/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include "allocator.h" #include "base/stl_util.h" #include "bit_vector-inl.h" #include "gtest/gtest.h" #include "transform_iterator.h" namespace art { template void TestBitVectorViewSetBitAndClearBit() { static constexpr StorageType kStorage[2] = { kWord0, kWord1 }; static constexpr size_t kSizeInBits = 2 * BitSizeOf(); static constexpr BitVectorView kBvv(kStorage, kSizeInBits); auto get_bit_from_params = [](size_t index) constexpr { StorageType word = (index < BitSizeOf()) ? kWord0 : kWord1; size_t shift = index % BitSizeOf(); return (word & (static_cast(1u) << shift)) != 0u; }; auto verify_is_bit_set = [get_bit_from_params]() constexpr { for (size_t index = 0; index != kSizeInBits; ++index) { // If the `CHECK_EQ()` fails, the `static_assert` evaluation fails at compile time. CHECK_EQ(get_bit_from_params(index), kBvv.IsBitSet(index)) << index; } return true; }; static_assert(verify_is_bit_set()); auto verify_size = []() constexpr { for (size_t size = 0; size != kSizeInBits; ++size) { // If the `CHECK_EQ()` fails, the `static_assert` evaluation fails at compile time. CHECK_EQ(size, BitVectorView(kStorage, size).SizeInBits()); size_t words = RoundUp(size, BitSizeOf()) / BitSizeOf(); CHECK_EQ(words, BitVectorView(kStorage, size).SizeInWords()); } return true; }; static_assert(verify_size()); StorageType storage[2] = {0u, 0u}; size_t size_in_bits = 2 * BitSizeOf(); BitVectorView bvv(storage, size_in_bits); for (size_t index = 0; index != size_in_bits; ++index) { ASSERT_FALSE(bvv.IsBitSet(index)); } // Set one bit at a time, then clear it. for (size_t bit_to_set = 0; bit_to_set != size_in_bits; ++bit_to_set) { bvv.SetBit(bit_to_set); for (size_t index = 0; index != size_in_bits; ++index) { ASSERT_EQ(index == bit_to_set, bvv.IsBitSet(index)); } ASSERT_TRUE(bvv.IsAnyBitSet()); bvv.ClearBit(bit_to_set); for (size_t index = 0; index != size_in_bits; ++index) { ASSERT_FALSE(bvv.IsBitSet(index)); } ASSERT_FALSE(bvv.IsAnyBitSet()); } // Set bits for `kWord0` and `kWord1`. for (size_t index = 0; index != size_in_bits; ++index) { if (get_bit_from_params(index)) { bvv.SetBit(index); } } ASSERT_EQ(kWord0, storage[0]); ASSERT_EQ(kWord1, storage[1]); // Clear all bits that are already clear. for (size_t index = 0; index != size_in_bits; ++index) { if (!get_bit_from_params(index)) { bvv.ClearBit(index); } } ASSERT_EQ(kWord0, storage[0]); ASSERT_EQ(kWord1, storage[1]); // Clear all bits that are set. for (size_t index = 0; index != size_in_bits; ++index) { if (get_bit_from_params(index)) { bvv.ClearBit(index); } } ASSERT_EQ(0u, storage[0]); ASSERT_EQ(0u, storage[1]); } TEST(BitVectorView, Uint32T) { TestBitVectorViewSetBitAndClearBit(); } TEST(BitVectorView, Uint64T) { TestBitVectorViewSetBitAndClearBit(); } TEST(BitVectorView, SizeT) { // Note: The constants below are truncated on 32-bit architectures. TestBitVectorViewSetBitAndClearBit(UINT64_C(0xfedcba0987654321)), static_cast(UINT64_C(0x1234567890abcdef))>(); } TEST(BitVectorView, ConversionToConstStorage) { uint32_t storage[] = {1u, 2u, 3u}; size_t size = 2 * BitSizeOf() + MinimumBitsToStore(storage[2]); BitVectorView bvv(storage, size); auto is_bit_set = [](BitVectorView cbvv, size_t index) { return cbvv.IsBitSet(index); }; for (size_t index = 0; index != size; ++index) { ASSERT_EQ(bvv.IsBitSet(index), is_bit_set(bvv, index)); } } TEST(BitVectorView, DefaultConstructor) { BitVectorView<> bvv; ASSERT_EQ(0u, bvv.SizeInBits()); ASSERT_EQ(0u, bvv.SizeInWords()); } TEST(BitVectorView, ClearAllBits) { uint32_t storage[] = {1u, 2u, 0xffffffffu}; size_t size = 2 * BitSizeOf() + 1u; BitVectorView bvv(storage, size); // Construction allowed with bogus trailing bits. ASSERT_EQ(1u, storage[0]); ASSERT_EQ(2u, storage[1]); ASSERT_EQ(0xffffffffu, storage[2]); bvv.ClearAllBits(); ASSERT_EQ(0u, storage[0]); ASSERT_EQ(0u, storage[1]); ASSERT_EQ(0u, storage[2]); } TEST(BitVectorView, SetInitialBits) { uint32_t storage[] = {1u, 2u, 0xffffffffu}; size_t size = 2 * BitSizeOf() + 1u; BitVectorView bvv(storage, size); // Construction allowed with bogus trailing bits. ASSERT_EQ(1u, storage[0]); ASSERT_EQ(2u, storage[1]); ASSERT_EQ(0xffffffffu, storage[2]); bvv.SetInitialBits(40u); ASSERT_EQ(0xffffffffu, storage[0]); ASSERT_EQ(0xffu, storage[1]); ASSERT_EQ(0u, storage[2]); bvv.SetInitialBits(0u); ASSERT_EQ(0u, storage[0]); ASSERT_EQ(0u, storage[1]); ASSERT_EQ(0u, storage[2]); bvv.SetInitialBits(17u); ASSERT_EQ(0x1ffffu, storage[0]); ASSERT_EQ(0u, storage[1]); ASSERT_EQ(0u, storage[2]); bvv.SetInitialBits(64u); ASSERT_EQ(0xffffffffu, storage[0]); ASSERT_EQ(0xffffffffu, storage[1]); ASSERT_EQ(0u, storage[2]); bvv.SetInitialBits(65u); ASSERT_EQ(0xffffffffu, storage[0]); ASSERT_EQ(0xffffffffu, storage[1]); ASSERT_EQ(1u, storage[2]); } template void TestBitVectorViewIndexes() { StorageType storage[] = {kWord0, kWord1}; size_t size = 2u * BitSizeOf(); BitVectorView bvv(storage, size); std::vector indexes1; for (size_t index = 0; index != size; ++index) { if (bvv.IsBitSet(index)) { indexes1.push_back(index); } } std::vector indexes2; for (size_t index : bvv.Indexes()) { indexes2.push_back(index); } ASSERT_EQ(indexes1, indexes2); std::vector indexes3; for (auto it = bvv.Indexes().begin(); !it.Done(); ++it) { indexes3.push_back(*it); } ASSERT_EQ(indexes1, indexes3); StorageType empty_storage[] = {0u, 0u, 0u}; BitVectorView empty(empty_storage, 3 * BitSizeOf() - 1u); for (size_t index : empty.Indexes()) { FAIL(); } ASSERT_TRUE(empty.Indexes().begin().Done()); } TEST(BitVectorView, IndexesUint32T) { TestBitVectorViewIndexes(); } TEST(BitVectorView, IndexesUint64T) { TestBitVectorViewIndexes(); } TEST(BitVectorView, IndexesSizeT) { // Note: The constants below are truncated on 32-bit architectures. TestBitVectorViewIndexes(UINT64_C(0xfedcba0987654321)), static_cast(UINT64_C(0x1234567890abcdef))>(); } template void TestBitVectorViewUnion() { // Truncated if the constants do not fit in `StorageType`. static constexpr StorageType kInitWord0 = static_cast(UINT64_C(0xfedcba0987654321)); static constexpr StorageType kInitWord1 = static_cast(UINT64_C(0x1234567890abcdef)); StorageType storage[] = { kInitWord0, kInitWord1 }; size_t size = 2u * BitSizeOf(); BitVectorView