/* * Copyright (C) 2013 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_LIBARTBASE_BASE_BIT_VECTOR_H_ #define ART_LIBARTBASE_BASE_BIT_VECTOR_H_ #include #include #include #include #include "bit_utils.h" #include "globals.h" #include "logging.h" namespace art { class Allocator; // A bit vector view encapsulating externally-provided fixed-size storage for bits. // // The size in bits does not need to specify whole number of storage words but the view // is intended to work only on the specified number of bits. Single-bit functions // `SetBit()`, `ClearBit()` and `IsBitSet()` verify the passed index with `DCHECK()` // and do not care about trailing bits in the last storage word, if any. Multi-bit // functions require that the trailing bits are cleared on entry, except for functions // `ClearAllBits()` and `SetInitialBits()` that are used for storage initialization // and clear the trailing bits, if any. template class BitVectorView { public: using WordType = StorageType; static_assert(std::numeric_limits::is_integer); static_assert(!std::numeric_limits::is_signed); static constexpr size_t kWordBits = BitSizeOf(); static_assert(IsPowerOfTwo(kWordBits)); static constexpr size_t BitsToWords(size_t bits) { return (bits + /* round up */ (kWordBits - 1)) / kWordBits; } // Construct an empty `BitVectorView`. constexpr BitVectorView() : storage_(nullptr), size_in_bits_(0u) {} // Construct a `BitVectorView` referencing the provided backing storage. constexpr BitVectorView(WordType* storage, size_t size_in_bits) : storage_(storage), size_in_bits_(size_in_bits) {} // The `BitVectorView<>` can be copied and passed to functions by value. // The new copy shall reference the same underlying data, similarly to `std::string_view`. BitVectorView(const BitVectorView& src) = default; // Implicit conversion to a view with constant storage. template && std::is_same_v>>> BitVectorView(const BitVectorView& src) : storage_(src.storage_), size_in_bits_(src.size_in_bits_) {} // Get the size of the bit vector view in bits. constexpr size_t SizeInBits() const { return size_in_bits_; } // Get the size of the bit vector view in storage words. constexpr size_t SizeInWords() const { return BitsToWords(SizeInBits()); } // Mark the specified bit as "set". void SetBit(size_t index) { DCHECK_LT(index, size_in_bits_); storage_[WordIndex(index)] |= BitMask(index); } // Mark the specified bit as "clear". void ClearBit(size_t index) { DCHECK_LT(index, size_in_bits_); storage_[WordIndex(index)] &= ~BitMask(index); } // Determine whether or not the specified bit is set. constexpr bool IsBitSet(size_t index) const { DCHECK_LT(index, size_in_bits_); return (storage_[WordIndex(index)] & BitMask(index)) != 0u; } // Mark all bits as "clear". void ClearAllBits(); // Mark specified number of initial bits as "set" and clear all bits after that. void SetInitialBits(uint32_t num_bits); // Return true if there are any bits set, false otherwise. bool IsAnyBitSet() const { DCheckTrailingBitsClear(); return std::any_of(storage_, storage_ + SizeInWords(), [](WordType w) { return w != 0u; }); } // Union with another bit vector view of the same size. bool Union(BitVectorView union_with); // Union with the bits in `union_with` but not in `not_in`. All views must have the same size. bool UnionIfNotIn(BitVectorView union_with, BitVectorView not_in); // `BitVectorView` wrapper class for iteration across indexes of set bits. class IndexContainerImpl; using IndexContainer = BitVectorView::IndexContainerImpl; IndexContainer Indexes() const; private: static constexpr size_t WordIndex(size_t index) { return index >> WhichPowerOf2(kWordBits); } static constexpr WordType BitMask(size_t index) { return static_cast(1) << (index % kWordBits); } constexpr void DCheckTrailingBitsClear() const { DCHECK_IMPLIES(SizeInBits() % kWordBits != 0u, (storage_[WordIndex(SizeInBits())] & ~(BitMask(SizeInBits()) - 1u)) == 0u); } WordType* storage_; size_t size_in_bits_; template friend class BitVectorIndexIterator; template friend class BitVectorView; }; /** * @brief Convenient iterator across the indexes of the bits in `BitVector` or `BitVectorView<>`. * * @details BitVectorIndexIterator is a Forward iterator (C++11: 24.2.5) from the lowest * to the highest index of the BitVector's set bits. Instances can be retrieved * only through `BitVector{,View}::Indexes()` which return an index container wrapper * object with begin() and end() suitable for range-based loops: * for (uint32_t idx : bit_vector.Indexes()) { * // Use idx. * } */ template class BitVectorIndexIterator { static_assert(std::is_const_v); public: using iterator_category = std::forward_iterator_tag; using value_type = size_t; using difference_type = ptrdiff_t; using pointer = void; using reference = void; bool operator==(const BitVectorIndexIterator& other) const; bool operator!=(const BitVectorIndexIterator& other) const; size_t operator*() const; BitVectorIndexIterator& operator++(); BitVectorIndexIterator operator++(int); // Helper function to check for end without comparing with bit_vector.Indexes().end(). bool Done() const { return bit_index_ == bit_vector_view_.SizeInBits(); } private: struct begin_tag { }; struct end_tag { }; BitVectorIndexIterator(BitVectorView bit_vector_view, begin_tag); BitVectorIndexIterator(BitVectorView bit_vector_view, end_tag); size_t FindIndex(size_t start_index) const; static constexpr size_t kWordBits = BitVectorView::kWordBits; const BitVectorView bit_vector_view_; size_t bit_index_; // Current index (size in bits). template friend class BitVectorView; }; /* * Expanding bitmap. Bits are numbered starting from zero. All operations on a BitVector are * unsynchronized. New BitVectors are not necessarily zeroed out. If the used allocator doesn't do * clear the vector (e.g. ScopedArenaAllocator), the responsibility of clearing it relies on the * caller (e.g. ArenaBitVector). */ class BitVector { public: static constexpr uint32_t kWordBytes = sizeof(uint32_t); static constexpr uint32_t kWordBits = kWordBytes * 8; using IndexContainer = BitVectorView::IndexContainer; // MoveConstructible but not MoveAssignable, CopyConstructible or CopyAssignable. BitVector(const BitVector& other) = delete; BitVector& operator=(const BitVector& other) = delete; BitVector(BitVector&& other) noexcept : storage_(other.storage_), storage_size_(other.storage_size_), allocator_(other.allocator_), expandable_(other.expandable_) { other.storage_ = nullptr; other.storage_size_ = 0u; } BitVector(uint32_t start_bits, bool expandable, Allocator* allocator); BitVector(bool expandable, Allocator* allocator, uint32_t storage_size, uint32_t* storage); BitVector(const BitVector& src, bool expandable, Allocator* allocator); virtual ~BitVector(); // The number of words necessary to encode bits. static constexpr uint32_t BitsToWords(uint32_t bits) { return RoundUp(bits, kWordBits) / kWordBits; } // Mark the specified bit as "set". void SetBit(uint32_t idx) { /* * TUNING: this could have pathologically bad growth/expand behavior. Make sure we're * not using it badly or change resize mechanism. */ if (idx >= storage_size_ * kWordBits) { EnsureSize(idx); } AsView().SetBit(idx); } // Mark the specified bit as "clear". void ClearBit(uint32_t idx) { // If the index is over the size, we don't have to do anything, it is cleared. if (idx < storage_size_ * kWordBits) { // Otherwise, go ahead and clear it. AsView().ClearBit(idx); } } // Determine whether or not the specified bit is set. bool IsBitSet(uint32_t idx) const { // If the index is over the size, whether it is expandable or not, this bit