() const { return size_; } bool HasInlineInfo() const { return stack_maps_.NumColumnBits(StackMap::kInlineInfoIndex) != 0; } DexRegisterLocationCatalog GetDexRegisterLocationCatalog() const { return DexRegisterLocationCatalog(location_catalog_); } ALWAYS_INLINE StackMap GetStackMapAt(size_t index) const { return StackMap(&stack_maps_, index); } BitMemoryRegion GetStackMask(size_t index) const { return stack_masks_.GetBitMemoryRegion(index); } BitMemoryRegion GetStackMaskOf(const StackMap& stack_map) const { uint32_t index = stack_map.GetStackMaskIndex(); return (index == StackMap::kNoValue) ? BitMemoryRegion() : GetStackMask(index); } uint32_t GetRegisterMaskOf(const StackMap& stack_map) const { uint32_t index = stack_map.GetRegisterMaskIndex(); return (index == StackMap::kNoValue) ? 0 : RegisterMask(®ister_masks_, index).GetMask(); } uint32_t GetNumberOfLocationCatalogEntries() const { return location_catalog_entries_; } uint32_t GetDexRegisterLocationCatalogSize() const { return location_catalog_.size(); } uint32_t GetNumberOfStackMaps() const { return stack_maps_.NumRows(); } InvokeInfo GetInvokeInfo(size_t index) const { return InvokeInfo(&invoke_infos_, index); } DexRegisterMap GetDexRegisterMapOf(StackMap stack_map, size_t number_of_dex_registers) const { if (!stack_map.HasDexRegisterMap()) { return DexRegisterMap(MemoryRegion(), 0, *this); } const uint32_t offset = stack_map.GetDexRegisterMapOffset(); size_t size = ComputeDexRegisterMapSizeOf(offset, number_of_dex_registers); return DexRegisterMap(dex_register_maps_.Subregion(offset, size), number_of_dex_registers, *this); } size_t GetDexRegisterMapsSize(uint32_t number_of_dex_registers) const { size_t total = 0; for (size_t i = 0, e = GetNumberOfStackMaps(); i < e; ++i) { StackMap stack_map = GetStackMapAt(i); DexRegisterMap map(GetDexRegisterMapOf(stack_map, number_of_dex_registers)); total += map.Size(); } return total; } // Return the `DexRegisterMap` pointed by `inline_info` at depth `depth`. DexRegisterMap GetDexRegisterMapAtDepth(uint8_t depth, InlineInfo inline_info, uint32_t number_of_dex_registers) const { if (!inline_info.HasDexRegisterMapAtDepth(depth)) { return DexRegisterMap(MemoryRegion(), 0, *this); } else { uint32_t offset = inline_info.GetDexRegisterMapOffsetAtDepth(depth); size_t size = ComputeDexRegisterMapSizeOf(offset, number_of_dex_registers); return DexRegisterMap(dex_register_maps_.Subregion(offset, size), number_of_dex_registers, *this); } } InlineInfo GetInlineInfo(size_t index) const { return InlineInfo(&inline_infos_, index); } InlineInfo GetInlineInfoOf(StackMap stack_map) const { DCHECK(stack_map.HasInlineInfo()); uint32_t index = stack_map.GetInlineInfoIndex(); return GetInlineInfo(index); } StackMap GetStackMapForDexPc(uint32_t dex_pc) const { for (size_t i = 0, e = GetNumberOfStackMaps(); i < e; ++i) { StackMap stack_map = GetStackMapAt(i); if (stack_map.GetDexPc() == dex_pc) { return stack_map; } } return StackMap(); } // Searches the stack map list backwards because catch stack maps are stored // at the end. StackMap GetCatchStackMapForDexPc(uint32_t dex_pc) const { for (size_t i = GetNumberOfStackMaps(); i > 0; --i) { StackMap stack_map = GetStackMapAt(i - 1); if (stack_map.GetDexPc() == dex_pc) { return stack_map; } } return StackMap(); } StackMap GetOsrStackMapForDexPc(uint32_t dex_pc) const { size_t e = GetNumberOfStackMaps(); if (e == 0) { // There cannot be OSR stack map if there is no stack map. return StackMap(); } // Walk over all stack maps. If two consecutive stack maps are identical, then we // have found a stack map suitable for OSR. for (size_t i = 0; i < e - 1; ++i) { StackMap stack_map = GetStackMapAt(i); if (stack_map.GetDexPc() == dex_pc) { StackMap other = GetStackMapAt(i + 1); if (other.GetDexPc() == dex_pc && other.GetNativePcOffset(kRuntimeISA) == stack_map.GetNativePcOffset(kRuntimeISA)) { DCHECK_EQ(other.GetDexRegisterMapOffset(), stack_map.GetDexRegisterMapOffset()); DCHECK(!stack_map.HasInlineInfo()); if (i < e - 2) { // Make sure there are not three identical stack maps following each