/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "debugger_interface.h" #include #include "base/array_ref.h" #include "base/bit_utils.h" #include "base/logging.h" #include "base/mutex.h" #include "base/time_utils.h" #include "base/utils.h" #include "dex/dex_file.h" #include "jit/jit.h" #include "jit/jit_code_cache.h" #include "jit/jit_memory_region.h" #include "runtime.h" #include "thread-current-inl.h" #include "thread.h" #include #include // // Debug interface for native tools (gdb, lldb, libunwind, simpleperf). // // See http://sourceware.org/gdb/onlinedocs/gdb/Declarations.html // // There are two ways for native tools to access the debug data safely: // // 1) Synchronously, by setting a breakpoint in the __*_debug_register_code // method, which is called after every modification of the linked list. // GDB does this, but it is complex to set up and it stops the process. // // 2) Asynchronously, by monitoring the action_seqlock_. // * The seqlock is a monotonically increasing counter which is incremented // before and after every modification of the linked list. Odd value of // the counter means the linked list is being modified (it is locked). // * The tool should read the value of the seqlock both before and after // copying the linked list. If the seqlock values match and are even, // the copy is consistent. Otherwise, the reader should try again. // * Note that using the data directly while is it being modified // might crash the tool. Therefore, the only safe way is to make // a copy and use the copy only after the seqlock has been checked. // * Note that the process might even free and munmap the data while // it is being copied, therefore the reader should either handle // SEGV or use OS calls to read the memory (e.g. process_vm_readv). // * The seqlock can be used to determine the number of modifications of // the linked list, which can be used to intelligently cache the data. // Note the possible overflow of the seqlock. It is intentionally // 32-bit, since 64-bit atomics can be tricky on some architectures. // * The timestamps on the entry record the time when the entry was // created which is relevant if the unwinding is not live and is // postponed until much later. All timestamps must be unique. // * Memory barriers are used to make it possible to reason about // the data even when it is being modified (e.g. the process crashed // while that data was locked, and thus it will be never unlocked). // * In particular, it should be possible to: // 1) read the seqlock and then the linked list head pointer. // 2) copy the entry and check that seqlock has not changed. // 3) copy the symfile and check that seqlock has not changed. // 4) go back to step 2 using the next pointer (if non-null). // This safely creates copy of all symfiles, although other data // might be inconsistent/unusable (e.g. prev_, action_timestamp_). // * For full conformance with the C++ memory model, all seqlock // protected accesses should be atomic. We currently do this in the // more critical cases. The rest will have to be fixed before // attempting to run TSAN on this code. // namespace art { static Mutex g_jit_debug_lock("JIT native debug entries", kNativeDebugInterfaceLock); static Mutex g_dex_debug_lock("DEX native debug entries", kNativeDebugInterfaceLock); extern "C" { enum JITAction { JIT_NOACTION = 0, JIT_REGISTER_FN, JIT_UNREGISTER_FN }; // Public/stable binary interface. struct JITCodeEntryPublic { // Atomic to ensure the reader can always iterate over the linked list // (e.g. the process could crash in the middle of writing this field). std::atomic next_; const JITCodeEntry* prev_; // For linked list deletion. Unused in readers. const uint8_t* symfile_addr_; // Address of the in-memory ELF file. uint64_t symfile_size_; // Beware of the offset (12 on x86; but 16 on ARM32). // Android-specific fields: uint64_t register_timestamp_; // CLOCK_MONOTONIC time of entry registration. }; // Implementation-specific fields (which can be used only in this file). struct JITCodeEntry : public JITCodeEntryPublic { // Unpacked entries: Code address of the symbol in the ELF file. // Packed entries: The start address of the covered memory range. const void* addr_ = nullptr; // Allow merging of ELF files to save space. // Packing drops advanced DWARF data, so it is not always desirable. bool allow_packing_ = false; // Whether this entry has been LZMA compressed. // Compression is expensive, so we don't always do it. bool is_compressed_ = false; }; struct JITDescriptor { uint32_t version_ = 1; // NB: GDB supports only version 1. uint32_t action_flag_ = JIT_NOACTION; // One of the JITAction enum values. const JITCodeEntry* relevant_entry_ = nullptr; // The entry affected by the action. std::atomic head_{nullptr}; // Head of link list of all entries. // Android-specific fields: uint8_t magic_[8] = {'A', 'n', 'd', 'r', 'o', 'i', 'd', '1'}; uint32_t flags_ = 0; // Reserved for future use. Must be 0. uint32_t sizeof_descriptor = sizeof(JITDescriptor); uint32_t sizeof_entry = sizeof(JITCodeEntryPublic); std::atomic_uint32_t action_seqlock_{0}; // Incremented before and after any modification. uint64_t action_timestamp_ = 1; // CLOCK_MONOTONIC time of last action. }; // Check that std::atomic has the expected layout. static_assert(alignof(std::atomic_uint32_t) == alignof(uint32_t), "Weird alignment"); static_assert(sizeof(std::atomic_uint32_t) == sizeof(uint32_t), "Weird size"); static_assert(alignof(std::atomic) == alignof(void*), "Weird alignment"); static_assert(sizeof(std::atomic) == sizeof(void*), "Weird size"); // GDB may set breakpoint here. We must ensure it is not removed or deduplicated. void __attribute__((noinline)) __jit_debug_register_code() { __asm__(""); } // Alternatively, native tools may overwrite this field to execute custom handler. void (*__jit_debug_register_code_ptr)() = __jit_debug_register_code; // The root data structure describing of all JITed methods. JITDescriptor __jit_debug_descriptor GUARDED_BY(g_jit_debug_lock) {}; // The following globals mirror the ones above, but are used to register dex files. void __attribute__((noinline)) __dex_debug_register_code() { __asm__(""); } void (*__dex_debug_register_code_ptr)() = __dex_debug_register_code; JITDescriptor __dex_debug_descriptor GUARDED_BY(g_dex_debug_lock) {}; } struct DexNativeInfo { static constexpr bool kCopySymfileData = false; // Just reference DEX files. static JITDescriptor& Descriptor() { return __dex_debug_descriptor; } static void NotifyNativeDebugger() { __dex_debug_register_code_ptr(); } static const void* Alloc(size_t size) { return malloc(size); } static void Free(const void* ptr) { free(const_cast(ptr)); } template static T* Writable(const T* v) { return const_cast(v); } }; struct JitNativeInfo { static constexpr bool kCopySymfileData = true; // Copy debug info to JIT memory. static JITDescriptor& Descriptor() { return __jit_debug_descriptor; } static void NotifyNativeDebugger() { __jit_debug_register_code_ptr(); } static const void* Alloc(size_t size) { return Memory()->AllocateData(size); } static void Free(const void* ptr) { Memory()->FreeData(const_cast(reinterpret_cast(ptr))); } static void Free(void* ptr) = delete; template static T* Writable(const T* v) { return const_cast(Memory()->GetWritableDataAddress(v)); } static jit::JitMemoryRegion* Memory() ASSERT_CAPABILITY(Locks::jit_lock_) { Locks::jit_lock_->AssertHeld(Thread::Current()); jit::JitCodeCache* jit_code_cache = Runtime::Current()->GetJitCodeCache(); CHECK(jit_code_cache != nullptr); jit::JitMemoryRegion* memory = jit_code_cache->GetCurrentRegion(); CHECK(memory->IsValid()); return memory; } }; ArrayRef GetJITCodeEntrySymFile(const JITCodeEntry* entry) { return ArrayRef(entry->symfile_addr_, entry->symfile_size_); } // Mark the descriptor as "locked", so native tools know the data is being modified. static void ActionSeqlock(JITDescriptor& descriptor) { DCHECK_EQ(descriptor.action_seqlock_.load() & 1, 0u) << "Already locked"; descriptor.action_seqlock_.fetch_add(1, std::memory_order_relaxed); // Ensure that any writes within the locked section cannot be reordered before the increment. std::atomic_thread_fence(std::memory_order_release); } // Mark the descriptor as "unlocked", so native tools know the data is safe to read. static void ActionSequnlock(JITDescriptor& descriptor) { DCHECK_EQ(descriptor.action_seqlock_.load() & 1, 1u) << "Already unlocked"; // Ensure that any writes within the locked section cannot be reordered after the increment. std::atomic_thread_fence(std::memory_order_release); descriptor.action_seqlock_.fetch_add(1, std::memory_order_relaxed); } template static const JITCodeEntry* CreateJITCodeEntryInternal( ArrayRef symfile, const void* addr = nullptr, bool allow_packing = false, bool is_compressed = false) { JITDescriptor& descriptor = NativeInfo::Descriptor(); // Make a copy of the buffer to shrink it and to pass ownership to JITCodeEntry. const uint8_t* copy = nullptr; if (NativeInfo::kCopySymfileData) { copy = reinterpret_cast(NativeInfo::Alloc(symfile.size())); if (copy == nullptr) { LOG(ERROR) << "Failed to allocate memory for native debug info"; return nullptr; } memcpy(NativeInfo::Writable(copy), symfile.data(), symfile.size()); symfile = ArrayRef(copy, symfile.size()); } // Ensure the timestamp is monotonically increasing even in presence of low // granularity system timer. This ensures each entry has unique timestamp. uint64_t timestamp = std::max(descriptor.action_timestamp_ + 1, NanoTime()); const JITCodeEntry* head = descriptor.head_.load(std::memory_order_relaxed); const void* memory = NativeInfo::Alloc(sizeof(JITCodeEntry)); if (memory == nullptr) { LOG(ERROR) << "Failed to allocate memory for native debug info"; if (copy != nullptr) { NativeInfo::Free(copy); } return nullptr; } const JITCodeEntry* entry = reinterpret_cast(memory); JITCodeEntry* writable_entry = NativeInfo::Writable(entry); writable_entry->symfile_addr_ = symfile.data(); writable_entry->symfile_size_ = symfile.size(); writable_entry->prev_ = nullptr; writable_entry->next_.store(head, std::memory_order_relaxed); writable_entry->register_timestamp_ = timestamp; writable_entry->addr_ = addr; writable_entry->allow_packing_ = allow_packing; writable_entry->is_compressed_ = is_compressed; // We are going to modify the linked list, so take the seqlock. ActionSeqlock(descriptor); if (head != nullptr) { NativeInfo::Writable(head)->prev_ = entry; } descriptor.head_.store(entry, std::memory_order_relaxed); descriptor.relevant_entry_ = entry; descriptor.action_flag_ = JIT_REGISTER_FN; descriptor.action_timestamp_ = timestamp; ActionSequnlock(descriptor); NativeInfo::NotifyNativeDebugger(); return entry; } template static void DeleteJITCodeEntryInternal(const JITCodeEntry* entry) { CHECK(entry != nullptr); const uint8_t* symfile = entry->symfile_addr_; JITDescriptor& descriptor = NativeInfo::Descriptor(); // Ensure the timestamp is monotonically increasing even in presence of low // granularity system timer. This ensures each entry has unique timestamp. uint64_t timestamp = std::max(descriptor.action_timestamp_ + 1, NanoTime()); // We are going to modify the linked list, so take the seqlock. ActionSeqlock(descriptor); const JITCodeEntry* next = entry->next_.load(std::memory_order_relaxed); if (entry->prev_ != nullptr) { NativeInfo::Writable(entry->prev_)->next_.store(next, std::memory_order_relaxed); } else { descriptor.head_.store(next, std::memory_order_relaxed); } if (next != nullptr) { NativeInfo::Writable(next)->prev_ = entry->prev_; } descriptor.relevant_entry_ = entry; descriptor.action_flag_ = JIT_UNREGISTER_FN; descriptor.action_timestamp_ = timestamp; ActionSequnlock(descriptor); NativeInfo::NotifyNativeDebugger(); // Ensure that clear below can not be reordered above the unlock above. std::atomic_thread_fence(std::memory_order_release); // Aggressively clear the entry as an extra check of the synchronisation. memset(NativeInfo::Writable(entry), 0, sizeof(*entry)); NativeInfo::Free(entry); if (NativeInfo::kCopySymfileData) { NativeInfo::Free(symfile); } } void AddNativeDebugInfoForDex(Thread* self, const DexFile* dexfile) { MutexLock mu(self, g_dex_debug_lock); DCHECK(dexfile != nullptr); const ArrayRef symfile(dexfile->Begin(), dexfile->Size()); CreateJITCodeEntryInternal(symfile); } void RemoveNativeDebugInfoForDex(Thread* self, const DexFile* dexfile) { MutexLock mu(self, g_dex_debug_lock); DCHECK(dexfile != nullptr); // We register dex files in the class linker and free them in DexFile_closeDexFile, but // there might be cases where we load the dex file without using it in the class linker. // On the other hand, single dex file might also be used with different class-loaders. for (const JITCodeEntry* entry = __dex_debug_descriptor.head_; entry != nullptr; ) { const JITCodeEntry* next = entry->next_; // Save next pointer before we free the memory. if (entry->symfile_addr_ == dexfile->Begin()) { DeleteJITCodeEntryInternal(entry); } entry = next; } } // Size of JIT code range covered by each packed JITCodeEntry. static constexpr uint32_t kJitRepackGroupSize = 64 * KB; // Automatically call the repack method every 'n' new entries. static constexpr uint32_t kJitRepackFrequency = 64; static uint32_t g_jit_num_unpacked_entries = 0; // Split the JIT code cache into groups of fixed size and create single JITCodeEntry for each group. // The start address of method's code determines which group it belongs to. The end is irrelevant. // New