does not exist: // thus it is not set. return (idx < (storage_size_ * kWordBits)) && AsView().IsBitSet(idx); } // Mark all bits as "clear". void ClearAllBits(); // Mark specified number of bits as "set". Cannot set all bits like ClearAll since there might // be unused bits - setting those to one will confuse the iterator. void SetInitialBits(uint32_t num_bits); void Copy(const BitVector* src); // Intersect with another bit vector. void Intersect(const BitVector* src2); // Union with another bit vector. bool Union(const BitVector* src); // Set bits of union_with that are not in not_in. bool UnionIfNotIn(const BitVector* union_with, const BitVector* not_in); void Subtract(const BitVector* src); // Are we equal to another bit vector? Note: expandability attributes must also match. bool Equal(const BitVector* src) const; /** * @brief Are all the bits set the same? * @details expandability and size can differ as long as the same bits are set. */ bool SameBitsSet(const BitVector *src) const; bool IsSubsetOf(const BitVector *other) const; // Count the number of bits that are set. uint32_t NumSetBits() const; // Count the number of bits that are set in range [0, end). uint32_t NumSetBits(uint32_t end) const; IndexContainer Indexes() const; uint32_t GetStorageSize() const { return storage_size_; } bool IsExpandable() const { return expandable_; } uint32_t GetRawStorageWord(size_t idx) const { return storage_[idx]; } uint32_t* GetRawStorage() { return storage_; } const uint32_t* GetRawStorage() const { return storage_; } size_t GetSizeOf() const { return storage_size_ * kWordBytes; } size_t GetBitSizeOf() const { return storage_size_ * kWordBits; } /** * @return the highest bit set, -1 if none are set */ int GetHighestBitSet() const; /** * @return true if there are any bits set, false otherwise. */ bool IsAnyBitSet() const { return AsView().IsAnyBitSet(); } // Minimum number of bits required to store this vector, 0 if none are set. size_t GetNumberOfBits() const { return GetHighestBitSet() + 1; } // Is bit set in storage. (No range check.) static bool IsBitSet(const uint32_t* storage, uint32_t idx) { return (storage[WordIndex(idx)] & BitMask(idx)) != 0; } // Number of bits set in range [0, end) in storage. (No range check.) static uint32_t NumSetBits(const uint32_t* storage, uint32_t end); // Fill given memory region with the contents of the vector and zero padding. void CopyTo(void* dst, size_t len) const { DCHECK_LE(static_cast(GetHighestBitSet() + 1), len * kBitsPerByte); size_t vec_len = GetSizeOf(); if (vec_len < len) { void* dst_padding = reinterpret_cast(dst) + vec_len; memcpy(dst, storage_, vec_len); memset(dst_padding, 0, len - vec_len); } else { memcpy(dst, storage_, len); } } void Dump(std::ostream& os, const char* prefix) const; Allocator* GetAllocator() const; private: /** * @brief Dump the bitvector into buffer in a 00101..01 format. * @param buffer the ostringstream used to dump the bitvector into. */ void DumpHelper(const char* prefix, std::ostringstream& buffer) const; BitVectorView AsView() { return {storage_, storage_size_ * kWordBits}; } BitVectorView AsView() const { return {storage_, storage_size_ * kWordBits}; } // Ensure there is space for a bit at idx. void EnsureSize(uint32_t idx); // The index of the word within storage. static constexpr uint32_t WordIndex(uint32_t idx) { return idx >> 5; } // A bit mask to extract the bit for the given index. static constexpr uint32_t BitMask(uint32_t idx) { return 1 << (idx & 0x1f); } uint32_t* storage_; // The storage for the bit vector. uint32_t storage_size_; // Current size, in 32-bit words. Allocator* const allocator_; // Allocator if expandable. const bool expandable_; // Should the bitmap expand if too small? }; } // namespace art #endif // ART_LIBARTBASE_BASE_BIT_VECTOR_H_