/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "dex_file_loader.h" #include #include #include "android-base/stringprintf.h" #include "base/bit_utils.h" #include "base/file_magic.h" #include "base/mem_map.h" #include "base/os.h" #include "base/stl_util.h" #include "base/systrace.h" #include "base/unix_file/fd_file.h" #include "base/zip_archive.h" #include "compact_dex_file.h" #include "dex_file.h" #include "dex_file_verifier.h" #include "standard_dex_file.h" namespace art { namespace { // Technically we do not have a limitation with respect to the number of dex files that can be in a // multidex APK. However, it's bad practice, as each dex file requires its own tables for symbols // (types, classes, methods, ...) and dex caches. So warn the user that we open a zip with what // seems an excessive number. static constexpr size_t kWarnOnManyDexFilesThreshold = 100; using android::base::StringPrintf; class VectorContainer : public DexFileContainer { public: explicit VectorContainer(std::vector&& vector) : vector_(std::move(vector)) { } ~VectorContainer() override { } bool IsReadOnly() const override { return true; } bool EnableWrite() override { return true; } bool DisableWrite() override { return false; } const uint8_t* Begin() const override { return vector_.data(); } const uint8_t* End() const override { return vector_.data() + vector_.size(); } private: std::vector vector_; DISALLOW_COPY_AND_ASSIGN(VectorContainer); }; class MemMapContainer : public DexFileContainer { public: explicit MemMapContainer(MemMap&& mem_map, bool is_file_map = false) : mem_map_(std::move(mem_map)), is_file_map_(is_file_map) {} int GetPermissions() const { if (!mem_map_.IsValid()) { return 0; } else { return mem_map_.GetProtect(); } } bool IsReadOnly() const override { return GetPermissions() == PROT_READ; } bool EnableWrite() override { CHECK(IsReadOnly()); if (!mem_map_.IsValid()) { return false; } else { return mem_map_.Protect(PROT_READ | PROT_WRITE); } } bool DisableWrite() override { CHECK(!IsReadOnly()); if (!mem_map_.IsValid()) { return false; } else { return mem_map_.Protect(PROT_READ); } } const uint8_t* Begin() const override { return mem_map_.Begin(); } const uint8_t* End() const override { return mem_map_.End(); } bool IsFileMap() const override { return is_file_map_; } protected: MemMap mem_map_; bool is_file_map_; DISALLOW_COPY_AND_ASSIGN(MemMapContainer); }; } // namespace bool DexFileLoader::IsMagicValid(uint32_t magic) { return IsMagicValid(reinterpret_cast(&magic)); } bool DexFileLoader::IsMagicValid(const uint8_t* magic) { return StandardDexFile::IsMagicValid(magic) || CompactDexFile::IsMagicValid(magic); } bool DexFileLoader::IsVersionAndMagicValid(const uint8_t* magic) { if (StandardDexFile::IsMagicValid(magic)) { return StandardDexFile::IsVersionValid(magic); } if (CompactDexFile::IsMagicValid(magic)) { return CompactDexFile::IsVersionValid(magic); } return false; } bool DexFileLoader::IsMultiDexLocation(const char* location) { return strrchr(location, kMultiDexSeparator) != nullptr; } std::string DexFileLoader::GetMultiDexClassesDexName(size_t index) { return (index == 0) ? "classes.dex" : StringPrintf("classes%zu.dex", index + 1); } std::string DexFileLoader::GetMultiDexLocation(size_t index, const char* dex_location) { return (index == 0) ? dex_location : StringPrintf("%s%cclasses%zu.dex", dex_location, kMultiDexSeparator, index + 1); } std::string DexFileLoader::GetDexCanonicalLocation(const char* dex_location) { CHECK_NE(dex_location, static_cast(nullptr)); std::string base_location = GetBaseLocation(dex_location); const char* suffix = dex_location + base_location.size(); DCHECK(suffix[0] == 0 || suffix[0] == kMultiDexSeparator); #ifdef _WIN32 // Warning: No symbolic link processing here. PLOG(WARNING) << "realpath is unsupported on Windows."; #else // Warning: Bionic implementation of realpath() allocates > 12KB on the stack. // Do not run this code on a small stack, e.g. in signal handler. UniqueCPtr path(realpath(base_location.c_str(), nullptr)); if (path != nullptr && path.get() != base_location) { return std::string(path.get()) + suffix; } #endif if (suffix[0] == 0) { return base_location; } else { return dex_location; } } // All of the implementations here should be independent of the runtime. DexFileLoader::DexFileLoader(const uint8_t* base, size_t size, const std::string& location) : DexFileLoader(std::make_unique(base, base + size), location) {} DexFileLoader::DexFileLoader(std::vector&& memory, const std::string& location) : DexFileLoader(std::make_unique(std::move(memory)), location) {} DexFileLoader::DexFileLoader(MemMap&& mem_map, const