bvv(storage, size); StorageType equal_storage[] = { kInitWord0, kInitWord1 }; BitVectorView equal_bvv(equal_storage, size); ASSERT_FALSE(bvv.Union(equal_bvv)); ASSERT_EQ(kInitWord0, storage[0]); ASSERT_EQ(kInitWord1, storage[1]); StorageType mask = static_cast(UINT64_C(0x5555555555555555)); StorageType subset_storage[] = { kInitWord0 & mask, kInitWord1 & mask }; BitVectorView subset_bvv(subset_storage, size); ASSERT_FALSE(bvv.Union(subset_bvv)); ASSERT_EQ(kInitWord0, storage[0]); ASSERT_EQ(kInitWord1, storage[1]); static constexpr StorageType kOtherWord0 = kInitWord1; static constexpr StorageType kOtherWord1 = kInitWord0; StorageType other_storage[] = { kOtherWord0, kOtherWord1 }; BitVectorView other_bvv(other_storage, size); ASSERT_TRUE(bvv.Union(other_bvv)); ASSERT_EQ(kInitWord0 | kOtherWord0, storage[0]); ASSERT_EQ(kInitWord1 | kOtherWord1, storage[1]); } TEST(BitVectorView, UnionUint32T) { TestBitVectorViewUnion(); } TEST(BitVectorView, UnionUint64T) { TestBitVectorViewUnion(); } TEST(BitVectorView, UnionSizeT) { // Note: The constants below are truncated on 32-bit architectures. TestBitVectorViewUnion(); } template void TestBitVectorViewUnionIfNotIn() { // Truncated if the constants do not fit in `StorageType`. static constexpr StorageType kInitWord0 = static_cast(UINT64_C(0xfedcba0987654321)); static constexpr StorageType kInitWord1 = static_cast(UINT64_C(0x1234567890abcdef)); StorageType storage[] = { kInitWord0, kInitWord1 }; size_t size = 2u * BitSizeOf(); BitVectorView bvv(storage, size); StorageType equal_storage[] = { kInitWord0, kInitWord1 }; BitVectorView equal_bvv(equal_storage, size); StorageType mask = static_cast(UINT64_C(0x5555555555555555)); StorageType subset_storage[] = { kInitWord0 & mask, kInitWord1 & mask }; BitVectorView subset_bvv(subset_storage, size); StorageType empty_storage[] = { 0u, 0u }; BitVectorView empty_bvv(subset_storage, size); static constexpr StorageType kOtherWord0 = kInitWord1; static constexpr StorageType kOtherWord1 = kInitWord0; StorageType other_storage[] = { kOtherWord0, kOtherWord1 }; BitVectorView other_bvv(other_storage, size); StorageType mask_storage[] = { mask, mask }; BitVectorView mask_bvv(mask_storage, size); // Test cases where we add bits and the `not_in` is relevant. ASSERT_TRUE(bvv.UnionIfNotIn(other_bvv, mask_bvv)); ASSERT_EQ(kInitWord0 | (kOtherWord0 & ~mask), storage[0]); ASSERT_EQ(kInitWord1 | (kOtherWord1 & ~mask), storage[1]); storage[0] = kInitWord0; // Reset `bvv` storage. storage[1] = kInitWord1; ASSERT_TRUE(bvv.UnionIfNotIn(mask_bvv, other_bvv)); ASSERT_EQ(kInitWord0 | (mask & ~kOtherWord0), storage[0]); ASSERT_EQ(kInitWord1 | (mask & ~kOtherWord1), storage[1]); storage[0] = kInitWord0; // Reset `bvv` storage. storage[1] = kInitWord1; // Test cases where we add bits but the `not_in` is irrelevant because it's a subset of `bvv`. for (BitVectorView not_in : { equal_bvv, subset_bvv, empty_bvv }) { ASSERT_TRUE(bvv.UnionIfNotIn(other_bvv, not_in)); ASSERT_EQ(kInitWord0 | kOtherWord0, storage[0]); ASSERT_EQ(kInitWord1 | kOtherWord1, storage[1]); storage[0] = kInitWord0; // Reset `bvv` storage. storage[1] = kInitWord1; ASSERT_TRUE(bvv.UnionIfNotIn(mask_bvv, not_in)); ASSERT_EQ(kInitWord0 | mask, storage[0]); ASSERT_EQ(kInitWord1 | mask, storage[1]); storage[0] = kInitWord0; // Reset `bvv` storage. storage[1] = kInitWord1; } // Test various cases where we add no bits. for (BitVectorView union_with : { equal_bvv, subset_bvv, empty_bvv }) { for (BitVectorView not_in : { equal_bvv, subset_bvv, empty_bvv, other_bvv, mask_bvv }) { ASSERT_FALSE(bvv.UnionIfNotIn(union_with, not_in)); ASSERT_EQ(kInitWord0, storage[0]); ASSERT_EQ(kInitWord1, storage[1]); } } ASSERT_FALSE(bvv.UnionIfNotIn(other_bvv, other_bvv)); ASSERT_EQ(kInitWord0, storage[0]); ASSERT_EQ(kInitWord1, storage[1]); ASSERT_FALSE(bvv.UnionIfNotIn(mask_bvv, mask_bvv)); ASSERT_EQ(kInitWord0, storage[0]); ASSERT_EQ(kInitWord1, storage[1]); } TEST(BitVectorView, UnionIfNotInUint32T) { TestBitVectorViewUnionIfNotIn(); } TEST(BitVectorView, UnionIfNotInUint64T) { TestBitVectorViewUnionIfNotIn(); } TEST(BitVectorView, UnionIfNotInSizeT) { // Note: The constants below are truncated on 32-bit architectures. TestBitVectorViewUnionIfNotIn(); } TEST(BitVector, Test) { const size_t kBits = 32; BitVector bv(kBits, false, Allocator::GetCallocAllocator()); EXPECT_EQ(1U, bv.GetStorageSize()); EXPECT_EQ(sizeof(uint32_t), bv.GetSizeOf()); EXPECT_FALSE(bv.IsExpandable()); EXPECT_EQ(0U, bv.NumSetBits()); EXPECT_EQ(0U, bv.NumSetBits(1)); EXPECT_EQ(0U, bv.NumSetBits(kBits)); for (size_t i = 0; i < kBits; i++) { EXPECT_FALSE(bv.IsBitSet(i)); } EXPECT_EQ(0U, bv.GetRawStorageWord(0)); EXPECT_EQ(0U, *bv.GetRawStorage()); EXPECT_TRUE(bv.Indexes().begin().Done()); EXPECT_TRUE(bv.Indexes().begin() == bv.Indexes().end()); bv.SetBit(0); bv.SetBit(kBits - 1); EXPECT_EQ(2U, bv.NumSetBits()); EXPECT_EQ(1U, bv.NumSetBits(1)); EXPECT_EQ(2U, bv.NumSetBits(kBits)); EXPECT_TRUE(bv.IsBitSet(0)); for (size_t i = 1; i < kBits - 1; i++) { EXPECT_FALSE(bv.IsBitSet(i)); } EXPECT_TRUE(bv.IsBitSet(kBits - 1)); EXPECT_EQ(0x80000001U, bv.GetRawStorageWord(0)); EXPECT_EQ(0x80000001U, *bv.GetRawStorage()); BitVectorIndexIterator iterator = bv.Indexes().begin(); EXPECT_TRUE(iterator != bv.Indexes().end()); EXPECT_EQ(0u, *iterator); ++iterator; EXPECT_TRUE(iterator != bv.Indexes().end()); EXPECT_EQ(kBits - 1u, *iterator); ++iterator; EXPECT_TRUE(iterator == bv.Indexes().end()); } struct MessyAllocator : public Allocator { public: MessyAllocator() : malloc_(Allocator::GetCallocAllocator()) {} ~MessyAllocator() {} void* Alloc(size_t s) override { void* res = malloc_->Alloc(s); memset(res, 0xfe, s); return res; } void Free(void* v) override { malloc_->Free(v); } private: Allocator* malloc_; }; TEST(BitVector, MessyAllocator) { MessyAllocator alloc; BitVector bv(32, false, &alloc); bv.ClearAllBits(); EXPECT_EQ(bv.NumSetBits(), 0u); EXPECT_EQ(bv.GetHighestBitSet(), -1); } TEST(BitVector, NoopAllocator) { const uint32_t kWords = 2; uint32_t bits[kWords]; memset(bits, 0, sizeof(bits)); BitVector bv(false, Allocator::GetNoopAllocator(), kWords, bits); EXPECT_EQ(kWords, bv.GetStorageSize()); EXPECT_EQ(kWords * sizeof(uint32_t), bv.GetSizeOf()); EXPECT_EQ(bits, bv.GetRawStorage()); EXPECT_EQ(0U, bv.NumSetBits()); bv.SetBit(8); EXPECT_EQ(1U, bv.NumSetBits()); EXPECT_EQ(0x00000100U, bv.GetRawStorageWord(0)); EXPECT_EQ(0x00000000U, bv.GetRawStorageWord(1)); EXPECT_EQ(1U, bv.NumSetBits()); bv.SetBit(16); EXPECT_EQ(2U, bv.NumSetBits()); EXPECT_EQ(0x00010100U, bv.GetRawStorageWord(0)); EXPECT_EQ(0x00000000U, bv.GetRawStorageWord(1)); EXPECT_EQ(2U, bv.NumSetBits()); bv.SetBit(32); EXPECT_EQ(3U, bv.NumSetBits()); EXPECT_EQ(0x00010100U, bv.GetRawStorageWord(0)); EXPECT_EQ(0x00000001U, bv.GetRawStorageWord(1)); EXPECT_EQ(3U, bv.NumSetBits()); bv.SetBit(48); EXPECT_EQ(4U, bv.NumSetBits()); EXPECT_EQ(0x00010100U, bv.GetRawStorageWord(0)); EXPECT_EQ(0x00010001U, bv.GetRawStorageWord(1)); EXPECT_EQ(4U, bv.NumSetBits()); EXPECT_EQ(0U, bv.NumSetBits(1)); EXPECT_EQ(0U, bv.NumSetBits(8)); EXPECT_EQ(1U, bv.NumSetBits(9)); EXPECT_EQ(1U, bv.NumSetBits(10)); EXPECT_EQ(1U, bv.NumSetBits(16)); EXPECT_EQ(2U, bv.NumSetBits(17)); EXPECT_EQ(2U, bv.NumSetBits(18)); EXPECT_EQ(2U, bv.NumSetBits(32)); EXPECT_EQ(3U, bv.NumSetBits(33)); EXPECT_EQ(3U, bv.NumSetBits(34)); EXPECT_EQ(3U, bv.NumSetBits(48)); EXPECT_EQ(4U, bv.NumSetBits(49)); EXPECT_EQ(4U, bv.NumSetBits(50)); EXPECT_EQ(4U, bv.NumSetBits(64)); } TEST(BitVector, SetInitialBits) { const uint32_t kWords = 2; uint32_t bits[kWords]; memset(bits, 0, sizeof(bits)); BitVector bv(false, Allocator::GetNoopAllocator(), kWords, bits); bv.SetInitialBits(0u); EXPECT_EQ(0u, bv.NumSetBits()); bv.SetInitialBits(1u); EXPECT_EQ(1u, bv.NumSetBits()); bv.SetInitialBits(32u); EXPECT_EQ(32u, bv.NumSetBits()); bv.SetInitialBits(63u); EXPECT_EQ(63u, bv.NumSetBits()); bv.SetInitialBits(64u); EXPECT_EQ(64u, bv.NumSetBits()); } TEST(BitVector, UnionIfNotIn) { { BitVector first(2, true, Allocator::GetCallocAllocator()); BitVector second(5, true, Allocator::GetCallocAllocator()); BitVector third(5, true, Allocator::GetCallocAllocator()); second.SetBit(64); third.SetBit(64); bool changed = first.UnionIfNotIn(&second, &third); EXPECT_EQ(0u, first.NumSetBits()); EXPECT_FALSE(changed); } { BitVector first(2, true, Allocator::GetCallocAllocator()); BitVector second(5, true, Allocator::GetCallocAllocator()); BitVector third(5, true, Allocator::GetCallocAllocator()); second.SetBit(64); bool changed = first.UnionIfNotIn(&second, &third); EXPECT_EQ(1u, first.NumSetBits()); EXPECT_TRUE(changed); EXPECT_TRUE(first.IsBitSet(64)); } } TEST(BitVector, Subset) { { BitVector first(2, true, Allocator::GetCallocAllocator()); BitVector second(5, true, Allocator::GetCallocAllocator()); EXPECT_TRUE(first.IsSubsetOf(&second)); second.SetBit(4); EXPECT_TRUE(first.IsSubsetOf(&second)); } { BitVector first(5, true, Allocator::GetCallocAllocator()); BitVector second(5, true, Allocator::GetCallocAllocator()); first.SetBit(5); EXPECT_FALSE(first.IsSubsetOf(&second)); second.SetBit(4); EXPECT_FALSE(first.IsSubsetOf(&second)); } { BitVector first(5, true, Allocator::GetCallocAllocator()); BitVector