mini debug infos will be merged if possible, and entries for GCed functions will be removed. static void RepackEntries(bool compress, ArrayRef removed) REQUIRES(g_jit_debug_lock) { DCHECK(std::is_sorted(removed.begin(), removed.end())); jit::Jit* jit = Runtime::Current()->GetJit(); if (jit == nullptr) { return; } // Collect entries that we want to pack. std::vector entries; entries.reserve(2 * kJitRepackFrequency); for (const JITCodeEntry* it = __jit_debug_descriptor.head_; it != nullptr; it = it->next_) { if (it->allow_packing_) { if (!compress && it->is_compressed_ && removed.empty()) { continue; // If we are not compressing, also avoid decompressing. } entries.push_back(it); } } auto cmp = [](const JITCodeEntry* l, const JITCodeEntry* r) { return l->addr_ < r->addr_; }; std::sort(entries.begin(), entries.end(), cmp); // Sort by address. // Process the entries in groups (each spanning memory range of size kJitRepackGroupSize). for (auto group_it = entries.begin(); group_it != entries.end();) { const void* group_ptr = AlignDown((*group_it)->addr_, kJitRepackGroupSize); const void* group_end = reinterpret_cast(group_ptr) + kJitRepackGroupSize; // Find all entries in this group (each entry is an in-memory ELF file). auto begin = group_it; auto end = std::find_if(begin, entries.end(), [=](auto* e) { return e->addr_ >= group_end; }); CHECK(end > begin); ArrayRef elfs(&*begin, end - begin); // Find all symbols that have been removed in this memory range. auto removed_begin = std::lower_bound(removed.begin(), removed.end(), group_ptr); auto removed_end = std::lower_bound(removed.begin(), removed.end(), group_end); CHECK(removed_end >= removed_begin); ArrayRef removed_subset(&*removed_begin, removed_end - removed_begin); // Bail out early if there is nothing to do for this group. if (elfs.size() == 1 && removed_subset.empty() && (*begin)->is_compressed_ == compress) { group_it = end; // Go to next group. continue; } // Create new single JITCodeEntry that covers this memory range. uint64_t start_time = MicroTime(); size_t live_symbols; std::vector packed = jit->GetJitCompiler()->PackElfFileForJIT( elfs, removed_subset, compress, &live_symbols); VLOG(jit) << "JIT mini-debug-info repacked" << " for " << group_ptr << " in " << MicroTime() - start_time << "us" << " elfs=" << elfs.size() << " dead=" << removed_subset.size() << " live=" << live_symbols << " size=" << packed.size() << (compress ? "(lzma)" : ""); // Replace the old entries with the new one (with their lifetime temporally overlapping). CreateJITCodeEntryInternal(ArrayRef(packed), /*addr_=*/ group_ptr, /*allow_packing_=*/ true, /*is_compressed_=*/ compress); for (auto it : elfs) { DeleteJITCodeEntryInternal(/*entry=*/ it); } group_it = end; // Go to next group. } g_jit_num_unpacked_entries = 0; } void AddNativeDebugInfoForJit(const void* code_ptr, const std::vector& symfile, bool allow_packing) { MutexLock mu(Thread::Current(), g_jit_debug_lock); DCHECK_NE(symfile.size(), 0u); if (Runtime::Current()->IsZygote()) { return; // TODO: Implement memory sharing with the zygote process. } CreateJITCodeEntryInternal(ArrayRef(symfile), /*addr=*/ code_ptr, /*allow_packing=*/ allow_packing, /*is_compressed=*/ false); VLOG(jit) << "JIT mini-debug-info added" << " for " << code_ptr << " size=" << PrettySize(symfile.size()); // Automatically repack entries on regular basis to save space. // Pack (but don't compress) recent entries - this is cheap and reduces memory use by ~4x. // We delay compression until after GC since it is more expensive (and saves further ~4x). if (++g_jit_num_unpacked_entries >= kJitRepackFrequency) { RepackEntries(/*compress=*/ false, /*removed=*/ ArrayRef()); } } void RemoveNativeDebugInfoForJit(ArrayRef removed) { MutexLock mu(Thread::Current(), g_jit_debug_lock); RepackEntries(/*compress=*/ true, removed); // Remove entries which are not allowed to be packed (containing single method each). for (const JITCodeEntry* it = __jit_debug_descriptor.head_; it != nullptr; it = it->next_) { if (!it->allow_packing_ && std::binary_search(removed.begin(), removed.end(), it->addr_)) { DeleteJITCodeEntryInternal(/*entry=*/ it); } } } size_t GetJitMiniDebugInfoMemUsage() { MutexLock mu(Thread::Current(), g_jit_debug_lock); size_t size = 0; for (const JITCodeEntry* it = __jit_debug_descriptor.head_; it != nullptr; it = it->next_) { size += sizeof(JITCodeEntry) + it->symfile_size_; } return size; } Mutex* GetNativeDebugInfoLock() { return &g_jit_debug_lock; } } // namespace art