std::string& location) : DexFileLoader(std::make_unique(std::move(mem_map)), location) {} std::unique_ptr DexFileLoader::Open(uint32_t location_checksum, const OatDexFile* oat_dex_file, bool verify, bool verify_checksum, std::string* error_msg) { ScopedTrace trace(std::string("Open dex file ") + location_); uint32_t magic; if (!InitAndReadMagic(&magic, error_msg) || !MapRootContainer(error_msg)) { DCHECK(!error_msg->empty()); return {}; } std::unique_ptr dex_file = OpenCommon(std::move(root_container_), location_, location_checksum, oat_dex_file, verify, verify_checksum, error_msg, nullptr); return dex_file; } bool DexFileLoader::InitAndReadMagic(uint32_t* magic, std::string* error_msg) { if (root_container_ != nullptr) { if (root_container_->Size() < sizeof(uint32_t)) { *error_msg = StringPrintf("Unable to open '%s' : Size is too small", location_.c_str()); return false; } *magic = *reinterpret_cast(root_container_->Begin()); } else { // Open the file if we have not been given the file-descriptor directly before. if (!file_.has_value()) { CHECK(!filename_.empty()); file_.emplace(filename_, O_RDONLY, /* check_usage= */ false); if (file_->Fd() == -1) { *error_msg = StringPrintf("Unable to open '%s' : %s", filename_.c_str(), strerror(errno)); return false; } } if (!ReadMagicAndReset(file_->Fd(), magic, error_msg)) { return false; } } return true; } bool DexFileLoader::MapRootContainer(std::string* error_msg) { if (root_container_ != nullptr) { return true; } CHECK(MemMap::IsInitialized()); CHECK(file_.has_value()); struct stat sbuf; memset(&sbuf, 0, sizeof(sbuf)); if (fstat(file_->Fd(), &sbuf) == -1) { *error_msg = StringPrintf("DexFile: fstat '%s' failed: %s", filename_.c_str(), strerror(errno)); return false; } if (S_ISDIR(sbuf.st_mode)) { *error_msg = StringPrintf("Attempt to mmap directory '%s'", filename_.c_str()); return false; } MemMap map = MemMap::MapFile(sbuf.st_size, PROT_READ, MAP_PRIVATE, file_->Fd(), 0, /*low_4gb=*/false, filename_.c_str(), error_msg); if (!map.IsValid()) { DCHECK(!error_msg->empty()); return false; } root_container_ = std::make_unique(std::move(map)); return true; } bool DexFileLoader::Open(bool verify, bool verify_checksum, bool allow_no_dex_files, DexFileLoaderErrorCode* error_code, std::string* error_msg, std::vector>* dex_files) { ScopedTrace trace(std::string("Open dex file ") + location_); DCHECK(dex_files != nullptr) << "DexFile::Open: out-param is nullptr"; uint32_t magic; if (!InitAndReadMagic(&magic, error_msg)) { return false; } if (IsZipMagic(magic)) { std::unique_ptr zip_archive( file_.has_value() ? ZipArchive::OpenFromOwnedFd(file_->Fd(), location_.c_str(), error_msg) : ZipArchive::OpenFromMemory( root_container_->Begin(), root_container_->Size(), location_.c_str(), error_msg)); if (zip_archive.get() == nullptr) { DCHECK(!error_msg->empty()); return false; } for (size_t i = 0;; ++i) { std::string name = GetMultiDexClassesDexName(i); std::string multidex_location = GetMultiDexLocation(i, location_.c_str()); bool ok = OpenFromZipEntry(*zip_archive, name.c_str(), multidex_location, verify, verify_checksum, error_code, error_msg, dex_files); if (!ok) { // We keep opening consecutive dex entries as long as we can (until entry is not found). if (*error_code == DexFileLoaderErrorCode::kEntryNotFound) { // Success if we loaded at least one entry, or if empty zip is explicitly allowed. return i > 0 || allow_no_dex_files; } return false; } if (i == kWarnOnManyDexFilesThreshold) { LOG(WARNING) << location_ << " has in excess of " << kWarnOnManyDexFilesThreshold << " dex files. Please consider coalescing and shrinking the number to " " avoid runtime overhead."; } } } if (IsMagicValid(magic)) { if (!MapRootContainer(error_msg)) { return false; } const uint8_t* base = root_container_->Begin(); size_t size = root_container_->Size(); if (size < sizeof(DexFile::Header)) { *error_msg = StringPrintf("DexFile: failed to open dex file '%s' that is too short to have a header", location_.c_str()); return false; } const DexFile::Header* dex_header = reinterpret_cast(base); std::unique_ptr dex_file = OpenCommon(std::move(root_container_), location_, dex_header->checksum_, /*oat_dex_file=*/nullptr, verify, verify_checksum, error_msg, nullptr); if (dex_file.get() != nullptr) { dex_files->push_back(std::move(dex_file)); return true; } else { return false; } } *error_msg = StringPrintf("Expected valid zip or dex file"); return false; } std::unique_ptr DexFileLoader::OpenCommon(std::unique_ptr container, const std::string& location, uint32_t location_checksum, const OatDexFile* oat_dex_file, bool