/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_MIRROR_ARRAY_INL_H_ #define ART_RUNTIME_MIRROR_ARRAY_INL_H_ #include "array.h" #include "class.h" #include "gc/heap-inl.h" #include "thread.h" #include "utils.h" namespace art { namespace mirror { inline size_t Array::SizeOf() { // This is safe from overflow because the array was already allocated, so we know it's sane. size_t component_size = GetClass()->GetComponentSize(); int32_t component_count = GetLength(); size_t header_size = sizeof(Object) + (component_size == sizeof(int64_t) ? 8 : 4); size_t data_size = component_count * component_size; return header_size + data_size; } static inline size_t ComputeArraySize(Thread* self, Class* array_class, int32_t component_count, size_t component_size) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { DCHECK(array_class != NULL); DCHECK_GE(component_count, 0); DCHECK(array_class->IsArrayClass()); size_t header_size = sizeof(Object) + (component_size == sizeof(int64_t) ? 8 : 4); size_t data_size = component_count * component_size; size_t size = header_size + data_size; // Check for overflow and throw OutOfMemoryError if this was an unreasonable request. size_t component_shift = sizeof(size_t) * 8 - 1 - CLZ(component_size); if (UNLIKELY(data_size >> component_shift != size_t(component_count) || size < data_size)) { self->ThrowOutOfMemoryError(StringPrintf("%s of length %d would overflow", PrettyDescriptor(array_class).c_str(), component_count).c_str()); return 0; // failure } return size; } // Used for setting the array length in the allocation code path to ensure it is guarded by a CAS. class SetLengthVisitor { public: explicit SetLengthVisitor(int32_t length) : length_(length) { } void operator()(Object* obj) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { // Avoid AsArray as object is not yet in live bitmap or allocation stack. Array* array = down_cast(obj); // DCHECK(array->IsArrayInstance()); array->SetLength(length_); } private: const int32_t length_; }; template inline Array* Array::Alloc(Thread* self, Class* array_class, int32_t component_count, size_t component_size, gc::AllocatorType allocator_type) { size_t size = ComputeArraySize(self, array_class, component_count, component_size); if (UNLIKELY(size == 0)) { return nullptr; } gc::Heap* heap = Runtime::Current()->GetHeap(); SetLengthVisitor visitor(component_count); DCHECK(allocator_type != gc::kAllocatorTypeLOS); return down_cast( heap->AllocObjectWithAllocator(self, array_class, size, allocator_type, visitor)); } template inline Array* Array::Alloc(Thread* self, Class* array_class, int32_t component_count, gc::AllocatorType allocator_type) { DCHECK(array_class->IsArrayClass()); return Alloc(self, array_class, component_count, array_class->GetComponentSize(), allocator_type); } template inline Array* Array::Alloc(Thread* self, Class* array_class, int32_t component_count) { return Alloc(self, array_class, component_count, Runtime::Current()->GetHeap()->GetCurrentAllocator()); } template inline Array* Array::Alloc(Thread* self, Class* array_class, int32_t component_count, size_t component_size) { return Alloc(self, array_class, component_count, component_size, Runtime::Current()->GetHeap()->GetCurrentAllocator()); } template inline void PrimitiveArray::VisitRoots(RootVisitor* visitor, void* arg) { if (array_class_ != nullptr) { array_class_ = down_cast(visitor(array_class_, arg)); } } // Similar to memmove except