/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_COMPILER_OPTIMIZING_INDUCTION_VAR_RANGE_H_ #define ART_COMPILER_OPTIMIZING_INDUCTION_VAR_RANGE_H_ #include "induction_var_analysis.h" namespace art { /** * This class implements range analysis on expressions within loops. It takes the results * of induction variable analysis in the constructor and provides a public API to obtain * a conservative lower and upper bound value on each instruction in the HIR. * * The range analysis is done with a combination of symbolic and partial integral evaluation * of expressions. The analysis avoids complications with wrap-around arithmetic on the integral * parts but all clients should be aware that wrap-around may occur on any of the symbolic parts. * For example, given a known range for [0,100] for i, the evaluation yields range [-100,100] * for expression -2*i+100, which is exact, and range [x,x+100] for expression i+x, which may * wrap-around anywhere in the range depending on the actual value of x. */ class InductionVarRange { public: /* * A value that can be represented as "a * instruction + b" for 32-bit constants, where * Value() denotes an unknown lower and upper bound. Although range analysis could yield * more complex values, the format is sufficiently powerful to represent useful cases * and feeds directly into optimizations like bounds check elimination. */ struct Value { Value() : instruction(nullptr), a_constant(0), b_constant(0), is_known(false) {} Value(HInstruction* i, int32_t a, int32_t b) : instruction(a != 0 ? i : nullptr), a_constant(a), b_constant(b), is_known(true) {} explicit Value(int32_t b) : Value(nullptr, 0, b) {} // Representation as: a_constant x instruction + b_constant. HInstruction* instruction; int32_t a_constant; int32_t b_constant; // If true, represented by prior fields. Otherwise unknown value. bool is_known; }; explicit InductionVarRange(HInductionVarAnalysis* induction); /** * Given a context denoted by the first instruction, returns a, * possibly conservative, lower bound on the instruction's value. */ Value GetMinInduction(HInstruction* context, HInstruction* instruction); /** * Given a context denoted by the first instruction, returns a, * possibly conservative, upper bound on the instruction's value. */ Value GetMaxInduction(HInstruction* context, HInstruction* instruction); /** * Returns true if range analysis is able to generate code for the lower and upper bound * expressions on the instruction in the given context. Output parameter top_test denotes * whether a top test is needed to protect the trip-count expression evaluation. */ bool CanGenerateCode(HInstruction* context, HInstruction* instruction, /*out*/bool* top_test); /** * Generates the actual code in the HIR for the lower and upper bound expressions on the * instruction in the given context. Code for the lower and upper bound expression are * generated in given block and graph and are returned in lower and upper, respectively. * For a loop invariant, lower is not set. * * For example, given expression x+i with range [0, 5] for i, calling this method * will generate the following sequence: * * block: * lower: add x, 0 * upper: add x, 5 */ bool GenerateCode(HInstruction* context, HInstruction* instruction, HGraph* graph, HBasicBlock* block, /*out*/HInstruction** lower, /*out*/HInstruction** upper); private: // // Private helper methods. // Value GetInduction(HInstruction* context, HInstruction* instruction, bool is_min); static Value GetFetch(HInstruction* instruction, HInductionVarAnalysis::InductionInfo* trip, bool in_body, bool is_min); static Value GetVal(HInductionVarAnalysis::InductionInfo* info, HInductionVarAnalysis::InductionInfo* trip, bool in_body, bool is_min); static Value GetMul(HInductionVarAnalysis::InductionInfo* info1, HInductionVarAnalysis::InductionInfo* info2, HInductionVarAnalysis::InductionInfo* trip, bool in_body, bool is_min); static Value GetDiv(HInductionVarAnalysis::InductionInfo* info1, HInductionVarAnalysis::InductionInfo* info2, HInductionVarAnalysis::InductionInfo* trip, bool in_body, bool is_min); static bool GetConstant(HInductionVarAnalysis::InductionInfo* info, int32_t *value); static Value AddValue(Value v1, Value v2); static Value SubValue(Value v1, Value v2); static Value MulValue(Value v1, Value v2); static Value DivValue(Value v1, Value v2); static Value MergeVal(Value v1, Value v2, bool is_min); /** * Generates code for lower/upper expression in the HIR. Returns true on success. * With graph == nullptr, the method can be used to determine if code generation * would be successful without generating actual code yet. */ bool GenerateCode(HInstruction* context, HInstruction* instruction, HGraph* graph, HBasicBlock* block, /*out*/HInstruction** lower, /*out*/HInstruction** upper, bool* top_test); static bool GenerateCode(HInductionVarAnalysis::InductionInfo* info, HInductionVarAnalysis::InductionInfo* trip, HGraph* graph, HBasicBlock* block, /*out*/HInstruction** result, bool in_body, bool is_min); /** Results of prior induction variable analysis. */ HInductionVarAnalysis *induction_analysis_; friend class HInductionVarAnalysis; friend class InductionVarRangeTest; DISALLOW_COPY_AND_ASSIGN(InductionVarRange); }; } // namespace art #endif // ART_COMPILER_OPTIMIZING_INDUCTION_VAR_RANGE_H_