verify, bool verify_checksum, std::string* error_msg, DexFileLoaderErrorCode* error_code) { CHECK(container != nullptr); const uint8_t* base = container->Begin(); size_t size = container->Size(); const uint8_t* data_base = container->DataBegin(); size_t data_size = container->DataEnd() - container->DataBegin(); if (error_code != nullptr) { *error_code = DexFileLoaderErrorCode::kDexFileError; } std::unique_ptr dex_file; if (size >= sizeof(StandardDexFile::Header) && StandardDexFile::IsMagicValid(base)) { if (data_size != 0) { CHECK_EQ(base, data_base) << "Unsupported for standard dex"; } dex_file.reset(new StandardDexFile( base, size, location, location_checksum, oat_dex_file, std::move(container))); } else if (size >= sizeof(CompactDexFile::Header) && CompactDexFile::IsMagicValid(base)) { if (data_base == nullptr) { // TODO: Is there a clean way to support both an explicit data section and reading the one // from the header. CHECK_EQ(data_size, 0u); const CompactDexFile::Header* const header = CompactDexFile::Header::At(base); data_base = base + header->data_off_; data_size = header->data_size_; } dex_file.reset(new CompactDexFile(base, size, data_base, data_size, location, location_checksum, oat_dex_file, std::move(container))); // Disable verification for CompactDex input. verify = false; } else { *error_msg = "Invalid or truncated dex file"; } if (dex_file == nullptr) { *error_msg = StringPrintf("Failed to open dex file '%s': %s", location.c_str(), error_msg->c_str()); return nullptr; } if (!dex_file->Init(error_msg)) { dex_file.reset(); return nullptr; } if (verify) { ScopedTrace trace(std::string("Verify dex file ") + location); if (!dex::Verify(dex_file.get(), dex_file->Begin(), dex_file->Size(), location.c_str(), verify_checksum, error_msg)) { if (error_code != nullptr) { *error_code = DexFileLoaderErrorCode::kVerifyError; } return nullptr; } } if (error_code != nullptr) { *error_code = DexFileLoaderErrorCode::kNoError; } return dex_file; } bool DexFileLoader::OpenFromZipEntry(const ZipArchive& zip_archive, const char* entry_name, const std::string& location, bool verify, bool verify_checksum, DexFileLoaderErrorCode* error_code, std::string* error_msg, std::vector>* dex_files) const { CHECK(!location.empty()); std::unique_ptr zip_entry(zip_archive.Find(entry_name, error_msg)); if (zip_entry == nullptr) { *error_code = DexFileLoaderErrorCode::kEntryNotFound; return false; } if (zip_entry->GetUncompressedLength() == 0) { *error_msg = StringPrintf("Dex file '%s' has zero length", location.c_str()); *error_code = DexFileLoaderErrorCode::kDexFileError; return false; } CHECK(MemMap::IsInitialized()); MemMap map; bool is_file_map = false; if (file_.has_value() && zip_entry->IsUncompressed()) { if (!zip_entry->IsAlignedTo(alignof(DexFile::Header))) { // Do not mmap unaligned ZIP entries because // doing so would fail dex verification which requires 4 byte alignment. LOG(WARNING) << "Can't mmap dex file " << location << "!" << entry_name << " directly; " << "please zipalign to " << alignof(DexFile::Header) << " bytes. " << "Falling back to extracting file."; } else { // Map uncompressed files within zip as file-backed to avoid a dirty copy. map = zip_entry->MapDirectlyFromFile(location.c_str(), /*out*/ error_msg); if (!map.IsValid()) { LOG(WARNING) << "Can't mmap dex file " << location << "!" << entry_name << " directly; " << "is your ZIP file corrupted? Falling back to extraction."; // Try again with Extraction which still has a chance of recovery. } is_file_map = true; } } if (!map.IsValid()) { ScopedTrace trace(std::string("Extract dex file ") + location); // Default path for compressed ZIP entries, // and fallback for stored ZIP entries. map = zip_entry->ExtractToMemMap(location.c_str(), entry_name, error_msg); } if (!map.IsValid()) { *error_msg = StringPrintf("Failed to extract '%s' from '%s': %s", entry_name, location.c_str(), error_msg->c_str()); *error_code = DexFileLoaderErrorCode::kExtractToMemoryError; return false; } auto container = std::make_unique(std::move(map), is_file_map); container->SetIsZip(); if (!container->DisableWrite()) { *error_msg = StringPrintf("Failed to make dex file '%s' read only", location.c_str()); *error_code = DexFileLoaderErrorCode::kMakeReadOnlyError; return false; } std::unique_ptr dex_file = OpenCommon(std::move(container), location, zip_entry->GetCrc32(), /*oat_dex_file=*/nullptr, verify, verify_checksum, error_msg, error_code); if (dex_file == nullptr) { return false; } CHECK(dex_file->IsReadOnly()) << location; dex_files->push_back(std::move(dex_file)); return true; } } // namespace art