elements are of aligned appropriately for T, count is in T sized units // copies are guaranteed not to tear when T is less-than 64bit. template static inline void ArrayBackwardCopy(T* d, const T* s, int32_t count) { d += count; s += count; for (int32_t i = 0; i < count; ++i) { d--; s--; *d = *s; } } template void PrimitiveArray::Memmove(int32_t dst_pos, PrimitiveArray* src, int32_t src_pos, int32_t count) { if (UNLIKELY(count == 0)) { return; } DCHECK_GE(dst_pos, 0); DCHECK_GE(src_pos, 0); DCHECK_GT(count, 0); DCHECK(src != nullptr); DCHECK_LT(dst_pos, GetLength()); DCHECK_LE(dst_pos, GetLength() - count); DCHECK_LT(src_pos, src->GetLength()); DCHECK_LE(src_pos, src->GetLength() - count); // Note for non-byte copies we can't rely on standard libc functions like memcpy(3) and memmove(3) // in our implementation, because they may copy byte-by-byte. if (LIKELY(src != this) || (dst_pos < src_pos) || (dst_pos - src_pos >= count)) { // Forward copy ok. Memcpy(dst_pos, src, src_pos, count); } else { // Backward copy necessary. void* dst_raw = GetRawData(sizeof(T), dst_pos); const void* src_raw = src->GetRawData(sizeof(T), src_pos); if (sizeof(T) == sizeof(uint8_t)) { // TUNING: use memmove here? uint8_t* d = reinterpret_cast(dst_raw); const uint8_t* s = reinterpret_cast(src_raw); ArrayBackwardCopy(d, s, count); } else if (sizeof(T) == sizeof(uint16_t)) { uint16_t* d = reinterpret_cast(dst_raw); const uint16_t* s = reinterpret_cast(src_raw); ArrayBackwardCopy(d, s, count); } else if (sizeof(T) == sizeof(uint32_t)) { uint32_t* d = reinterpret_cast(dst_raw); const uint32_t* s = reinterpret_cast(src_raw); ArrayBackwardCopy(d, s, count); } else { DCHECK_EQ(sizeof(T), sizeof(uint64_t)); uint64_t* d = reinterpret_cast(dst_raw); const uint64_t* s = reinterpret_cast(src_raw); ArrayBackwardCopy(d, s, count); } } } // Similar to memcpy except elements are of aligned appropriately for T, count is in T sized units // copies are guaranteed not to tear when T is less-than 64bit. template static inline void ArrayForwardCopy(T* d, const T* s, int32_t count) { for (int32_t i = 0; i < count; ++i) { *d = *s; d++; s++; } } template void PrimitiveArray::Memcpy(int32_t dst_pos, PrimitiveArray* src, int32_t src_pos, int32_t count) { if (UNLIKELY(count == 0)) { return; } DCHECK_GE(dst_pos, 0); DCHECK_GE(src_pos, 0); DCHECK_GT(count, 0); DCHECK(src != nullptr); DCHECK_LT(dst_pos, GetLength()); DCHECK_LE(dst_pos, GetLength() - count); DCHECK_LT(src_pos, src->GetLength()); DCHECK_LE(src_pos, src->GetLength() - count); // Note for non-byte copies we can't rely on standard libc functions like memcpy(3) and memmove(3) // in our implementation, because they may copy byte-by-byte. void* dst_raw = GetRawData(sizeof(T), dst_pos); const void* src_raw = src->GetRawData(sizeof(T), src_pos); if (sizeof(T) == sizeof(uint8_t)) { memcpy(dst_raw, src_raw, count); } else if (sizeof(T) == sizeof(uint16_t)) { uint16_t* d = reinterpret_cast(dst_raw); const uint16_t* s = reinterpret_cast(src_raw); ArrayForwardCopy(d, s, count); } else if (sizeof(T) == sizeof(uint32_t)) { uint32_t* d = reinterpret_cast(dst_raw); const uint32_t* s = reinterpret_cast(src_raw); ArrayForwardCopy(d, s, count); } else { DCHECK_EQ(sizeof(T), sizeof(uint64_t)); uint64_t* d = reinterpret_cast(dst_raw); const uint64_t* s = reinterpret_cast(src_raw); ArrayForwardCopy(d, s, count); } } } // namespace mirror } // namespace art #endif // ART_RUNTIME_MIRROR_ARRAY_INL_H_