/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "exec_utils.h" #include #include #include #include #ifdef __BIONIC__ #include #endif #include #include #include #include #include #include #include #include #include "android-base/scopeguard.h" #include "android-base/stringprintf.h" #include "android-base/strings.h" #include "android-base/unique_fd.h" #include "base/macros.h" #include "runtime.h" namespace art { namespace { using ::android::base::StringPrintf; using ::android::base::unique_fd; std::string ToCommandLine(const std::vector& args) { return android::base::Join(args, ' '); } // Fork and execute a command specified in a subprocess. // If there is a runtime (Runtime::Current != nullptr) then the subprocess is created with the // same environment that existed when the runtime was started. // Returns the process id of the child process on success, -1 otherwise. pid_t ExecWithoutWait(const std::vector& arg_vector, std::string* error_msg) { // Convert the args to char pointers. const char* program = arg_vector[0].c_str(); std::vector args; for (const auto& arg : arg_vector) { args.push_back(const_cast(arg.c_str())); } args.push_back(nullptr); // fork and exec pid_t pid = fork(); if (pid == 0) { // no allocation allowed between fork and exec // change process groups, so we don't get reaped by ProcessManager setpgid(0, 0); // (b/30160149): protect subprocesses from modifications to LD_LIBRARY_PATH, etc. // Use the snapshot of the environment from the time the runtime was created. char** envp = (Runtime::Current() == nullptr) ? nullptr : Runtime::Current()->GetEnvSnapshot(); if (envp == nullptr) { execv(program, &args[0]); } else { execve(program, &args[0], envp); } // This should be regarded as a crash rather than a normal return. PLOG(FATAL) << "Failed to execute (" << ToCommandLine(arg_vector) << ")"; UNREACHABLE(); } else if (pid == -1) { *error_msg = StringPrintf("Failed to execute (%s) because fork failed: %s", ToCommandLine(arg_vector).c_str(), strerror(errno)); return -1; } else { return pid; } } int WaitChild(pid_t pid, const std::vector& arg_vector, bool no_wait, std::string* error_msg) { siginfo_t info; // WNOWAIT leaves the child in a waitable state. The call is still blocking. int options = WEXITED | (no_wait ? WNOWAIT : 0); if (TEMP_FAILURE_RETRY(waitid(P_PID, pid, &info, options)) != 0) { *error_msg = StringPrintf("Failed to execute (%s) because waitid failed for pid %d: %s", ToCommandLine(arg_vector).c_str(), pid, strerror(errno)); return -1; } if (info.si_pid != pid) { *error_msg = StringPrintf("Failed to execute (%s) because waitid failed: wanted %d, got %d: %s", ToCommandLine(arg_vector).c_str(), pid, info.si_pid, strerror(errno)); return -1; } if (info.si_code != CLD_EXITED) { *error_msg = StringPrintf("Failed to execute (%s) because the child process is terminated by signal %d", ToCommandLine(arg_vector).c_str(), info.si_status); return -1; } return info.si_status; } int WaitChild(pid_t pid, const std::vector& arg_vector, std::string* error_msg) { return WaitChild(pid, arg_vector, /*no_wait=*/false, error_msg); } // A fallback implementation of `WaitChildWithTimeout` that creates a thread to wait instead of // relying on `pidfd_open`. int WaitChildWithTimeoutFallback(pid_t pid, const std::vector& arg_vector, int timeout_ms, bool* timed_out, std::string* error_msg) { bool child_exited = false; std::condition_variable cv; std::mutex m; std::thread wait_thread([&]() { std::unique_lock lock(m); if (!cv.wait_for(lock, std::chrono::milliseconds(timeout_ms), [&] { return child_exited; })) { *timed_out = true; *error_msg = StringPrintf("Child process %d timed out after %dms. Killing it", pid, timeout_ms); kill(pid, SIGKILL); } }); // Leave the child in a waitable state just in case `wait_thread` sends a `SIGKILL` after the // child exits. std::string ignored_error_msg; WaitChild(pid, arg_vector, /*no_wait=*/true, &ignored_error_msg); { std::unique_lock lock(m); child_exited = true; } cv.notify_all(); wait_thread.join(); if (*timed_out) { WaitChild(pid, arg_vector, &ignored_error_msg); return -1; } return WaitChild(pid, arg_vector, error_msg); } int WaitChildWithTimeout(pid_t pid, unique_fd pidfd, const std::vector& arg_vector, int timeout_ms, bool* timed_out, std::string* error_msg) { auto cleanup = android::base::make_scope_guard([&]() { kill(pid, SIGKILL); std::string ignored_error_msg; WaitChild(pid, arg_vector, &ignored_error_msg); }); struct pollfd pfd; pfd.fd = pidfd.get(); pfd.events = POLLIN; int poll_ret = TEMP_FAILURE_RETRY(poll(&pfd, /*nfds=*/1, timeout_ms)); pidfd.reset(); if (poll_ret < 0) { *error_msg = StringPrintf("poll failed for pid %d: %s", pid, strerror(errno)); return -1; } if (poll_ret == 0) { *timed_out = true; *error_msg = StringPrintf("Child process %d timed out after %dms. Killing it", pid, timeout_ms); return -1; } cleanup.Disable(); return WaitChild(pid, arg_vector, error_msg); } } // namespace int ExecUtils::ExecAndReturnCode(const std::vector& arg_vector, std::string* error_msg) const { bool ignored_timed_out; return ExecAndReturnCode(arg_vector, /*timeout_sec=*/-1, &ignored_timed_out, error_msg); } int ExecUtils::ExecAndReturnCode(const std::vector& arg_vector, int timeout_sec, bool* timed_out, std::string* error_msg) const { *timed_out = false; if (timeout_sec > INT_MAX / 1000) { *error_msg = "Timeout too large"; return -1; } // Start subprocess. pid_t pid = ExecWithoutWait(arg_vector, error_msg); if (pid == -1) { return -1; } // Wait for subprocess to finish. if (timeout_sec >= 0) { unique_fd pidfd = PidfdOpen(pid); if (pidfd.get() >= 0) { return WaitChildWithTimeout( pid, std::move(pidfd), arg_vector, timeout_sec * 1000, timed_out, error_msg); } else { LOG(DEBUG) << StringPrintf( "pidfd_open failed for pid %d: %s, falling back", pid, strerror(errno)); return WaitChildWithTimeoutFallback( pid, arg_vector, timeout_sec * 1000, timed_out, error_msg); } } else { return WaitChild(pid, arg_vector, error_msg); } } bool ExecUtils::Exec(const std::vector& arg_vector, std::string* error_msg) const { int status = ExecAndReturnCode(arg_vector, error_msg); if (status < 0) { // Internal error. The error message is already set. return false; } if (status > 0) { *error_msg = StringPrintf("Failed to execute (%s) because the child process returns non-zero exit code", ToCommandLine(arg_vector).c_str()); return false; } return true; } unique_fd ExecUtils::PidfdOpen(pid_t pid) const { #ifdef __BIONIC__ return unique_fd(pidfd_open(pid, /*flags=*/0)); #else // There is no glibc wrapper for pidfd_open. #ifndef SYS_pidfd_open constexpr int SYS_pidfd_open = 434; #endif return unique_fd(syscall(SYS_pidfd_open, pid, /*flags=*/0)); #endif } } // namespace art