/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_MIRROR_ARRAY_INL_H_ #define ART_RUNTIME_MIRROR_ARRAY_INL_H_ #include "array.h" #include "class.h" #include "gc/heap-inl.h" #include "thread.h" #include "utils.h" namespace art { namespace mirror { inline size_t Array::SizeOf() const { // This is safe from overflow because the array was already allocated, so we know it's sane. size_t component_size = GetClass()->GetComponentSize(); int32_t component_count = GetLength(); size_t header_size = sizeof(Object) + (component_size == sizeof(int64_t) ? 8 : 4); size_t data_size = component_count * component_size; return header_size + data_size; } static inline size_t ComputeArraySize(Thread* self, Class* array_class, int32_t component_count, size_t component_size) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) { DCHECK(array_class != NULL); DCHECK_GE(component_count, 0); DCHECK(array_class->IsArrayClass()); size_t header_size = sizeof(Object) + (component_size == sizeof(int64_t) ? 8 : 4); size_t data_size = component_count * component_size; size_t size = header_size + data_size; // Check for overflow and throw OutOfMemoryError if this was an unreasonable request. size_t component_shift = sizeof(size_t) * 8 - 1 - CLZ(component_size); if (UNLIKELY(data_size >> component_shift != size_t(component_count) || size < data_size)) { self->ThrowOutOfMemoryError(StringPrintf("%s of length %d would overflow", PrettyDescriptor(array_class).c_str(), component_count).c_str()); return 0; // failure } return size; } static inline Array* SetArrayLength(Array* array, size_t length) { if (LIKELY(array != NULL)) { DCHECK(array->IsArrayInstance()); array->SetLength(length); } return array; } inline Array* Array::AllocInstrumented(Thread* self, Class* array_class, int32_t component_count, size_t component_size) { size_t size = ComputeArraySize(self, array_class, component_count, component_size); if (UNLIKELY(size == 0)) { return NULL; } gc::Heap* heap = Runtime::Current()->GetHeap(); Array* array = down_cast(heap->AllocObjectInstrumented(self, array_class, size)); return SetArrayLength(array, component_count); } inline Array* Array::AllocUninstrumented(Thread* self, Class* array_class, int32_t component_count, size_t component_size) { size_t size = ComputeArraySize(self, array_class, component_count, component_size); if (UNLIKELY(size == 0)) { return NULL; } gc::Heap* heap = Runtime::Current()->GetHeap(); Array* array = down_cast(heap->AllocObjectUninstrumented(self, array_class, size)); return SetArrayLength(array, component_count); } inline Array* Array::AllocInstrumented(Thread* self, Class* array_class, int32_t component_count) { DCHECK(array_class->IsArrayClass()); return AllocInstrumented(self, array_class, component_count, array_class->GetComponentSize()); } inline Array* Array::AllocUninstrumented(Thread* self, Class* array_class, int32_t component_count) { DCHECK(array_class->IsArrayClass()); return AllocUninstrumented(self, array_class, component_count, array_class->GetComponentSize()); } } // namespace mirror } // namespace art #endif // ART_RUNTIME_MIRROR_ARRAY_INL_H_