other. DCHECK_NE( stack_map.GetNativePcOffset(kRuntimeISA), GetStackMapAt(i + 2).GetNativePcOffset(kRuntimeISA)); } return stack_map; } } } return StackMap(); } StackMap GetStackMapForNativePcOffset(uint32_t native_pc_offset) const { // TODO: Safepoint stack maps are sorted by native_pc_offset but catch stack // maps are not. If we knew that the method does not have try/catch, // we could do binary search. for (size_t i = 0, e = GetNumberOfStackMaps(); i < e; ++i) { StackMap stack_map = GetStackMapAt(i); if (stack_map.GetNativePcOffset(kRuntimeISA) == native_pc_offset) { return stack_map; } } return StackMap(); } InvokeInfo GetInvokeInfoForNativePcOffset(uint32_t native_pc_offset) { for (size_t index = 0; index < invoke_infos_.NumRows(); index++) { InvokeInfo item = GetInvokeInfo(index); if (item.GetNativePcOffset(kRuntimeISA) == native_pc_offset) { return item; } } return InvokeInfo(&invoke_infos_, -1); } // Dump this CodeInfo object on `os`. `code_offset` is the (absolute) // native PC of the compiled method and `number_of_dex_registers` the // number of Dex virtual registers used in this method. If // `dump_stack_maps` is true, also dump the stack maps and the // associated Dex register maps. void Dump(VariableIndentationOutputStream* vios, uint32_t code_offset, uint16_t number_of_dex_registers, bool dump_stack_maps, InstructionSet instruction_set, const MethodInfo& method_info) const; private: // Compute the size of the Dex register map associated to the stack map at // `dex_register_map_offset_in_code_info`. size_t ComputeDexRegisterMapSizeOf(uint32_t dex_register_map_offset, uint16_t number_of_dex_registers) const { // Offset where the actual mapping data starts within art::DexRegisterMap. size_t location_mapping_data_offset_in_dex_register_map = DexRegisterMap::GetLocationMappingDataOffset(number_of_dex_registers); // Create a temporary art::DexRegisterMap to be able to call // art::DexRegisterMap::GetNumberOfLiveDexRegisters and DexRegisterMap dex_register_map_without_locations( MemoryRegion(dex_register_maps_.Subregion(dex_register_map_offset, location_mapping_data_offset_in_dex_register_map)), number_of_dex_registers, *this); size_t number_of_live_dex_registers = dex_register_map_without_locations.GetNumberOfLiveDexRegisters(); size_t location_mapping_data_size_in_bits = DexRegisterMap::SingleEntrySizeInBits(GetNumberOfLocationCatalogEntries()) * number_of_live_dex_registers; size_t location_mapping_data_size_in_bytes = RoundUp(location_mapping_data_size_in_bits, kBitsPerByte) / kBitsPerByte; size_t dex_register_map_size = location_mapping_data_offset_in_dex_register_map + location_mapping_data_size_in_bytes; return dex_register_map_size; } MemoryRegion DecodeMemoryRegion(MemoryRegion& region, size_t* bit_offset) { size_t length = DecodeVarintBits(BitMemoryRegion(region), bit_offset); size_t offset = BitsToBytesRoundUp(*bit_offset);; *bit_offset = (offset + length) * kBitsPerByte; return region.Subregion(offset, length); } void Decode(const uint8_t* data) { size_t non_header_size = DecodeUnsignedLeb128(&data); MemoryRegion region(const_cast(data), non_header_size); BitMemoryRegion bit_region(region); size_t bit_offset = 0; size_ = UnsignedLeb128Size(non_header_size) + non_header_size; dex_register_maps_ = DecodeMemoryRegion(region, &bit_offset); location_catalog_entries_ = DecodeVarintBits(bit_region, &bit_offset); location_catalog_ = DecodeMemoryRegion(region, &bit_offset); stack_maps_.Decode(bit_region, &bit_offset); invoke_infos_.Decode(bit_region, &bit_offset); inline_infos_.Decode(bit_region, &bit_offset); register_masks_.Decode(bit_region, &bit_offset); stack_masks_.Decode(bit_region, &bit_offset); CHECK_EQ(BitsToBytesRoundUp(bit_offset), non_header_size); } size_t size_; MemoryRegion dex_register_maps_; uint32_t location_catalog_entries_; MemoryRegion location_catalog_; BitTable stack_maps_; BitTable invoke_infos_; BitTable inline_infos_; BitTable register_masks_; BitTable<1> stack_masks_; friend class OatDumper; friend class StackMapStream; }; #undef ELEMENT_BYTE_OFFSET_AFTER #undef ELEMENT_BIT_OFFSET_AFTER } // namespace art #endif // ART_RUNTIME_STACK_MAP_H_