second(5, true, Allocator::GetCallocAllocator()); first.SetBit(16); first.SetBit(32); first.SetBit(48); second.SetBit(16); second.SetBit(32); second.SetBit(48); EXPECT_TRUE(first.IsSubsetOf(&second)); second.SetBit(8); EXPECT_TRUE(first.IsSubsetOf(&second)); second.SetBit(40); EXPECT_TRUE(first.IsSubsetOf(&second)); second.SetBit(52); EXPECT_TRUE(first.IsSubsetOf(&second)); first.SetBit(9); EXPECT_FALSE(first.IsSubsetOf(&second)); } } TEST(BitVector, CopyTo) { { // Test copying an empty BitVector. Padding should fill `buf` with zeroes. BitVector bv(0, true, Allocator::GetCallocAllocator()); uint32_t buf; bv.CopyTo(&buf, sizeof(buf)); EXPECT_EQ(0u, bv.GetSizeOf()); EXPECT_EQ(0u, buf); } { // Test copying when `bv.storage_` and `buf` are of equal lengths. BitVector bv(0, true, Allocator::GetCallocAllocator()); uint32_t buf; bv.SetBit(0); bv.SetBit(17); bv.SetBit(26); EXPECT_EQ(sizeof(buf), bv.GetSizeOf()); bv.CopyTo(&buf, sizeof(buf)); EXPECT_EQ(0x04020001u, buf); } { // Test copying when the `bv.storage_` is longer than `buf`. As long as // `buf` is long enough to hold all set bits, copying should succeed. BitVector bv(0, true, Allocator::GetCallocAllocator()); uint8_t buf[5]; bv.SetBit(18); bv.SetBit(39); EXPECT_LT(sizeof(buf), bv.GetSizeOf()); bv.CopyTo(buf, sizeof(buf)); EXPECT_EQ(0x00u, buf[0]); EXPECT_EQ(0x00u, buf[1]); EXPECT_EQ(0x04u, buf[2]); EXPECT_EQ(0x00u, buf[3]); EXPECT_EQ(0x80u, buf[4]); } { // Test zero padding when `bv.storage_` is shorter than `buf`. BitVector bv(0, true, Allocator::GetCallocAllocator()); uint32_t buf[2]; bv.SetBit(18); bv.SetBit(31); EXPECT_GT(sizeof(buf), bv.GetSizeOf()); bv.CopyTo(buf, sizeof(buf)); EXPECT_EQ(0x80040000U, buf[0]); EXPECT_EQ(0x00000000U, buf[1]); } } TEST(BitVector, TransformIterator) { BitVector bv(16, false, Allocator::GetCallocAllocator()); bv.SetBit(4); bv.SetBit(8); auto indexs = bv.Indexes(); for (int32_t negative : MakeTransformRange(indexs, [](uint32_t idx) { return -1 * static_cast(idx); })) { EXPECT_TRUE(negative == -4 || negative == -8); } } class SingleAllocator : public Allocator { public: SingleAllocator() : alloc_count_(0), free_count_(0) {} ~SingleAllocator() { EXPECT_EQ(alloc_count_, 1u); EXPECT_EQ(free_count_, 1u); } void* Alloc(size_t s) override { EXPECT_LT(s, 1024ull); EXPECT_EQ(alloc_count_, free_count_); ++alloc_count_; return bytes_.begin(); } void Free(void*) override { ++free_count_; } uint32_t AllocCount() const { return alloc_count_; } uint32_t FreeCount() const { return free_count_; } private: std::array bytes_; uint32_t alloc_count_; uint32_t free_count_; }; TEST(BitVector, MovementFree) { SingleAllocator alloc; { BitVector bv(16, false, &alloc); bv.SetBit(13); EXPECT_EQ(alloc.FreeCount(), 0u); EXPECT_EQ(alloc.AllocCount(), 1u); ASSERT_TRUE(bv.GetRawStorage() != nullptr); EXPECT_TRUE(bv.IsBitSet(13)); { BitVector bv2(std::move(bv)); // NOLINTNEXTLINE - checking underlying storage has been freed ASSERT_TRUE(bv.GetRawStorage() == nullptr); EXPECT_TRUE(bv2.IsBitSet(13)); EXPECT_EQ(alloc.FreeCount(), 0u); EXPECT_EQ(alloc.AllocCount(), 1u); } EXPECT_EQ(alloc.FreeCount(), 1u); EXPECT_EQ(alloc.AllocCount(), 1u); } EXPECT_EQ(alloc.FreeCount(), 1u); EXPECT_EQ(alloc.AllocCount(), 1u); } } // namespace art